Problem 1

Using R, generate a random variable X that has 10,000 random uniform numbers from 1 to N, where N can be any number of your choosing greater than or equal to 6. Then generate a random variable Y that has 10,000 random normal numbers with a mean of \(\mu =\sigma =\frac {N+1}{2}\)

Probability.

Calculate as a minimum the below probabilities a through c. Assume the small letter “x” is estimated as the median of the X variable, and the small letter “y” is estimated as the 1st quartile of the Y variable. Interpret the meaning of all probabilities.

##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##   1.001   5.046   8.913   8.961  12.894  16.999

##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
## -25.608   3.012   8.960   9.018  15.267  43.630

## [1] 8.913082
## [1] 3.011775

Check to see if independence holds

5 points. Check to see if independence holds by using Fisher’s Exact Test and the Chi Square Test. What is the difference between the two? Which is most appropriate?

## 
##  Fisher's Exact Test for Count Data
## 
## data:  matrix_table
## p-value = 0.7995
## alternative hypothesis: true odds ratio is not equal to 1
## 95 percent confidence interval:
##  0.9008857 1.0819850
## sample estimates:
## odds ratio 
##   0.987281

From Fisher test p-value is 0.7995.

## 
##  Pearson's Chi-squared test with Yates' continuity correction
## 
## data:  matrix_table
## X-squared = 0.064533, df = 1, p-value = 0.7995

p-value is 0.7995 which is indentical to fisher test. Fisher’s exact test is practically applied only in analysis of small samples but actually it is valid for all sample sizes. While the chi-squared test relies on an approximation, Fisher’s exact test is one of exact tests. Hence, Fisher’s exact test is most appropriate.

Problem 2

You are to register for Kaggle.com (free) and compete in the House Prices: Advanced Regression Techniques competition. https://www.kaggle.com/c/house-prices-advanced-regression-techniques . I want you to do the following.

5 points. Descriptive and Inferential Statistics. Provide univariate descriptive statistics and appropriate plots for the training data set. Provide a scatterplot matrix for at least two of the independent variables and the dependent variable. Derive a correlation matrix for any three quantitative variables in the dataset. Test the hypotheses that the correlations between each pairwise set of variables is 0 and provide an 80% confidence interval. Discuss the meaning of your analysis. Would you be worried about familywise error? Why or why not?

5 points. Linear Algebra and Correlation. Invert your correlation matrix from above. (This is known as the precision matrix and contains variance inflation factors on the diagonal.) Multiply the correlation matrix by the precision matrix, and then multiply the precision matrix by the correlation matrix. Conduct LU decomposition on the matrix.

5 points. Calculus-Based Probability & Statistics. Many times, it makes sense to fit a closed form distribution to data. Select a variable in the Kaggle.com training dataset that is skewed to the right, shift it so that the minimum value is absolutely above zero if necessary. Then load the MASS package and run fitdistr to fit an exponential probability density function. (See https://stat.ethz.ch/R-manual/R-devel/library/MASS/html/fitdistr.html ). Find the optimal value of \(\lambda\) for this distribution, and then take 1000 samples from this exponential distribution using this value (e.g., rexp(1000, \(\lambda\))). Plot a histogram and compare it with a histogram of your original variable. Using the exponential pdf, find the 5th and 95th percentiles using the cumulative distribution function (CDF). Also generate a 95% confidence interval from the empirical data, assuming normality. Finally, provide the empirical 5th percentile and 95th percentile of the data. Discuss.

10 points. Modeling. Build some type of multiple regression model and submit your model to the competition board. Provide your complete model summary and results with analysis. Report your Kaggle.com user name and score.

House Prices: Advanced Regression Techniques

Analysis

Descriptive and Inferential Statistics

Independent Variables

LotArea : Lot size in square feet

GarageArea : Size of garage in square feet

YearBuilt : Original construction date

OverallQual : Rates the overall material and finish of the house

   10   Very Excellent
   9    Excellent
   8    Very Good
   7    Good
   6    Above Average
   5    Average
   4    Below Average
   3    Fair
   2    Poor
   1    Very Poor

Dependent Variable:

SalePrice : Sale Price of the House

Hypotheses

\(H_0\) = There is 0 correlation between each pairwise variables

\(H_A\) = There is correlation between each pairwise variables

## 
##  Pearson's product-moment correlation
## 
## data:  train$LotArea and train$SalePrice
## t = 10.445, df = 1458, p-value < 2.2e-16
## alternative hypothesis: true correlation is not equal to 0
## 80 percent confidence interval:
##  0.2323391 0.2947946
## sample estimates:
##       cor 
## 0.2638434
## 
##  Pearson's product-moment correlation
## 
## data:  train$GarageArea and train$SalePrice
## t = 30.446, df = 1458, p-value < 2.2e-16
## alternative hypothesis: true correlation is not equal to 0
## 80 percent confidence interval:
##  0.6024756 0.6435283
## sample estimates:
##       cor 
## 0.6234314
## 
##  Pearson's product-moment correlation
## 
## data:  train$YearBuilt and train$SalePrice
## t = 23.424, df = 1458, p-value < 2.2e-16
## alternative hypothesis: true correlation is not equal to 0
## 80 percent confidence interval:
##  0.4980766 0.5468619
## sample estimates:
##       cor 
## 0.5228973
## 
##  Pearson's product-moment correlation
## 
## data:  train$OverallQual and train$SalePrice
## t = 49.364, df = 1458, p-value < 2.2e-16
## alternative hypothesis: true correlation is not equal to 0
## 80 percent confidence interval:
##  0.7780752 0.8032204
## sample estimates:
##       cor 
## 0.7909816

The confidence interval for the correlation between LotArea and SalePrice is 0.2323391 and 0.2947946, with a positive correlation of 0.2638434.

The confidence interval for the correlation between YearBuilt and Sale Price is 0.4980766 and 0.5468619, with a positive correlation of 0.5228973.

The confidence interval for the correlation between GarageArea and SalePrice is 0.6024756 and 0.6435283, with a strong positive correlation of 0.6234314

The confidence interval for the correlation between OverallQual and Sale Price is 0.7780752 and 0.8032204, with a strongest positive correlation of 0.7909816.

given the small number of tests with significantly low p-values<2.2e-16, it is likely that Familywise error rate error has not occured.

Linear Algebra and Correlation

Create correlation matrix with LotArea, SalePrice, GarageArea,YearBuilt,OverallQual

##                LotArea SalePrice GarageArea  YearBuilt OverallQual
## LotArea     1.00000000 0.2638434  0.1804028 0.01422765   0.1058057
## SalePrice   0.26384335 1.0000000  0.6234314 0.52289733   0.7909816
## GarageArea  0.18040276 0.6234314  1.0000000 0.47895382   0.5620218
## YearBuilt   0.01422765 0.5228973  0.4789538 1.00000000   0.5723228
## OverallQual 0.10580574 0.7909816  0.5620218 0.57232277   1.0000000

Invert the matrix then Multiply the correlation matrix by the precision matrix,

##              LotArea SalePrice GarageArea YearBuilt OverallQual
## LotArea      1.12607  -0.52436   -0.09763   0.15516     0.26168
## SalePrice   -0.52436   3.30933   -0.72380  -0.21230    -2.03385
## GarageArea  -0.09763  -0.72380    1.74631  -0.33966    -0.20423
## YearBuilt    0.15516  -0.21230   -0.33966   1.59941    -0.57298
## OverallQual  0.26168  -2.03385   -0.20423  -0.57298     3.02376

Since \(Precision = Correlation^{-1}\) thus \(Precision×Correlation\) should be equal to I.

##             LotArea SalePrice GarageArea YearBuilt OverallQual
## LotArea           1         0          0         0           0
## SalePrice         0         1          0         0           0
## GarageArea        0         0          1         0           0
## YearBuilt         0         0          0         1           0
## OverallQual       0         0          0         0           1

multiply the precision matrix by the correlation matrix

##             LotArea SalePrice GarageArea YearBuilt OverallQual
## LotArea           1         0          0         0           0
## SalePrice         0         1          0         0           0
## GarageArea        0         0          1         0           0
## YearBuilt         0         0          0         1           0
## OverallQual       0         0          0         0           1
## [[1]]
##            [,1]      [,2]      [,3]     [,4] [,5]
## [1,] 1.00000000 0.0000000 0.0000000 0.000000    0
## [2,] 0.26384335 1.0000000 0.0000000 0.000000    0
## [3,] 0.18040276 0.6189183 1.0000000 0.000000    0
## [4,] 0.01422765 0.5579868 0.2537876 1.000000    0
## [5,] 0.10580574 0.8201595 0.1156332 0.189492    1
## 
## [[2]]
##             LotArea SalePrice GarageArea  YearBuilt OverallQual
## LotArea           1 0.2638434  0.1804028 0.01422765  0.10580574
## SalePrice         0 0.9303867  0.5758334 0.51914346  0.76306546
## GarageArea        0 0.0000000  0.6110610 0.15507971  0.07065891
## YearBuilt         0 0.0000000  0.0000000 0.67076508  0.12710462
## OverallQual       0 0.0000000  0.0000000 0.00000000  0.33071396
##             LotArea SalePrice GarageArea YearBuilt OverallQual
## LotArea        TRUE      TRUE       TRUE      TRUE        TRUE
## SalePrice      TRUE      TRUE       TRUE      TRUE        TRUE
## GarageArea     TRUE      TRUE       TRUE      TRUE        TRUE
## YearBuilt      TRUE      TRUE       TRUE      TRUE        TRUE
## OverallQual    TRUE      TRUE       TRUE      TRUE        TRUE

Hence, it verifies the result

Calculus-Based Probability & Statistics

From general understanding the sale price can correlate with GarageArea . For our analysis we can also see the importance of GarageArea, potential buyers will have the advantage of having a larger garage in house, so GarageArea house will have higher price .

For the purpose of our analysis I would like to assign \(X\) variable for , GarageArea

Get some basic statistics about the OverallQual variable.

##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##     0.0   334.5   480.0   473.0   576.0  1418.0
##    vars    n   mean    sd median trimmed    mad min  max range skew
## X1    1 1460 472.98 213.8    480  469.81 177.91   0 1418  1418 0.18
##    kurtosis  se
## X1      0.9 5.6

Evaluating few plots.

Find the optimal value of \(\lambda\) for this distribution, and then take 1000 samples from this exponential distribution using this value (e.g., rexp(1000, \(\lambda\)))

##        rate 
## 0.002114254

Plot a histogram and compare it with a histogram of your original variable.

Using the exponential pdf, find the 5th and 95th percentiles using the cumulative distribution function (CDF).

The 5th percentile is 24.2607 and 95th percentile is 1416.9219

Also generate a 95% confidence interval from the empirical data, assuming normality

##    upper     mean    lower 
## 483.9563 472.9801 462.0040

Finally, provide the empirical 5th percentile and 95th percentile of the data.

##    5%   95% 
##   0.0 850.1

We are 95% confident that the mean of GarageArea is between 462.004 and 483.9563. The exponential distribution is not a good fit as we can see the center of the exp distribution is shifted left as compared to the empirical data.

Modeling (Kaggle)

Missing Data map

Data Cleaning

##             .id   V1     percent
## 73       PoolQC 1453 99.52054795
## 75  MiscFeature 1406 96.30136986
## 7         Alley 1369 93.76712329
## 74        Fence 1179 80.75342466
## 58  FireplaceQu  690 47.26027397
## 4   LotFrontage  259 17.73972603
## 59   GarageType   81  5.54794521
## 60  GarageYrBlt   81  5.54794521
## 61 GarageFinish   81  5.54794521
## 64   GarageQual   81  5.54794521
## 65   GarageCond   81  5.54794521
## 33 BsmtExposure   38  2.60273973
## 36 BsmtFinType2   38  2.60273973
## 31     BsmtQual   37  2.53424658
## 32     BsmtCond   37  2.53424658
## 34 BsmtFinType1   37  2.53424658
## 26   MasVnrType    8  0.54794521
## 27   MasVnrArea    8  0.54794521
## 43   Electrical    1  0.06849315
##             .id   V1    percent
## 73       PoolQC 1456 99.7943797
## 75  MiscFeature 1408 96.5044551
## 7         Alley 1352 92.6662097
## 74        Fence 1169 80.1233722
## 58  FireplaceQu  730 50.0342700
## 4   LotFrontage  227 15.5586018
## 60  GarageYrBlt   78  5.3461275
## 61 GarageFinish   78  5.3461275
## 64   GarageQual   78  5.3461275
## 65   GarageCond   78  5.3461275
## 59   GarageType   76  5.2090473
## 32     BsmtCond   45  3.0843043
## 31     BsmtQual   44  3.0157642
## 33 BsmtExposure   44  3.0157642
## 34 BsmtFinType1   42  2.8786840
## 36 BsmtFinType2   42  2.8786840
## 26   MasVnrType   16  1.0966415
## 27   MasVnrArea   15  1.0281014
## 3      MSZoning    4  0.2741604
## 10    Utilities    2  0.1370802
## 48 BsmtFullBath    2  0.1370802
## 49 BsmtHalfBath    2  0.1370802
## 56   Functional    2  0.1370802
## 24  Exterior1st    1  0.0685401
## 25  Exterior2nd    1  0.0685401
## 35   BsmtFinSF1    1  0.0685401
## 37   BsmtFinSF2    1  0.0685401
## 38    BsmtUnfSF    1  0.0685401
## 39  TotalBsmtSF    1  0.0685401
## 54  KitchenQual    1  0.0685401
## 62   GarageCars    1  0.0685401
## 63   GarageArea    1  0.0685401
## 79     SaleType    1  0.0685401

The dataset contains many numeric and categorical variables with “NA” values. I will remove Alley, PoolQC, MiscFeature columns because missing value is more than 95 percent so replacing with 0 doesn’t seems efficient. The data dictionary helps understand the meaning of “NA” for different categorical variables. e.g. The presence of “NA” in the variable “GarageQual” means that the house does not have a garage. This holds true for most of the other variables. Hence, we replaced the “NA” values from each of these categorical variables with “None”.

## 
## Call:
## lm(formula = SalePrice.log ~ ., data = d.train)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -1.74212 -0.06206  0.00212  0.06817  0.53219 
## 
## Coefficients: (2 not defined because of singularities)
##                    Estimate    Std. Error t value Pr(>|t|)    
## (Intercept)   20.2083972166  5.7688604675   3.503 0.000475 ***
## Id            -0.0000095051  0.0000088662  -1.072 0.283882    
## MSSubClass    -0.0002414112  0.0001981414  -1.218 0.223288    
## MSZoning      -0.0178000641  0.0066119271  -2.692 0.007186 ** 
## LotFrontage   -0.0004470160  0.0002183949  -2.047 0.040864 *  
## LotArea        0.0000015760  0.0000004670   3.374 0.000760 ***
## Street         0.1842472114  0.0610158922   3.020 0.002577 ** 
## LotShape      -0.0060512080  0.0028840796  -2.098 0.036074 *  
## LandContour    0.0107067706  0.0058767097   1.822 0.068686 .  
## Utilities     -0.1782016125  0.1451586319  -1.228 0.219793    
## LotConfig     -0.0016406429  0.0023873087  -0.687 0.492050    
## LandSlope      0.0341146928  0.0166937085   2.044 0.041185 *  
## Neighborhood   0.0008361481  0.0006862253   1.218 0.223251    
## Condition1     0.0013589355  0.0044281870   0.307 0.758979    
## Condition2    -0.0439037080  0.0146295282  -3.001 0.002739 ** 
## BldgType      -0.0120771346  0.0065445066  -1.845 0.065195 .  
## HouseStyle    -0.0041547071  0.0028563076  -1.455 0.146014    
## OverallQual    0.0701835521  0.0051757042  13.560  < 2e-16 ***
## OverallCond    0.0408832362  0.0045439157   8.997  < 2e-16 ***
## YearBuilt      0.0015439327  0.0003253952   4.745 2.30e-06 ***
## YearRemodAdd   0.0006623128  0.0002911466   2.275 0.023068 *  
## RoofStyle      0.0055266097  0.0049023257   1.127 0.259792    
## RoofMatl       0.0095921615  0.0065624011   1.462 0.144055    
## Exterior1st   -0.0039671839  0.0022815506  -1.739 0.082290 .  
## Exterior2nd    0.0034076271  0.0020612326   1.653 0.098517 .  
## MasVnrType     0.0047209422  0.0064176729   0.736 0.462089    
## MasVnrArea     0.0000151897  0.0000261977   0.580 0.562136    
## ExterQual     -0.0071207196  0.0085836481  -0.830 0.406926    
## ExterCond      0.0105575935  0.0054786005   1.927 0.054177 .  
## Foundation     0.0123837867  0.0073374863   1.688 0.091686 .  
## BsmtQual      -0.0130525101  0.0059262427  -2.202 0.027795 *  
## BsmtCond       0.0123170567  0.0057271156   2.151 0.031676 *  
## BsmtExposure  -0.0073255178  0.0038300312  -1.913 0.055999 .  
## BsmtFinType1  -0.0059318791  0.0027200058  -2.181 0.029364 *  
## BsmtFinSF1     0.0000397429  0.0000225967   1.759 0.078833 .  
## BsmtFinType2   0.0155493247  0.0049075899   3.168 0.001566 ** 
## BsmtFinSF2     0.0001269949  0.0000345002   3.681 0.000241 ***
## BsmtUnfSF      0.0000296823  0.0000220592   1.346 0.178661    
## TotalBsmtSF              NA            NA      NA       NA    
## Heating       -0.0039834371  0.0140428214  -0.284 0.776711    
## HeatingQC     -0.0076355112  0.0026930988  -2.835 0.004646 ** 
## CentralAir     0.0710187683  0.0195520808   3.632 0.000291 ***
## Electrical    -0.0012517406  0.0039700408  -0.315 0.752584    
## X1stFlrSF      0.0002121138  0.0000271530   7.812 1.11e-14 ***
## X2ndFlrSF      0.0001676512  0.0000209810   7.991 2.81e-15 ***
## LowQualFinSF   0.0001466739  0.0000813488   1.803 0.071602 .  
## GrLivArea                NA            NA      NA       NA    
## BsmtFullBath   0.0583586404  0.0106549359   5.477 5.13e-08 ***
## BsmtHalfBath   0.0233541822  0.0167569879   1.394 0.163633    
## FullBath       0.0364778162  0.0117562121   3.103 0.001955 ** 
## HalfBath       0.0171432577  0.0110709067   1.548 0.121731    
## BedroomAbvGr   0.0075243129  0.0072780510   1.034 0.301393    
## KitchenAbvGr  -0.0344663360  0.0220209007  -1.565 0.117773    
## KitchenQual   -0.0238857397  0.0063120664  -3.784 0.000161 ***
## TotRmsAbvGrd   0.0134558783  0.0051068668   2.635 0.008511 ** 
## Functional     0.0169482336  0.0041261378   4.108 4.23e-05 ***
## Fireplaces     0.0366280862  0.0114581717   3.197 0.001422 ** 
## FireplaceQu    0.0000093028  0.0034599476   0.003 0.997855    
## GarageType    -0.0040763241  0.0027950382  -1.458 0.144953    
## GarageYrBlt    0.0000068324  0.0000255944   0.267 0.789547    
## GarageFinish  -0.0077657648  0.0064321899  -1.207 0.227512    
## GarageCars     0.0633277607  0.0123105224   5.144 3.07e-07 ***
## GarageArea     0.0000130978  0.0000407236   0.322 0.747784    
## GarageQual    -0.0011246516  0.0077537784  -0.145 0.884696    
## GarageCond     0.0094858868  0.0087831041   1.080 0.280324    
## PavedDrive     0.0239891837  0.0090207865   2.659 0.007920 ** 
## WoodDeckSF     0.0001041250  0.0000327857   3.176 0.001527 ** 
## OpenPorchSF   -0.0000341191  0.0000624097  -0.547 0.584676    
## EnclosedPorch  0.0001528095  0.0000681650   2.242 0.025135 *  
## X3SsnPorch     0.0001822153  0.0001269290   1.436 0.151351    
## ScreenPorch    0.0003245969  0.0000700634   4.633 3.95e-06 ***
## PoolArea      -0.0002682440  0.0000968468  -2.770 0.005684 ** 
## Fence         -0.0035283660  0.0038853603  -0.908 0.363974    
## MiscVal       -0.0000009731  0.0000075798  -0.128 0.897870    
## MoSold         0.0001120425  0.0013910234   0.081 0.935814    
## YrSold        -0.0071296102  0.0028511783  -2.501 0.012514 *  
## SaleType      -0.0015706813  0.0025039485  -0.627 0.530578    
## SaleCondition  0.0225255707  0.0036071087   6.245 5.63e-10 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.1384 on 1384 degrees of freedom
## Multiple R-squared:  0.8861, Adjusted R-squared:  0.8799 
## F-statistic: 143.5 on 75 and 1384 DF,  p-value: < 2.2e-16
## 
## Call:
## lm(formula = SalePrice.log ~ LotFrontage + LotArea + OverallQual + 
##     OverallCond + YearBuilt + YearRemodAdd + BsmtFinSF2 + X1stFlrSF + 
##     X2ndFlrSF + LowQualFinSF + BsmtFullBath + FullBath + TotRmsAbvGrd + 
##     Fireplaces + GarageYrBlt + GarageCars + WoodDeckSF + EnclosedPorch + 
##     ScreenPorch + PoolArea + YrSold + MSZoning + Street + LotShape + 
##     LandSlope + Condition2 + ExterCond + BsmtQual + BsmtCond + 
##     BsmtFinType1 + BsmtFinType2 + HeatingQC + CentralAir + KitchenQual + 
##     Functional + PavedDrive + SaleCondition, data = train)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -1.84550 -0.06784  0.00439  0.07533  0.60612 
## 
## Coefficients:
##                    Estimate    Std. Error t value Pr(>|t|)    
## (Intercept)   19.0069339606  5.6808114706   3.346 0.000842 ***
## LotFrontage    0.0001179172  0.0001975262   0.597 0.550623    
## LotArea        0.0000020344  0.0000004583   4.439 9.75e-06 ***
## OverallQual    0.0743382480  0.0049141906  15.127  < 2e-16 ***
## OverallCond    0.0417037788  0.0044834877   9.302  < 2e-16 ***
## YearBuilt      0.0019908443  0.0002705939   7.357 3.16e-13 ***
## YearRemodAdd   0.0005886496  0.0002817191   2.089 0.036841 *  
## BsmtFinSF2     0.0000977091  0.0000308109   3.171 0.001550 ** 
## X1stFlrSF      0.0002616408  0.0000192414  13.598  < 2e-16 ***
## X2ndFlrSF      0.0001717200  0.0000166824  10.293  < 2e-16 ***
## LowQualFinSF   0.0001418027  0.0000802028   1.768 0.077267 .  
## BsmtFullBath   0.0547207151  0.0086031341   6.361 2.70e-10 ***
## FullBath       0.0207902498  0.0103767534   2.004 0.045309 *  
## TotRmsAbvGrd   0.0144143988  0.0042591409   3.384 0.000733 ***
## Fireplaces     0.0370064098  0.0070765307   5.229 1.95e-07 ***
## GarageYrBlt    0.0000073516  0.0000112393   0.654 0.513156    
## GarageCars     0.0667104795  0.0084912290   7.856 7.74e-15 ***
## WoodDeckSF     0.0001323260  0.0000323033   4.096 4.43e-05 ***
## EnclosedPorch  0.0001758041  0.0000680828   2.582 0.009916 ** 
## ScreenPorch    0.0003691134  0.0000695941   5.304 1.31e-07 ***
## PoolArea      -0.0003342638  0.0000962343  -3.473 0.000529 ***
## YrSold        -0.0070332251  0.0028187330  -2.495 0.012702 *  
## MSZoning      -0.0225238352  0.0063263677  -3.560 0.000383 ***
## Street         0.2012942557  0.0604028949   3.333 0.000883 ***
## LotShape      -0.0086064548  0.0027859848  -3.089 0.002046 ** 
## LandSlope      0.0262383954  0.0154297574   1.701 0.089254 .  
## Condition2    -0.0461749383  0.0144059001  -3.205 0.001379 ** 
## ExterCond      0.0086363514  0.0054347679   1.589 0.112262    
## BsmtQual      -0.0130464019  0.0055255188  -2.361 0.018354 *  
## BsmtCond       0.0125105370  0.0055850943   2.240 0.025246 *  
## BsmtFinType1  -0.0076824225  0.0024166360  -3.179 0.001510 ** 
## BsmtFinType2   0.0160077376  0.0046143394   3.469 0.000538 ***
## HeatingQC     -0.0097685850  0.0025747749  -3.794 0.000154 ***
## CentralAir     0.0815765515  0.0181891485   4.485 7.88e-06 ***
## KitchenQual   -0.0273717358  0.0058529588  -4.677 3.19e-06 ***
## Functional     0.0187185982  0.0040511486   4.621 4.17e-06 ***
## PavedDrive     0.0252290890  0.0089792816   2.810 0.005027 ** 
## SaleCondition  0.0239480877  0.0035286818   6.787 1.68e-11 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.1406 on 1422 degrees of freedom
## Multiple R-squared:  0.8792, Adjusted R-squared:  0.876 
## F-statistic: 279.6 on 37 and 1422 DF,  p-value: < 2.2e-16

I have Optimized the model using stepAIC method. This method simplify the model without impacting much on the performance

## 
## Call:
## lm(formula = SalePrice.log ~ MSZoning + LotFrontage + LotArea + 
##     Street + LotShape + LandContour + LandSlope + Condition2 + 
##     BldgType + HouseStyle + OverallQual + OverallCond + YearBuilt + 
##     YearRemodAdd + RoofStyle + RoofMatl + Exterior1st + Exterior2nd + 
##     ExterCond + Foundation + BsmtQual + BsmtCond + BsmtExposure + 
##     BsmtFinType1 + BsmtFinSF1 + BsmtFinType2 + BsmtFinSF2 + BsmtUnfSF + 
##     HeatingQC + CentralAir + X1stFlrSF + X2ndFlrSF + LowQualFinSF + 
##     BsmtFullBath + FullBath + HalfBath + KitchenAbvGr + KitchenQual + 
##     TotRmsAbvGrd + Functional + Fireplaces + GarageType + GarageCars + 
##     GarageCond + PavedDrive + WoodDeckSF + EnclosedPorch + X3SsnPorch + 
##     ScreenPorch + PoolArea + YrSold + SaleCondition, data = d.train)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -1.77137 -0.06316  0.00248  0.06726  0.54763 
## 
## Coefficients:
##                    Estimate    Std. Error t value           Pr(>|t|)    
## (Intercept)   19.0941636102  5.6103729090   3.403           0.000684 ***
## MSZoning      -0.0202002556  0.0062767755  -3.218           0.001319 ** 
## LotFrontage   -0.0003989554  0.0002131635  -1.872           0.061470 .  
## LotArea        0.0000015935  0.0000004561   3.494           0.000491 ***
## Street         0.1729126102  0.0596569328   2.898           0.003808 ** 
## LotShape      -0.0070403716  0.0027731244  -2.539           0.011231 *  
## LandContour    0.0108511603  0.0057816613   1.877           0.060749 .  
## LandSlope      0.0330525183  0.0164527948   2.009           0.044735 *  
## Condition2    -0.0435204826  0.0142228827  -3.060           0.002256 ** 
## BldgType      -0.0184996556  0.0038672272  -4.784 0.0000019019428169 ***
## HouseStyle    -0.0055384320  0.0025262182  -2.192           0.028515 *  
## OverallQual    0.0712969651  0.0049926848  14.280            < 2e-16 ***
## OverallCond    0.0406912689  0.0044738316   9.095            < 2e-16 ***
## YearBuilt      0.0016742999  0.0003108430   5.386 0.0000000841904675 ***
## YearRemodAdd   0.0006857583  0.0002827847   2.425           0.015433 *  
## RoofStyle      0.0068060432  0.0047111131   1.445           0.148771    
## RoofMatl       0.0104214912  0.0064798098   1.608           0.107993    
## Exterior1st   -0.0037813668  0.0022345682  -1.692           0.090827 .  
## Exterior2nd    0.0032280602  0.0020198385   1.598           0.110228    
## ExterCond      0.0101450702  0.0053484051   1.897           0.058054 .  
## Foundation     0.0113127482  0.0072015230   1.571           0.116435    
## BsmtQual      -0.0150420955  0.0056579443  -2.659           0.007936 ** 
## BsmtCond       0.0113908727  0.0055979701   2.035           0.042056 *  
## BsmtExposure  -0.0062319932  0.0037177145  -1.676           0.093902 .  
## BsmtFinType1  -0.0062546458  0.0026775348  -2.336           0.019633 *  
## BsmtFinSF1     0.0000508706  0.0000213454   2.383           0.017294 *  
## BsmtFinType2   0.0153160896  0.0048139464   3.182           0.001497 ** 
## BsmtFinSF2     0.0001362318  0.0000336010   4.054 0.0000530160705969 ***
## BsmtUnfSF      0.0000372897  0.0000211227   1.765           0.077716 .  
## HeatingQC     -0.0078160552  0.0026035523  -3.002           0.002729 ** 
## CentralAir     0.0735189277  0.0180672864   4.069 0.0000498013295996 ***
## X1stFlrSF      0.0002105248  0.0000262289   8.026 0.0000000000000021 ***
## X2ndFlrSF      0.0001662925  0.0000197789   8.408            < 2e-16 ***
## LowQualFinSF   0.0001510518  0.0000797360   1.894           0.058377 .  
## BsmtFullBath   0.0523058424  0.0100105579   5.225 0.0000002002971980 ***
## FullBath       0.0364845367  0.0113510722   3.214           0.001338 ** 
## HalfBath       0.0167502237  0.0108534722   1.543           0.122982    
## KitchenAbvGr  -0.0370844141  0.0209374752  -1.771           0.076744 .  
## KitchenQual   -0.0256771129  0.0057989140  -4.428 0.0000102503377568 ***
## TotRmsAbvGrd   0.0156700167  0.0045161976   3.470           0.000537 ***
## Functional     0.0171254851  0.0040536132   4.225 0.0000254590424833 ***
## Fireplaces     0.0358797990  0.0071020662   5.052 0.0000004944812149 ***
## GarageType    -0.0048716103  0.0025412843  -1.917           0.055442 .  
## GarageCars     0.0679560692  0.0081082167   8.381            < 2e-16 ***
## GarageCond     0.0073783311  0.0043205692   1.708           0.087909 .  
## PavedDrive     0.0244141767  0.0089224749   2.736           0.006292 ** 
## WoodDeckSF     0.0001071295  0.0000321940   3.328           0.000899 ***
## EnclosedPorch  0.0001670790  0.0000671401   2.489           0.012943 *  
## X3SsnPorch     0.0001902291  0.0001252604   1.519           0.129070    
## ScreenPorch    0.0003199921  0.0000690929   4.631 0.0000039689302813 ***
## PoolArea      -0.0002888713  0.0000952074  -3.034           0.002457 ** 
## YrSold        -0.0068123313  0.0027797043  -2.451           0.014377 *  
## SaleCondition  0.0223617466  0.0034782246   6.429 0.0000000001754091 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.1379 on 1407 degrees of freedom
## Multiple R-squared:  0.885,  Adjusted R-squared:  0.8808 
## F-statistic: 208.3 on 52 and 1407 DF,  p-value: < 2.2e-16
## 
## Call:
## lm(formula = SalePrice.log ~ ., data = step.lm$model)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -1.77137 -0.06316  0.00248  0.06726  0.54763 
## 
## Coefficients:
##                    Estimate    Std. Error t value           Pr(>|t|)    
## (Intercept)   19.0941636102  5.6103729090   3.403           0.000684 ***
## MSZoning      -0.0202002556  0.0062767755  -3.218           0.001319 ** 
## LotFrontage   -0.0003989554  0.0002131635  -1.872           0.061470 .  
## LotArea        0.0000015935  0.0000004561   3.494           0.000491 ***
## Street         0.1729126102  0.0596569328   2.898           0.003808 ** 
## LotShape      -0.0070403716  0.0027731244  -2.539           0.011231 *  
## LandContour    0.0108511603  0.0057816613   1.877           0.060749 .  
## LandSlope      0.0330525183  0.0164527948   2.009           0.044735 *  
## Condition2    -0.0435204826  0.0142228827  -3.060           0.002256 ** 
## BldgType      -0.0184996556  0.0038672272  -4.784 0.0000019019428169 ***
## HouseStyle    -0.0055384320  0.0025262182  -2.192           0.028515 *  
## OverallQual    0.0712969651  0.0049926848  14.280            < 2e-16 ***
## OverallCond    0.0406912689  0.0044738316   9.095            < 2e-16 ***
## YearBuilt      0.0016742999  0.0003108430   5.386 0.0000000841904675 ***
## YearRemodAdd   0.0006857583  0.0002827847   2.425           0.015433 *  
## RoofStyle      0.0068060432  0.0047111131   1.445           0.148771    
## RoofMatl       0.0104214912  0.0064798098   1.608           0.107993    
## Exterior1st   -0.0037813668  0.0022345682  -1.692           0.090827 .  
## Exterior2nd    0.0032280602  0.0020198385   1.598           0.110228    
## ExterCond      0.0101450702  0.0053484051   1.897           0.058054 .  
## Foundation     0.0113127482  0.0072015230   1.571           0.116435    
## BsmtQual      -0.0150420955  0.0056579443  -2.659           0.007936 ** 
## BsmtCond       0.0113908727  0.0055979701   2.035           0.042056 *  
## BsmtExposure  -0.0062319932  0.0037177145  -1.676           0.093902 .  
## BsmtFinType1  -0.0062546458  0.0026775348  -2.336           0.019633 *  
## BsmtFinSF1     0.0000508706  0.0000213454   2.383           0.017294 *  
## BsmtFinType2   0.0153160896  0.0048139464   3.182           0.001497 ** 
## BsmtFinSF2     0.0001362318  0.0000336010   4.054 0.0000530160705969 ***
## BsmtUnfSF      0.0000372897  0.0000211227   1.765           0.077716 .  
## HeatingQC     -0.0078160552  0.0026035523  -3.002           0.002729 ** 
## CentralAir     0.0735189277  0.0180672864   4.069 0.0000498013295996 ***
## X1stFlrSF      0.0002105248  0.0000262289   8.026 0.0000000000000021 ***
## X2ndFlrSF      0.0001662925  0.0000197789   8.408            < 2e-16 ***
## LowQualFinSF   0.0001510518  0.0000797360   1.894           0.058377 .  
## BsmtFullBath   0.0523058424  0.0100105579   5.225 0.0000002002971980 ***
## FullBath       0.0364845367  0.0113510722   3.214           0.001338 ** 
## HalfBath       0.0167502237  0.0108534722   1.543           0.122982    
## KitchenAbvGr  -0.0370844141  0.0209374752  -1.771           0.076744 .  
## KitchenQual   -0.0256771129  0.0057989140  -4.428 0.0000102503377568 ***
## TotRmsAbvGrd   0.0156700167  0.0045161976   3.470           0.000537 ***
## Functional     0.0171254851  0.0040536132   4.225 0.0000254590424833 ***
## Fireplaces     0.0358797990  0.0071020662   5.052 0.0000004944812149 ***
## GarageType    -0.0048716103  0.0025412843  -1.917           0.055442 .  
## GarageCars     0.0679560692  0.0081082167   8.381            < 2e-16 ***
## GarageCond     0.0073783311  0.0043205692   1.708           0.087909 .  
## PavedDrive     0.0244141767  0.0089224749   2.736           0.006292 ** 
## WoodDeckSF     0.0001071295  0.0000321940   3.328           0.000899 ***
## EnclosedPorch  0.0001670790  0.0000671401   2.489           0.012943 *  
## X3SsnPorch     0.0001902291  0.0001252604   1.519           0.129070    
## ScreenPorch    0.0003199921  0.0000690929   4.631 0.0000039689302813 ***
## PoolArea      -0.0002888713  0.0000952074  -3.034           0.002457 ** 
## YrSold        -0.0068123313  0.0027797043  -2.451           0.014377 *  
## SaleCondition  0.0223617466  0.0034782246   6.429 0.0000000001754091 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.1379 on 1407 degrees of freedom
## Multiple R-squared:  0.885,  Adjusted R-squared:  0.8808 
## F-statistic: 208.3 on 52 and 1407 DF,  p-value: < 2.2e-16

Residuals are normally distributed.

##     Id SalePrice
## 1 1461  114840.2
## 2 1462  152591.5
## 3 1463  168443.5
## 4 1464  197045.4
## 5 1465  183060.7
## 6 1466  172234.3

Kaggle Score : 0.13251 Team Name : Vinayak#2

1st Attempt.

1st Attempt.

2nd Attempt.

2nd Attempt.

3rd Attempt.

3rd Attempt.