R Markdown

ggplot(data = cole, aes(x = sexo))+
  geom_bar()

table(cole$sexo)
## 
##   0   1 
## 185  82
ggplot(data = cole, aes(x = edad))+
  geom_histogram()+
  geom_density()
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.

summary(cole$edad)
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##   18.00   39.00   57.00   55.54   72.00   90.00
table(cole$procedencia)
## 
##   0   1 
## 111 156
ggplot(data = cole, aes(x = cole$time_evolution))+
  geom_bar()

table(cole$ictericia)
## 
##   0   1 
## 196  71
table(cole$emesis)
## 
##   0   1 
## 120 147
table(cole$murphy)####que es esto??
## 
##   0   1   2 
## 186  75   6
table(cole$dolor_csd)
## 
##   0   1 
##   9 258
prop.table(table(cole$fiebre))
## 
##          0          1 
## 0.94756554 0.05243446
table(cole$dm2)
## 
##   0   1 
## 239  28
table(cole$hta)
## 
##   0   1 
## 193  74
table(cole$epoc)
## 
##   0   1 
## 251  16
table(cole$cancer_hepatico)
## 
##   0   1 
## 265   2
table(cole$cirrosis_hepatica)
## 
##   0 
## 267
ggplot(data = cole, aes(x = wbc))+
  geom_histogram()
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.

ggplot(data = cole, aes(x = cole$neutrofilos))+
  geom_histogram()
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.

ggplot(data = cole, aes(x = cole$alt_tgp))+
  geom_histogram()
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
## Warning: Removed 10 rows containing non-finite values (stat_bin).

cole$alt_tgp <- as.numeric(cole$alt_tgp)

ggplot(data = cole, aes(x = cole$alt_tgp))+
  geom_histogram()
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
## Warning: Removed 10 rows containing non-finite values (stat_bin).

cole$ast_tgo <- as.numeric(cole$ast_tgo)

ggplot(data = cole, aes(x = cole$ast_tgo))+
  geom_histogram()
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
## Warning: Removed 10 rows containing non-finite values (stat_bin).

cole$amilasa <- as.numeric(cole$amilasa)


ggplot(data = cole, aes(x = cole$amilasa))+
  geom_histogram()
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
## Warning: Removed 26 rows containing non-finite values (stat_bin).

cole$bilirrubina_total <- as.numeric(cole$bilirrubina_total)


ggplot(data = cole, aes(x = cole$bilirrubina_total))+
  geom_histogram()
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
## Warning: Removed 2 rows containing non-finite values (stat_bin).

cole$bilirrubina_indirecta <- as.numeric(cole$bilirrubina_indirecta)
summary(cole$bilirrubina_indirecta)
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max.    NA's 
##  0.0300  0.2975  0.5000  0.8039  0.9050  8.0000       3
ggplot(data = cole, aes(x = cole$bilirrubina_indirecta))+
  geom_histogram()
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
## Warning: Removed 3 rows containing non-finite values (stat_bin).

cole$bilirrubina_directa <- as.numeric(cole$bilirrubina_directa)
## Warning: NAs introduced by coercion
summary(cole$bilirrubina_directa)
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max.    NA's 
##  0.0100  0.4975  1.1750  2.2701  3.0925 23.4600       3
ggplot(data = cole, aes(x = cole$bilirrubina_directa))+
  geom_histogram()
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
## Warning: Removed 3 rows containing non-finite values (stat_bin).

cole$ptt <- as.numeric(cole$ptt)
## Warning: NAs introduced by coercion
summary(cole$ptt)
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max.    NA's 
##   26.00   33.00   35.00   36.08   38.00   58.30     145
ggplot(data = cole, aes(x = cole$ptt))+
  geom_histogram()
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
## Warning: Removed 145 rows containing non-finite values (stat_bin).

cole$pt <- as.numeric(cole$pt)
## Warning: NAs introduced by coercion
summary(cole$pt)
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max.    NA's 
##   12.00   13.00   13.65   14.38   14.47   41.00     141
ggplot(data = cole, aes(x = cole$pt))+
  geom_histogram()
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
## Warning: Removed 141 rows containing non-finite values (stat_bin).

cole$pcr <- as.numeric(cole$pcr)
## Warning: NAs introduced by coercion
summary(cole$pcr)
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max.    NA's 
##   0.040   0.700   2.260   8.409  10.970 250.000      53
ggplot(data = cole, aes(x = cole$pcr))+
  geom_histogram()
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
## Warning: Removed 53 rows containing non-finite values (stat_bin).

cole$`fosfatasa alcalina` <- as.numeric(cole$`fosfatasa alcalina`)
## Warning: NAs introduced by coercion
summary(cole$`fosfatasa alcalina`)
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max.    NA's 
##    17.2   132.0   205.0   267.9   315.2  1677.0      13
ggplot(data = cole, aes(x = cole$`fosfatasa alcalina`))+
  geom_histogram()
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
## Warning: Removed 13 rows containing non-finite values (stat_bin).

cole$eco_colecistitis <- cole$colecistitis...33 #####Que es esta variable?
table(cole$eco_colecistitis)
## 
##   0   1 
## 125 140
table(cole$colelitiasis...34)
## 
##   0   1 
##  41 226
table(cole$coledocolitiasis...35)
## 
##   0   1 
## 257  10
table(cole$tumor)
## 
##   0   1 
## 265   2
cole$dila_biliar <- as.numeric(cole$`dilatacion_coledoco_(mm)_eco`)
## Warning: NAs introduced by coercion
summary(cole$dila_biliar)
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max.    NA's 
##       2       4       8    8604      12   43716     120
##########Analysis
cole$colecistitis...33 <- as.factor(cole$colecistitis...33)
ggplot(data = cole, aes(x = cole$alt_tgp))+
  geom_histogram()+
  facet_wrap(~ cole$colecistitis...33)
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
## Warning: Removed 10 rows containing non-finite values (stat_bin).

colecistis <- filter(cole, cole$colecistitis_aguda == 1)


colecistis <- colecistis %>%
  mutate(alt_high = alt_tgp > 100)
colecistis <- colecistis %>%
  mutate(ast_high = ast_tgo > 100)
colecistis <- colecistis %>%
  mutate(fosfatasa_high = `fosfatasa alcalina` > 100)
colecistis <- colecistis %>%
  mutate(bilirrubina_high = bilirrubina_total > 1.5 & bilirrubina_total <4 )
length(colecistis$edad)
## [1] 146
draft1 <- filter(colecistis, colecistis$riesgo_calculado == 2)

table(draft1$alt_high)
## 
## FALSE  TRUE 
##     9    33
table(draft1$ast_high)
## 
## FALSE  TRUE 
##    11    32
table(draft1$bilirrubina_high)
## 
## FALSE  TRUE 
##    31    12
table(draft1$fosfatasa_high)
## 
## FALSE  TRUE 
##     2    38
table(draft1$alt_high, draft1$crmn)
##        
##          0  1
##   FALSE  6  3
##   TRUE  18 15
table(draft1$ast_high, draft1$crmn)
##        
##          0  1
##   FALSE  9  2
##   TRUE  15 17
table(draft1$alt_high, draft1$crmn)
##        
##          0  1
##   FALSE  6  3
##   TRUE  18 15
table(draft1$alt_high, draft1$crmn)
##        
##          0  1
##   FALSE  6  3
##   TRUE  18 15