credit <- read.csv("credit.csv")
str(credit)
## 'data.frame': 1000 obs. of 21 variables:
## $ Creditability : int 1 1 1 1 1 1 1 1 1 1 ...
## $ Account.Balance : int 1 1 2 1 1 1 1 1 4 2 ...
## $ Duration.of.Credit..month. : int 18 9 12 12 12 10 8 6 18 24 ...
## $ Payment.Status.of.Previous.Credit: int 4 4 2 4 4 4 4 4 4 2 ...
## $ Purpose : int 2 0 9 0 0 0 0 0 3 3 ...
## $ Credit.Amount : int 1049 2799 841 2122 2171 2241 3398 1361 1098 3758 ...
## $ Value.Savings.Stocks : int 1 1 2 1 1 1 1 1 1 3 ...
## $ Length.of.current.employment : int 2 3 4 3 3 2 4 2 1 1 ...
## $ Instalment.per.cent : int 4 2 2 3 4 1 1 2 4 1 ...
## $ Sex...Marital.Status : int 2 3 2 3 3 3 3 3 2 2 ...
## $ Guarantors : int 1 1 1 1 1 1 1 1 1 1 ...
## $ Duration.in.Current.address : int 4 2 4 2 4 3 4 4 4 4 ...
## $ Most.valuable.available.asset : int 2 1 1 1 2 1 1 1 3 4 ...
## $ Age..years. : int 21 36 23 39 38 48 39 40 65 23 ...
## $ Concurrent.Credits : int 3 3 3 3 1 3 3 3 3 3 ...
## $ Type.of.apartment : int 1 1 1 1 2 1 2 2 2 1 ...
## $ No.of.Credits.at.this.Bank : int 1 2 1 2 2 2 2 1 2 1 ...
## $ Occupation : int 3 3 2 2 2 2 2 2 1 1 ...
## $ No.of.dependents : int 1 2 1 2 1 2 1 2 1 1 ...
## $ Telephone : int 1 1 1 1 1 1 1 1 1 1 ...
## $ Foreign.Worker : int 1 1 1 2 2 2 2 2 1 1 ...
summary(credit$Credit.Amount)
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 250 1366 2320 3271 3972 18424
table(credit$Creditability)
##
## 0 1
## 300 700
#Before dividing data to train and test set, we need to randomize the data
set.seed(12345)
credit_rand <- credit[order(runif(1000)), ]
summary(credit$ Credit.Amount)
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 250 1366 2320 3271 3972 18424
credit_train <- credit_rand[1:900, ]
credit_test <- credit_rand[901:1000, ]
prop.table(table(credit_train$Creditability))
##
## 0 1
## 0.3088889 0.6911111
prop.table(table(credit_test$Creditability))
##
## 0 1
## 0.22 0.78
if (!require("C50")) {
install.packages("C50")
library(C50)
}
## Loading required package: C50
library(C50)
credit_train$Creditability <- as.factor(credit_train$Creditability)
credit_test$Creditability <- as.factor(credit_test$Creditability)
#now design a model in which its input is credit_model
credit_model <- C5.0(x = credit_train[-1], y = credit_train$Creditability)
summary(credit_model)
##
## Call:
## C5.0.default(x = credit_train[-1], y = credit_train$Creditability)
##
##
## C5.0 [Release 2.07 GPL Edition] Sun Dec 15 15:05:48 2019
## -------------------------------
##
## Class specified by attribute `outcome'
##
## Read 900 cases (21 attributes) from undefined.data
##
## Decision tree:
##
## Account.Balance > 2:
## :...Concurrent.Credits > 2:
## : :...Age..years. > 33: 1 (179/11)
## : : Age..years. <= 33:
## : : :...Credit.Amount > 6681:
## : : :...Length.of.current.employment <= 2: 0 (4)
## : : : Length.of.current.employment > 2:
## : : : :...Payment.Status.of.Previous.Credit <= 3: 1 (4)
## : : : Payment.Status.of.Previous.Credit > 3: 0 (3/1)
## : : Credit.Amount <= 6681:
## : : :...Occupation > 2:
## : : :...Occupation <= 3: 1 (120/12)
## : : : Occupation > 3:
## : : : :...Duration.of.Credit..month. <= 33: 1 (9)
## : : : Duration.of.Credit..month. > 33: 0 (3)
## : : Occupation <= 2:
## : : :...No.of.Credits.at.this.Bank > 1: 1 (6)
## : : No.of.Credits.at.this.Bank <= 1:
## : : :...Most.valuable.available.asset > 1: 0 (3)
## : : Most.valuable.available.asset <= 1:
## : : :...Credit.Amount <= 1987: 1 (8/1)
## : : Credit.Amount > 1987: 0 (2)
## : Concurrent.Credits <= 2:
## : :...Guarantors > 1: 1 (4)
## : Guarantors <= 1:
## : :...Purpose <= 0:
## : :...Most.valuable.available.asset <= 2: 0 (5)
## : : Most.valuable.available.asset > 2:
## : : :...No.of.dependents <= 1: 1 (7/1)
## : : No.of.dependents > 1: 0 (2)
## : Purpose > 0:
## : :...Purpose <= 4: 1 (35/2)
## : Purpose > 4:
## : :...Length.of.current.employment <= 2: 0 (4)
## : Length.of.current.employment > 2:
## : :...No.of.dependents > 1: 0 (3/1)
## : No.of.dependents <= 1:
## : :...Length.of.current.employment > 3: 1 (4)
## : Length.of.current.employment <= 3:
## : :...Instalment.per.cent <= 2: 1 (2)
## : Instalment.per.cent > 2: 0 (2)
## Account.Balance <= 2:
## :...Payment.Status.of.Previous.Credit <= 1:
## :...Value.Savings.Stocks <= 2: 0 (49/10)
## : Value.Savings.Stocks > 2:
## : :...Credit.Amount <= 2064: 0 (3)
## : Credit.Amount > 2064: 1 (9/1)
## Payment.Status.of.Previous.Credit > 1:
## :...Credit.Amount > 7980:
## :...Value.Savings.Stocks > 4:
## : :...Payment.Status.of.Previous.Credit <= 2: 0 (4/1)
## : : Payment.Status.of.Previous.Credit > 2: 1 (3)
## : Value.Savings.Stocks <= 4:
## : :...Account.Balance > 1: 0 (15)
## : Account.Balance <= 1:
## : :...Concurrent.Credits <= 2: 0 (2)
## : Concurrent.Credits > 2:
## : :...Credit.Amount <= 10297: 0 (6)
## : Credit.Amount > 10297: 1 (3)
## Credit.Amount <= 7980:
## :...Duration.of.Credit..month. <= 11:
## :...Occupation > 3:
## : :...Concurrent.Credits <= 2: 1 (3)
## : : Concurrent.Credits > 2:
## : : :...Payment.Status.of.Previous.Credit <= 2: 1 (4/1)
## : : Payment.Status.of.Previous.Credit > 2: 0 (3)
## : Occupation <= 3:
## : :...Age..years. > 32: 1 (34)
## : Age..years. <= 32:
## : :...Most.valuable.available.asset <= 1: 1 (13/1)
## : Most.valuable.available.asset > 1:
## : :...Instalment.per.cent <= 3: 1 (6/1)
## : Instalment.per.cent > 3: 0 (6/1)
## Duration.of.Credit..month. > 11:
## :...Duration.of.Credit..month. > 36:
## :...Length.of.current.employment <= 1: 1 (3)
## : Length.of.current.employment > 1:
## : :...No.of.dependents > 1: 1 (5/1)
## : No.of.dependents <= 1:
## : :...Duration.in.Current.address <= 1: 1 (4/1)
## : Duration.in.Current.address > 1: 0 (23)
## Duration.of.Credit..month. <= 36:
## :...Guarantors > 2:
## :...Foreign.Worker <= 1: 1 (23/1)
## : Foreign.Worker > 1: 0 (2)
## Guarantors <= 2:
## :...Credit.Amount <= 1381:
## :...Telephone > 1:
## : :...Sex...Marital.Status > 3: 0 (2)
## : : Sex...Marital.Status <= 3:
## : : :...Duration.of.Credit..month. <= 16: 1 (7)
## : : Duration.of.Credit..month. > 16: 0 (3/1)
## : Telephone <= 1:
## : :...Concurrent.Credits <= 2: 0 (9)
## : Concurrent.Credits > 2:
## : :...Account.Balance <= 1: 0 (29/6)
## : Account.Balance > 1: [S1]
## Credit.Amount > 1381:
## :...Guarantors > 1:
## :...Foreign.Worker > 1: 1 (2)
## : Foreign.Worker <= 1:
## : :...Instalment.per.cent > 2: 0 (5)
## : Instalment.per.cent <= 2: [S2]
## Guarantors <= 1:
## :...Payment.Status.of.Previous.Credit > 3:
## :...Age..years. > 33: 1 (22)
## : Age..years. <= 33:
## : :...Purpose > 3: 1 (7)
## : Purpose <= 3: [S3]
## Payment.Status.of.Previous.Credit <= 3:
## :...Instalment.per.cent <= 2:
## :...No.of.dependents > 1:
## : :...Purpose <= 0: 1 (2)
## : : Purpose > 0: 0 (3)
## : No.of.dependents <= 1: [S4]
## Instalment.per.cent > 2:
## :...Concurrent.Credits <= 1: 1 (8/1)
## Concurrent.Credits > 1:
## :...Sex...Marital.Status <= 1: 0 (6/1)
## Sex...Marital.Status > 1:
## :...Account.Balance > 1: [S5]
## Account.Balance <= 1: [S6]
##
## SubTree [S1]
##
## Duration.in.Current.address > 3: 1 (8/1)
## Duration.in.Current.address <= 3:
## :...Purpose > 2: 0 (5)
## Purpose <= 2:
## :...Type.of.apartment <= 1: 0 (2)
## Type.of.apartment > 1: 1 (5/1)
##
## SubTree [S2]
##
## Duration.in.Current.address <= 2: 1 (2)
## Duration.in.Current.address > 2: 0 (4/1)
##
## SubTree [S3]
##
## Duration.of.Credit..month. <= 16: 1 (4)
## Duration.of.Credit..month. > 16:
## :...Length.of.current.employment <= 3: 0 (8)
## Length.of.current.employment > 3: 1 (6/1)
##
## SubTree [S4]
##
## Duration.in.Current.address > 1: 1 (41/6)
## Duration.in.Current.address <= 1:
## :...Value.Savings.Stocks > 3: 0 (2)
## Value.Savings.Stocks <= 3:
## :...Length.of.current.employment > 2: 1 (4)
## Length.of.current.employment <= 2:
## :...Instalment.per.cent <= 1: 0 (3)
## Instalment.per.cent > 1: 1 (3/1)
##
## SubTree [S5]
##
## Sex...Marital.Status > 3: 0 (2)
## Sex...Marital.Status <= 3:
## :...Length.of.current.employment > 3: 1 (10)
## Length.of.current.employment <= 3:
## :...Duration.in.Current.address <= 1: 1 (5)
## Duration.in.Current.address > 1:
## :...Length.of.current.employment <= 2: 0 (4)
## Length.of.current.employment > 2:
## :...Value.Savings.Stocks <= 1: 0 (3)
## Value.Savings.Stocks > 1: 1 (5)
##
## SubTree [S6]
##
## Payment.Status.of.Previous.Credit > 2: 0 (3)
## Payment.Status.of.Previous.Credit <= 2:
## :...Purpose <= 0: 0 (7/1)
## Purpose > 0:
## :...Most.valuable.available.asset <= 1: 0 (5/1)
## Most.valuable.available.asset > 1:
## :...Sex...Marital.Status <= 2: 1 (6)
## Sex...Marital.Status > 2:
## :...Length.of.current.employment > 4: 0 (5)
## Length.of.current.employment <= 4:
## :...Telephone > 1: 1 (3)
## Telephone <= 1:
## :...Length.of.current.employment <= 2: 0 (2)
## Length.of.current.employment > 2:
## :...Age..years. <= 28: 1 (4)
## Age..years. > 28: 0 (2)
##
##
## Evaluation on training data (900 cases):
##
## Decision Tree
## ----------------
## Size Errors
##
## 85 70( 7.8%) <<
##
##
## (a) (b) <-classified as
## ---- ----
## 233 45 (a): class 0
## 25 597 (b): class 1
##
##
## Attribute usage:
##
## 100.00% Account.Balance
## 67.11% Credit.Amount
## 63.11% Concurrent.Credits
## 55.33% Payment.Status.of.Previous.Credit
## 50.33% Age..years.
## 45.44% Duration.of.Credit..month.
## 40.11% Guarantors
## 24.44% Occupation
## 18.33% Instalment.per.cent
## 15.56% Purpose
## 14.22% Length.of.current.employment
## 13.67% Duration.in.Current.address
## 12.67% Value.Savings.Stocks
## 12.22% No.of.dependents
## 9.33% Sex...Marital.Status
## 9.00% Telephone
## 8.78% Most.valuable.available.asset
## 4.22% Foreign.Worker
## 2.11% No.of.Credits.at.this.Bank
## 0.78% Type.of.apartment
##
##
## Time: 0.0 secs
cred_pred <- predict(credit_model, credit_test)
# Method 1
if (!require("gmodels")) {
install.packages("gmodels")
library(gmodels)
}
## Loading required package: gmodels
CrossTable(credit_test$Creditability, cred_pred, prop.chisq = FALSE, prop.c = FALSE, prop.r = FALSE, dnn = c('Actual Creditability', 'Predicted Creditability'))
##
##
## Cell Contents
## |-------------------------|
## | N |
## | N / Table Total |
## |-------------------------|
##
##
## Total Observations in Table: 100
##
##
## | Predicted Creditability
## Actual Creditability | 0 | 1 | Row Total |
## ---------------------|-----------|-----------|-----------|
## 0 | 8 | 14 | 22 |
## | 0.080 | 0.140 | |
## ---------------------|-----------|-----------|-----------|
## 1 | 17 | 61 | 78 |
## | 0.170 | 0.610 | |
## ---------------------|-----------|-----------|-----------|
## Column Total | 25 | 75 | 100 |
## ---------------------|-----------|-----------|-----------|
##
##
(p <- table(cred_pred, credit_test$Creditability))
##
## cred_pred 0 1
## 0 8 17
## 1 14 61
(Accuracy <- sum(diag(p))/sum(p)*100)
## [1] 69
# Q1- If you see an accuracy of 100%, what does it mean? Does this mean that we design a perfect model? This is some thing that needs more discussion. Write a few sentences about accuracy of 100%.
# This means that you evaluate your model on a part of your training data, i.e., you are doing in-sample evaluation. In-sample accuracy is a notoriously poor indicator to out-of-sample accuracy, and maximizing in-sample accuracy can lead to overfitting. Therefore, one should always evaluate a model on a true holdout sample that is completely independent of the training data.
library(randomForest)
## randomForest 4.6-14
## Type rfNews() to see new features/changes/bug fixes.
credit_train$Creditability <- as.factor(credit_train$Creditability)
random_model <- randomForest(Creditability ~ . , data= credit_train)
summary(random_model)
## Length Class Mode
## call 3 -none- call
## type 1 -none- character
## predicted 900 factor numeric
## err.rate 1500 -none- numeric
## confusion 6 -none- numeric
## votes 1800 matrix numeric
## oob.times 900 -none- numeric
## classes 2 -none- character
## importance 20 -none- numeric
## importanceSD 0 -none- NULL
## localImportance 0 -none- NULL
## proximity 0 -none- NULL
## ntree 1 -none- numeric
## mtry 1 -none- numeric
## forest 14 -none- list
## y 900 factor numeric
## test 0 -none- NULL
## inbag 0 -none- NULL
## terms 3 terms call
cred_pred <- predict(random_model, credit_test)
(p <- table(cred_pred, credit_test$Creditability))
##
## cred_pred 0 1
## 0 11 10
## 1 11 68
(Accuracy <- sum(diag(p))/sum(p)*100)
## [1] 79
importance(random_model)
## MeanDecreaseGini
## Account.Balance 42.599355
## Duration.of.Credit..month. 37.502785
## Payment.Status.of.Previous.Credit 22.563009
## Purpose 23.774048
## Credit.Amount 52.397155
## Value.Savings.Stocks 19.388385
## Length.of.current.employment 20.221289
## Instalment.per.cent 16.394636
## Sex...Marital.Status 13.424449
## Guarantors 7.475422
## Duration.in.Current.address 15.563685
## Most.valuable.available.asset 17.326842
## Age..years. 37.377916
## Concurrent.Credits 8.480725
## Type.of.apartment 9.595344
## No.of.Credits.at.this.Bank 8.424006
## Occupation 12.669816
## No.of.dependents 5.774473
## Telephone 7.505291
## Foreign.Worker 1.746964
Three most imprtant features are Credit Amount at 49.202906, Account Balance at 41.274824, and Age by years at 37.019536.
#Now, Change the random seed to 23458 and find the new accuracy of random forest.
set.seed(23458)
random_model1 <- randomForest(Creditability ~ (Credit.Amount + Account.Balance + Age..years.), data= credit_train)
cred_pred1 <- predict(random_model1, credit_test)
(p1 <- table(cred_pred1, credit_test$Creditability))
##
## cred_pred1 0 1
## 0 5 4
## 1 17 74
(Accuracy <- sum(diag(p1))/sum(p1)*100)
## [1] 79
accuracy stays the same
#Alternative solution & Visualize the model
if (!require("rpart")) {
install.packages("rpart")
library(rpart)
}
## Loading required package: rpart
if (!require("ggplot2")) {
install.packages("ggplot2")
library(ggplot2)
}
## Loading required package: ggplot2
##
## Attaching package: 'ggplot2'
## The following object is masked from 'package:randomForest':
##
## margin
if (!require("rpart.plot")) {
install.packages("rpart.plot")
library(rpart.plot)
}
## Loading required package: rpart.plot
DT <- rpart(Creditability ~ . , data= credit)
summary(DT)
## Call:
## rpart(formula = Creditability ~ ., data = credit)
## n= 1000
##
## CP nsplit rel error xerror xstd
## 1 0.11407052 0 1.0000000 1.0024350 0.02767435
## 2 0.03050152 1 0.8859295 0.8900108 0.02811237
## 3 0.02390597 2 0.8554280 0.8962677 0.03140547
## 4 0.01755837 3 0.8315220 0.8819218 0.03209717
## 5 0.01270887 4 0.8139636 0.8560143 0.03325238
## 6 0.01208012 8 0.7631281 0.8646798 0.03497459
## 7 0.01196152 9 0.7510480 0.8673536 0.03527687
## 8 0.01000000 10 0.7390865 0.8684636 0.03596495
##
## Variable importance
## Account.Balance Duration.of.Credit..month.
## 36 15
## Credit.Amount Payment.Status.of.Previous.Credit
## 13 10
## Value.Savings.Stocks Most.valuable.available.asset
## 10 7
## Type.of.apartment Age..years.
## 2 2
## Length.of.current.employment Occupation
## 2 1
## No.of.Credits.at.this.Bank Purpose
## 1 1
##
## Node number 1: 1000 observations, complexity param=0.1140705
## mean=0.7, MSE=0.21
## left son=2 (543 obs) right son=3 (457 obs)
## Primary splits:
## Account.Balance < 2.5 to the left, improve=0.11407050, (0 missing)
## Payment.Status.of.Previous.Credit < 1.5 to the left, improve=0.04062411, (0 missing)
## Value.Savings.Stocks < 2.5 to the left, improve=0.03525338, (0 missing)
## Duration.of.Credit..month. < 34.5 to the right, improve=0.03243225, (0 missing)
## Credit.Amount < 3909.5 to the right, improve=0.02639923, (0 missing)
## Surrogate splits:
## Value.Savings.Stocks < 2.5 to the left, agree=0.611, adj=0.149, (0 split)
## Payment.Status.of.Previous.Credit < 3.5 to the left, agree=0.592, adj=0.107, (0 split)
## Length.of.current.employment < 4.5 to the left, agree=0.554, adj=0.024, (0 split)
## Age..years. < 30.5 to the left, agree=0.554, adj=0.024, (0 split)
## No.of.Credits.at.this.Bank < 1.5 to the left, agree=0.554, adj=0.024, (0 split)
##
## Node number 2: 543 observations, complexity param=0.03050152
## mean=0.558011, MSE=0.2466347
## left son=4 (237 obs) right son=5 (306 obs)
## Primary splits:
## Duration.of.Credit..month. < 22.5 to the right, improve=0.04782850, (0 missing)
## Payment.Status.of.Previous.Credit < 1.5 to the left, improve=0.03604240, (0 missing)
## Most.valuable.available.asset < 1.5 to the right, improve=0.03427861, (0 missing)
## Value.Savings.Stocks < 2.5 to the left, improve=0.03319374, (0 missing)
## Credit.Amount < 8079 to the right, improve=0.02464583, (0 missing)
## Surrogate splits:
## Credit.Amount < 2805.5 to the right, agree=0.748, adj=0.422, (0 split)
## Most.valuable.available.asset < 2.5 to the right, agree=0.646, adj=0.190, (0 split)
## Type.of.apartment < 2.5 to the right, agree=0.606, adj=0.097, (0 split)
## Purpose < 8.5 to the right, agree=0.604, adj=0.093, (0 split)
## Occupation < 3.5 to the right, agree=0.595, adj=0.072, (0 split)
##
## Node number 3: 457 observations
## mean=0.868709, MSE=0.1140537
##
## Node number 4: 237 observations, complexity param=0.01755837
## mean=0.4345992, MSE=0.2457227
## left son=8 (196 obs) right son=9 (41 obs)
## Primary splits:
## Value.Savings.Stocks < 3.5 to the left, improve=0.06331546, (0 missing)
## Credit.Amount < 1381.5 to the left, improve=0.02824112, (0 missing)
## Instalment.per.cent < 2.5 to the right, improve=0.02633681, (0 missing)
## Duration.of.Credit..month. < 43.5 to the right, improve=0.02202167, (0 missing)
## Purpose < 0.5 to the left, improve=0.02025099, (0 missing)
##
## Node number 5: 306 observations, complexity param=0.02390597
## mean=0.6535948, MSE=0.2264086
## left son=10 (28 obs) right son=11 (278 obs)
## Primary splits:
## Payment.Status.of.Previous.Credit < 1.5 to the left, improve=0.07246216, (0 missing)
## Most.valuable.available.asset < 1.5 to the right, improve=0.04031178, (0 missing)
## Guarantors < 2.5 to the left, improve=0.02729505, (0 missing)
## Duration.of.Credit..month. < 11.5 to the right, improve=0.02718298, (0 missing)
## Credit.Amount < 7491.5 to the right, improve=0.02697302, (0 missing)
##
## Node number 8: 196 observations, complexity param=0.01196152
## mean=0.377551, MSE=0.2350062
## left son=16 (36 obs) right son=17 (160 obs)
## Primary splits:
## Duration.of.Credit..month. < 47.5 to the right, improve=0.05453435, (0 missing)
## Instalment.per.cent < 2.5 to the right, improve=0.02911869, (0 missing)
## Credit.Amount < 11788 to the right, improve=0.02731942, (0 missing)
## Duration.in.Current.address < 1.5 to the right, improve=0.02154070, (0 missing)
## Age..years. < 60.5 to the left, improve=0.01787033, (0 missing)
## Surrogate splits:
## Credit.Amount < 13319.5 to the right, agree=0.837, adj=0.111, (0 split)
##
## Node number 9: 41 observations, complexity param=0.01208012
## mean=0.7073171, MSE=0.2070196
## left son=18 (17 obs) right son=19 (24 obs)
## Primary splits:
## Account.Balance < 1.5 to the left, improve=0.29887870, (0 missing)
## Credit.Amount < 2079 to the left, improve=0.19001440, (0 missing)
## Payment.Status.of.Previous.Credit < 2.5 to the left, improve=0.15172410, (0 missing)
## Purpose < 0.5 to the left, improve=0.09387971, (0 missing)
## No.of.Credits.at.this.Bank < 1.5 to the left, improve=0.05785132, (0 missing)
## Surrogate splits:
## Credit.Amount < 1548 to the left, agree=0.732, adj=0.353, (0 split)
## Length.of.current.employment < 4.5 to the right, agree=0.683, adj=0.235, (0 split)
## Most.valuable.available.asset < 2.5 to the left, agree=0.659, adj=0.176, (0 split)
## Age..years. < 48.5 to the right, agree=0.659, adj=0.176, (0 split)
## Type.of.apartment < 1.5 to the left, agree=0.659, adj=0.176, (0 split)
##
## Node number 10: 28 observations
## mean=0.25, MSE=0.1875
##
## Node number 11: 278 observations, complexity param=0.01270887
## mean=0.6942446, MSE=0.212269
## left son=22 (7 obs) right son=23 (271 obs)
## Primary splits:
## Credit.Amount < 7491.5 to the right, improve=0.03699609, (0 missing)
## Duration.of.Credit..month. < 11.5 to the right, improve=0.03254299, (0 missing)
## Most.valuable.available.asset < 1.5 to the right, improve=0.03041005, (0 missing)
## Payment.Status.of.Previous.Credit < 2.5 to the left, improve=0.02503007, (0 missing)
## Guarantors < 2.5 to the left, improve=0.02245610, (0 missing)
##
## Node number 16: 36 observations
## mean=0.1388889, MSE=0.1195988
##
## Node number 17: 160 observations
## mean=0.43125, MSE=0.2452734
##
## Node number 18: 17 observations
## mean=0.4117647, MSE=0.2422145
##
## Node number 19: 24 observations
## mean=0.9166667, MSE=0.07638889
##
## Node number 22: 7 observations
## mean=0.1428571, MSE=0.122449
##
## Node number 23: 271 observations, complexity param=0.01270887
## mean=0.7084871, MSE=0.2065331
## left son=46 (193 obs) right son=47 (78 obs)
## Primary splits:
## Duration.of.Credit..month. < 11.5 to the right, improve=0.03708564, (0 missing)
## Credit.Amount < 1373 to the left, improve=0.03368634, (0 missing)
## Most.valuable.available.asset < 1.5 to the right, improve=0.02387411, (0 missing)
## Guarantors < 2.5 to the left, improve=0.02052141, (0 missing)
## Value.Savings.Stocks < 2.5 to the left, improve=0.02006311, (0 missing)
## Surrogate splits:
## Credit.Amount < 527.5 to the right, agree=0.742, adj=0.103, (0 split)
## Age..years. < 66.5 to the left, agree=0.720, adj=0.026, (0 split)
## Foreign.Worker < 1.5 to the left, agree=0.720, adj=0.026, (0 split)
##
## Node number 46: 193 observations, complexity param=0.01270887
## mean=0.6528497, MSE=0.226637
## left son=92 (73 obs) right son=93 (120 obs)
## Primary splits:
## Credit.Amount < 1387.5 to the left, improve=0.06845664, (0 missing)
## Account.Balance < 1.5 to the left, improve=0.02543376, (0 missing)
## Guarantors < 2.5 to the left, improve=0.02248369, (0 missing)
## Purpose < 8.5 to the left, improve=0.02244828, (0 missing)
## Value.Savings.Stocks < 2.5 to the left, improve=0.02166506, (0 missing)
## Surrogate splits:
## Instalment.per.cent < 3.5 to the right, agree=0.658, adj=0.096, (0 split)
## Occupation < 2.5 to the left, agree=0.658, adj=0.096, (0 split)
## Age..years. < 21.5 to the left, agree=0.653, adj=0.082, (0 split)
## Duration.of.Credit..month. < 12.5 to the left, agree=0.648, adj=0.068, (0 split)
## Sex...Marital.Status < 3.5 to the right, agree=0.637, adj=0.041, (0 split)
##
## Node number 47: 78 observations
## mean=0.8461538, MSE=0.1301775
##
## Node number 92: 73 observations, complexity param=0.01270887
## mean=0.4931507, MSE=0.2499531
## left son=184 (23 obs) right son=185 (50 obs)
## Primary splits:
## Most.valuable.available.asset < 2.5 to the right, improve=0.18755450, (0 missing)
## Guarantors < 1.5 to the left, improve=0.14116680, (0 missing)
## No.of.Credits.at.this.Bank < 1.5 to the left, improve=0.08359529, (0 missing)
## Purpose < 1 to the left, improve=0.06560191, (0 missing)
## Duration.in.Current.address < 3.5 to the left, improve=0.04374000, (0 missing)
## Surrogate splits:
## Type.of.apartment < 2.5 to the right, agree=0.726, adj=0.130, (0 split)
## No.of.Credits.at.this.Bank < 2.5 to the right, agree=0.712, adj=0.087, (0 split)
## Length.of.current.employment < 1.5 to the left, agree=0.699, adj=0.043, (0 split)
## Occupation < 1.5 to the left, agree=0.699, adj=0.043, (0 split)
##
## Node number 93: 120 observations
## mean=0.75, MSE=0.1875
##
## Node number 184: 23 observations
## mean=0.173913, MSE=0.1436673
##
## Node number 185: 50 observations
## mean=0.64, MSE=0.2304
#Loading the data
wine <- read.csv("whitewines.csv")
View(wine)
str(wine)
## 'data.frame': 4898 obs. of 12 variables:
## $ fixed.acidity : num 6.7 5.7 5.9 5.3 6.4 7 7.9 6.6 7 6.5 ...
## $ volatile.acidity : num 0.62 0.22 0.19 0.47 0.29 0.14 0.12 0.38 0.16 0.37 ...
## $ citric.acid : num 0.24 0.2 0.26 0.1 0.21 0.41 0.49 0.28 0.3 0.33 ...
## $ residual.sugar : num 1.1 16 7.4 1.3 9.65 0.9 5.2 2.8 2.6 3.9 ...
## $ chlorides : num 0.039 0.044 0.034 0.036 0.041 0.037 0.049 0.043 0.043 0.027 ...
## $ free.sulfur.dioxide : num 6 41 33 11 36 22 33 17 34 40 ...
## $ total.sulfur.dioxide: num 62 113 123 74 119 95 152 67 90 130 ...
## $ density : num 0.993 0.999 0.995 0.991 0.993 ...
## $ pH : num 3.41 3.22 3.49 3.48 2.99 3.25 3.18 3.21 2.88 3.28 ...
## $ sulphates : num 0.32 0.46 0.42 0.54 0.34 0.43 0.47 0.47 0.47 0.39 ...
## $ alcohol : num 10.4 8.9 10.1 11.2 10.9 ...
## $ quality : int 5 6 6 4 6 6 6 6 6 7 ...
#Exploring and Preparing the Data
wine_train <- wine[1:3750, ]
wine_test <- wine[3751:4898, ]
#Training a Model on the Data
library(rpart)
m.rpart <- rpart(quality ~ ., data=wine_train)
summary(m.rpart)
## Call:
## rpart(formula = quality ~ ., data = wine_train)
## n= 3750
##
## CP nsplit rel error xerror xstd
## 1 0.15501053 0 1.0000000 1.0005637 0.02445885
## 2 0.05098911 1 0.8449895 0.8483850 0.02337511
## 3 0.02796998 2 0.7940004 0.8052179 0.02286010
## 4 0.01970128 3 0.7660304 0.7798982 0.02163249
## 5 0.01265926 4 0.7463291 0.7605653 0.02088461
## 6 0.01007193 5 0.7336698 0.7504350 0.02072098
## 7 0.01000000 6 0.7235979 0.7473579 0.02063472
##
## Variable importance
## alcohol density volatile.acidity
## 34 21 15
## chlorides total.sulfur.dioxide free.sulfur.dioxide
## 11 7 6
## residual.sugar sulphates citric.acid
## 3 1 1
##
## Node number 1: 3750 observations, complexity param=0.1550105
## mean=5.870933, MSE=0.7854751
## left son=2 (2372 obs) right son=3 (1378 obs)
## Primary splits:
## alcohol < 10.85 to the left, improve=0.15501050, (0 missing)
## density < 0.992035 to the right, improve=0.10915940, (0 missing)
## chlorides < 0.0395 to the right, improve=0.07682258, (0 missing)
## total.sulfur.dioxide < 158.5 to the right, improve=0.04089663, (0 missing)
## citric.acid < 0.235 to the left, improve=0.03636458, (0 missing)
## Surrogate splits:
## density < 0.991995 to the right, agree=0.869, adj=0.644, (0 split)
## chlorides < 0.0375 to the right, agree=0.757, adj=0.339, (0 split)
## total.sulfur.dioxide < 103.5 to the right, agree=0.690, adj=0.155, (0 split)
## residual.sugar < 5.375 to the right, agree=0.667, adj=0.094, (0 split)
## sulphates < 0.345 to the right, agree=0.647, adj=0.038, (0 split)
##
## Node number 2: 2372 observations, complexity param=0.05098911
## mean=5.604975, MSE=0.5981709
## left son=4 (1611 obs) right son=5 (761 obs)
## Primary splits:
## volatile.acidity < 0.2275 to the right, improve=0.10585250, (0 missing)
## free.sulfur.dioxide < 13.5 to the left, improve=0.03390500, (0 missing)
## citric.acid < 0.235 to the left, improve=0.03204075, (0 missing)
## alcohol < 10.11667 to the left, improve=0.03136524, (0 missing)
## chlorides < 0.0585 to the right, improve=0.01633599, (0 missing)
## Surrogate splits:
## pH < 3.485 to the left, agree=0.694, adj=0.047, (0 split)
## sulphates < 0.755 to the left, agree=0.685, adj=0.020, (0 split)
## total.sulfur.dioxide < 105.5 to the right, agree=0.683, adj=0.011, (0 split)
## residual.sugar < 0.75 to the right, agree=0.681, adj=0.007, (0 split)
## chlorides < 0.0285 to the right, agree=0.680, adj=0.003, (0 split)
##
## Node number 3: 1378 observations, complexity param=0.02796998
## mean=6.328737, MSE=0.7765472
## left son=6 (84 obs) right son=7 (1294 obs)
## Primary splits:
## free.sulfur.dioxide < 10.5 to the left, improve=0.07699080, (0 missing)
## alcohol < 11.76667 to the left, improve=0.06210660, (0 missing)
## total.sulfur.dioxide < 67.5 to the left, improve=0.04438619, (0 missing)
## residual.sugar < 1.375 to the left, improve=0.02905351, (0 missing)
## fixed.acidity < 7.35 to the right, improve=0.02613259, (0 missing)
## Surrogate splits:
## total.sulfur.dioxide < 53.5 to the left, agree=0.952, adj=0.214, (0 split)
## volatile.acidity < 0.875 to the right, agree=0.940, adj=0.024, (0 split)
##
## Node number 4: 1611 observations, complexity param=0.01265926
## mean=5.43203, MSE=0.5098121
## left son=8 (688 obs) right son=9 (923 obs)
## Primary splits:
## volatile.acidity < 0.3025 to the right, improve=0.04540111, (0 missing)
## alcohol < 10.05 to the left, improve=0.03874403, (0 missing)
## free.sulfur.dioxide < 13.5 to the left, improve=0.03338886, (0 missing)
## chlorides < 0.0495 to the right, improve=0.02574623, (0 missing)
## citric.acid < 0.195 to the left, improve=0.02327981, (0 missing)
## Surrogate splits:
## citric.acid < 0.215 to the left, agree=0.633, adj=0.141, (0 split)
## free.sulfur.dioxide < 20.5 to the left, agree=0.600, adj=0.063, (0 split)
## chlorides < 0.0595 to the right, agree=0.593, adj=0.047, (0 split)
## residual.sugar < 1.15 to the left, agree=0.583, adj=0.023, (0 split)
## total.sulfur.dioxide < 219.25 to the right, agree=0.582, adj=0.022, (0 split)
##
## Node number 5: 761 observations
## mean=5.971091, MSE=0.5878633
##
## Node number 6: 84 observations
## mean=5.369048, MSE=1.137613
##
## Node number 7: 1294 observations, complexity param=0.01970128
## mean=6.391036, MSE=0.6894405
## left son=14 (629 obs) right son=15 (665 obs)
## Primary splits:
## alcohol < 11.76667 to the left, improve=0.06504696, (0 missing)
## chlorides < 0.0395 to the right, improve=0.02758705, (0 missing)
## fixed.acidity < 7.35 to the right, improve=0.02750932, (0 missing)
## pH < 3.055 to the left, improve=0.02307356, (0 missing)
## total.sulfur.dioxide < 191.5 to the right, improve=0.02186818, (0 missing)
## Surrogate splits:
## density < 0.990885 to the right, agree=0.720, adj=0.424, (0 split)
## volatile.acidity < 0.2675 to the left, agree=0.637, adj=0.253, (0 split)
## chlorides < 0.0365 to the right, agree=0.630, adj=0.238, (0 split)
## residual.sugar < 1.475 to the left, agree=0.575, adj=0.126, (0 split)
## total.sulfur.dioxide < 128.5 to the right, agree=0.574, adj=0.124, (0 split)
##
## Node number 8: 688 observations
## mean=5.255814, MSE=0.4054895
##
## Node number 9: 923 observations
## mean=5.56338, MSE=0.5471747
##
## Node number 14: 629 observations, complexity param=0.01007193
## mean=6.173291, MSE=0.6838017
## left son=28 (11 obs) right son=29 (618 obs)
## Primary splits:
## volatile.acidity < 0.465 to the right, improve=0.06897561, (0 missing)
## total.sulfur.dioxide < 200 to the right, improve=0.04223066, (0 missing)
## residual.sugar < 0.975 to the left, improve=0.03061714, (0 missing)
## fixed.acidity < 7.35 to the right, improve=0.02978501, (0 missing)
## sulphates < 0.575 to the left, improve=0.02165970, (0 missing)
## Surrogate splits:
## citric.acid < 0.045 to the left, agree=0.986, adj=0.182, (0 split)
## total.sulfur.dioxide < 279.25 to the right, agree=0.986, adj=0.182, (0 split)
##
## Node number 15: 665 observations
## mean=6.596992, MSE=0.6075098
##
## Node number 28: 11 observations
## mean=4.545455, MSE=0.9752066
##
## Node number 29: 618 observations
## mean=6.202265, MSE=0.6306098
rpart.plot(m.rpart, digits=3, type=1)
#Model evaluation
p.rpart <- predict(m.rpart, wine_test)
summary(p.rpart)
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 4.545 5.563 5.971 5.893 6.202 6.597
summary(wine_test$quality)
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 3.000 5.000 6.000 5.901 6.000 9.000
Asnwer:
if (!require("Metrics")) {
install.packages("Metrics")
library(Metrics)
}
## Loading required package: Metrics
rmse(wine_test$quality, p.rpart)
## [1] 0.7448093
The root-mean-square error is 0.745, the lower RMSE value, the more model fit the observed data, and 0.745 is still high.
news <- read.csv("OnlineNewsPopularity_for_R.csv")
str(news)
## 'data.frame': 39644 obs. of 61 variables:
## $ url : Factor w/ 39644 levels "http://mashable.com/2013/01/07/amazon-instant-video-browser/",..: 1 2 3 4 5 6 7 8 9 10 ...
## $ timedelta : num 731 731 731 731 731 731 731 731 731 731 ...
## $ n_tokens_title : num 12 9 9 9 13 10 8 12 11 10 ...
## $ n_tokens_content : num 219 255 211 531 1072 ...
## $ n_unique_tokens : num 0.664 0.605 0.575 0.504 0.416 ...
## $ n_non_stop_words : num 1 1 1 1 1 ...
## $ n_non_stop_unique_tokens : num 0.815 0.792 0.664 0.666 0.541 ...
## $ num_hrefs : num 4 3 3 9 19 2 21 20 2 4 ...
## $ num_self_hrefs : num 2 1 1 0 19 2 20 20 0 1 ...
## $ num_imgs : num 1 1 1 1 20 0 20 20 0 1 ...
## $ num_videos : num 0 0 0 0 0 0 0 0 0 1 ...
## $ average_token_length : num 4.68 4.91 4.39 4.4 4.68 ...
## $ num_keywords : num 5 4 6 7 7 9 10 9 7 5 ...
## $ data_channel_is_lifestyle : num 0 0 0 0 0 0 1 0 0 0 ...
## $ data_channel_is_entertainment: num 1 0 0 1 0 0 0 0 0 0 ...
## $ data_channel_is_bus : num 0 1 1 0 0 0 0 0 0 0 ...
## $ data_channel_is_socmed : num 0 0 0 0 0 0 0 0 0 0 ...
## $ data_channel_is_tech : num 0 0 0 0 1 1 0 1 1 0 ...
## $ data_channel_is_world : num 0 0 0 0 0 0 0 0 0 1 ...
## $ kw_min_min : num 0 0 0 0 0 0 0 0 0 0 ...
## $ kw_max_min : num 0 0 0 0 0 0 0 0 0 0 ...
## $ kw_avg_min : num 0 0 0 0 0 0 0 0 0 0 ...
## $ kw_min_max : num 0 0 0 0 0 0 0 0 0 0 ...
## $ kw_max_max : num 0 0 0 0 0 0 0 0 0 0 ...
## $ kw_avg_max : num 0 0 0 0 0 0 0 0 0 0 ...
## $ kw_min_avg : num 0 0 0 0 0 0 0 0 0 0 ...
## $ kw_max_avg : num 0 0 0 0 0 0 0 0 0 0 ...
## $ kw_avg_avg : num 0 0 0 0 0 0 0 0 0 0 ...
## $ self_reference_min_shares : num 496 0 918 0 545 8500 545 545 0 0 ...
## $ self_reference_max_shares : num 496 0 918 0 16000 8500 16000 16000 0 0 ...
## $ self_reference_avg_sharess : num 496 0 918 0 3151 ...
## $ weekday_is_monday : num 1 1 1 1 1 1 1 1 1 1 ...
## $ weekday_is_tuesday : num 0 0 0 0 0 0 0 0 0 0 ...
## $ weekday_is_wednesday : num 0 0 0 0 0 0 0 0 0 0 ...
## $ weekday_is_thursday : num 0 0 0 0 0 0 0 0 0 0 ...
## $ weekday_is_friday : num 0 0 0 0 0 0 0 0 0 0 ...
## $ weekday_is_saturday : num 0 0 0 0 0 0 0 0 0 0 ...
## $ weekday_is_sunday : num 0 0 0 0 0 0 0 0 0 0 ...
## $ is_weekend : num 0 0 0 0 0 0 0 0 0 0 ...
## $ LDA_00 : num 0.5003 0.7998 0.2178 0.0286 0.0286 ...
## $ LDA_01 : num 0.3783 0.05 0.0333 0.4193 0.0288 ...
## $ LDA_02 : num 0.04 0.0501 0.0334 0.4947 0.0286 ...
## $ LDA_03 : num 0.0413 0.0501 0.0333 0.0289 0.0286 ...
## $ LDA_04 : num 0.0401 0.05 0.6822 0.0286 0.8854 ...
## $ global_subjectivity : num 0.522 0.341 0.702 0.43 0.514 ...
## $ global_sentiment_polarity : num 0.0926 0.1489 0.3233 0.1007 0.281 ...
## $ global_rate_positive_words : num 0.0457 0.0431 0.0569 0.0414 0.0746 ...
## $ global_rate_negative_words : num 0.0137 0.01569 0.00948 0.02072 0.01213 ...
## $ rate_positive_words : num 0.769 0.733 0.857 0.667 0.86 ...
## $ rate_negative_words : num 0.231 0.267 0.143 0.333 0.14 ...
## $ avg_positive_polarity : num 0.379 0.287 0.496 0.386 0.411 ...
## $ min_positive_polarity : num 0.1 0.0333 0.1 0.1364 0.0333 ...
## $ max_positive_polarity : num 0.7 0.7 1 0.8 1 0.6 1 1 0.8 0.5 ...
## $ avg_negative_polarity : num -0.35 -0.119 -0.467 -0.37 -0.22 ...
## $ min_negative_polarity : num -0.6 -0.125 -0.8 -0.6 -0.5 -0.4 -0.5 -0.5 -0.125 -0.5 ...
## $ max_negative_polarity : num -0.2 -0.1 -0.133 -0.167 -0.05 ...
## $ title_subjectivity : num 0.5 0 0 0 0.455 ...
## $ title_sentiment_polarity : num -0.188 0 0 0 0.136 ...
## $ abs_title_subjectivity : num 0 0.5 0.5 0.5 0.0455 ...
## $ abs_title_sentiment_polarity : num 0.188 0 0 0 0.136 ...
## $ shares : int 593 711 1500 1200 505 855 556 891 3600 710 ...
#minify instances
newsShort <- data.frame(news$n_tokens_title, news$n_tokens_content, news$n_unique_tokens, news$n_non_stop_words, news$num_hrefs, news$num_imgs, news$num_videos, news$average_token_length, news$num_keywords, news$kw_max_max, news$global_sentiment_polarity, news$avg_positive_polarity, news$title_subjectivity, news$title_sentiment_polarity, news$abs_title_subjectivity, news$abs_title_sentiment_polarity, news$shares)
colnames(newsShort) <- c("n_tokens_title", "n_tokens_content", "n_unique_tokens", "n_non_stop_words", "num_hrefs", "num_imgs", "num_videos", "average_token_length", "num_keywords", "kw_max_max", "global_sentiment_polarity", "avg_positive_polarity", "title_subjectivity", "title_sentiment_polarity", "abs_title_subjectivity", "abs_title_sentiment_polarity", "shares")
str(newsShort)
## 'data.frame': 39644 obs. of 17 variables:
## $ n_tokens_title : num 12 9 9 9 13 10 8 12 11 10 ...
## $ n_tokens_content : num 219 255 211 531 1072 ...
## $ n_unique_tokens : num 0.664 0.605 0.575 0.504 0.416 ...
## $ n_non_stop_words : num 1 1 1 1 1 ...
## $ num_hrefs : num 4 3 3 9 19 2 21 20 2 4 ...
## $ num_imgs : num 1 1 1 1 20 0 20 20 0 1 ...
## $ num_videos : num 0 0 0 0 0 0 0 0 0 1 ...
## $ average_token_length : num 4.68 4.91 4.39 4.4 4.68 ...
## $ num_keywords : num 5 4 6 7 7 9 10 9 7 5 ...
## $ kw_max_max : num 0 0 0 0 0 0 0 0 0 0 ...
## $ global_sentiment_polarity : num 0.0926 0.1489 0.3233 0.1007 0.281 ...
## $ avg_positive_polarity : num 0.379 0.287 0.496 0.386 0.411 ...
## $ title_subjectivity : num 0.5 0 0 0 0.455 ...
## $ title_sentiment_polarity : num -0.188 0 0 0 0.136 ...
## $ abs_title_subjectivity : num 0 0.5 0.5 0.5 0.0455 ...
## $ abs_title_sentiment_polarity: num 0.188 0 0 0 0.136 ...
## $ shares : int 593 711 1500 1200 505 855 556 891 3600 710 ...
#Pre-processing
newsShort$popular = rep('na', nrow(newsShort))
for(i in 1:39644) {
if(newsShort$shares[i] >= 1400) {
newsShort$popular[i] = "1"}
else {newsShort$popular[i] = "0"}
}
newsShort$shares = newsShort$popular
newsShort$shares <- as.factor(newsShort$shares)
set.seed(12345)
news_rand <- newsShort[order(runif(10000)), ]
#Split the data into training and test datasets
news_train <- news_rand[1:9000, ]
news_test <- news_rand[9001:10000, ]
prop.table(table(news_train$shares))
##
## 0 1
## 0.4308889 0.5691111
prop.table(table(news_test$shares))
##
## 0 1
## 0.414 0.586
#Model training
library("C50", lib.loc="~/R/win-library/3.5")
news_model <- C5.0(news_train[-17], news_train$shares)
summary(news_model)
##
## Call:
## C5.0.default(x = news_train[-17], y = news_train$shares)
##
##
## C5.0 [Release 2.07 GPL Edition] Sun Dec 15 15:06:06 2019
## -------------------------------
##
## Class specified by attribute `outcome'
##
## Read 9000 cases (18 attributes) from undefined.data
##
## Decision tree:
##
## popular = 0: 0 (3878)
## popular = 1: 1 (5122)
##
##
## Evaluation on training data (9000 cases):
##
## Decision Tree
## ----------------
## Size Errors
##
## 2 0( 0.0%) <<
##
##
## (a) (b) <-classified as
## ---- ----
## 3878 (a): class 0
## 5122 (b): class 1
##
##
## Attribute usage:
##
## 100.00% popular
##
##
## Time: 0.1 secs
#Evaluate the model
news_pred <- predict(news_model, news_test)
(p <- table(news_pred, news_test$shares))
##
## news_pred 0 1
## 0 414 0
## 1 0 586
(Accuracy <- sum(diag(p))/sum(p)*100)
## [1] 100
Answer: #Step 1: RANDOM FOREST
news <- read.csv("OnlineNewsPopularity_for_R.csv")
news <- news[,-(1:2)]
#Check for outliers
news=news[!news$n_unique_tokens==701,]
#minify instances
newsShort <- data.frame(news$n_tokens_title, news$n_tokens_content, news$n_unique_tokens, news$n_non_stop_words, news$num_hrefs, news$num_imgs, news$num_videos, news$average_token_length, news$num_keywords, news$kw_max_max, news$global_sentiment_polarity, news$avg_positive_polarity, news$title_subjectivity, news$title_sentiment_polarity, news$abs_title_subjectivity, news$abs_title_sentiment_polarity, news$shares)
colnames(newsShort) <- c("n_tokens_title", "n_tokens_content", "n_unique_tokens", "n_non_stop_words", "num_hrefs", "num_imgs", "num_videos", "average_token_length", "num_keywords", "kw_max_max", "global_sentiment_polarity", "avg_positive_polarity", "title_subjectivity", "title_sentiment_polarity", "abs_title_subjectivity", "abs_title_sentiment_polarity", "shares")
#Standardize the dataset
for(i in ncol(news)-1){
news[,i]<-scale(news[,i], center = TRUE, scale = TRUE)
}
#Define popular articles
newsShort$shares <- as.factor(ifelse(newsShort$shares > 1400,1,0))
set.seed(12346)
news_rand <- newsShort[order(runif(39643)), ]
news_train <- news_rand[1:3964, ]
news_test <- news_rand[3965:39643, ]
news_train$shares <- as.factor(news_train$shares)
random_modelNews <- randomForest(news_train$shares ~ . , data= news_train)
#Model training
cred_pridRF <- predict(random_modelNews, news_test)
(p2 <- table(cred_pridRF, news_test$shares))
##
## cred_pridRF 0 1
## 0 10014 7264
## 1 8088 10313
#Accuracy
(Accuracy <- sum(diag(p2))/sum(p2)*100)
## [1] 56.97189
#importance
importance(random_modelNews)
## MeanDecreaseGini
## n_tokens_title 110.95451
## n_tokens_content 172.15879
## n_unique_tokens 188.13602
## n_non_stop_words 168.50493
## num_hrefs 148.12312
## num_imgs 90.89631
## num_videos 52.40012
## average_token_length 195.31143
## num_keywords 93.64084
## kw_max_max 49.10667
## global_sentiment_polarity 214.07528
## avg_positive_polarity 187.35883
## title_subjectivity 74.85371
## title_sentiment_polarity 82.44230
## abs_title_subjectivity 73.17472
## abs_title_sentiment_polarity 68.02149
Step2: Decision Tree
news_model <- C5.0(news_train[-17], news_train$shares)
summary(news_model)
##
## Call:
## C5.0.default(x = news_train[-17], y = news_train$shares)
##
##
## C5.0 [Release 2.07 GPL Edition] Sun Dec 15 15:06:15 2019
## -------------------------------
##
## Class specified by attribute `outcome'
##
## Read 3964 cases (17 attributes) from undefined.data
##
## Decision tree:
##
## global_sentiment_polarity > 0.1079453:
## :...num_hrefs > 12:
## : :...n_tokens_title <= 10: 1 (436/135)
## : : n_tokens_title > 10:
## : : :...abs_title_subjectivity > 0.3416667: 1 (137/47)
## : : abs_title_subjectivity <= 0.3416667:
## : : :...n_unique_tokens <= 0.3832077: 1 (7)
## : : n_unique_tokens > 0.3832077: 0 (123/51)
## : num_hrefs <= 12:
## : :...abs_title_subjectivity > 0.1272727: 1 (1135/509)
## : abs_title_subjectivity <= 0.1272727:
## : :...num_imgs <= 1:
## : :...n_unique_tokens > 0.4742152: 0 (255/87)
## : : n_unique_tokens <= 0.4742152:
## : : :...n_tokens_title <= 12: 1 (22/3)
## : : n_tokens_title > 12: 0 (5)
## : num_imgs > 1:
## : :...num_imgs <= 6: 1 (47/16)
## : num_imgs > 6:
## : :...kw_max_max <= 227300: 1 (6/1)
## : kw_max_max > 227300: 0 (44/15)
## global_sentiment_polarity <= 0.1079453:
## :...num_hrefs > 19: 1 (186/79)
## num_hrefs <= 19:
## :...n_non_stop_words <= 0.9999999: 1 (112/51)
## n_non_stop_words > 0.9999999:
## :...num_keywords <= 6:
## :...num_hrefs <= 1: 0 (39/4)
## : num_hrefs > 1:
## : :...title_sentiment_polarity <= 0.1083333: 0 (449/140)
## : title_sentiment_polarity > 0.1083333:
## : :...num_keywords <= 5: 1 (74/28)
## : num_keywords > 5:
## : :...average_token_length <= 4.411043: 1 (9/1)
## : average_token_length > 4.411043: 0 (48/14)
## num_keywords > 6:
## :...num_imgs > 2: 1 (226/102)
## num_imgs <= 2:
## :...num_imgs > 0:
## :...kw_max_max <= 227300: 1 (25/10)
## : kw_max_max > 227300: 0 (437/159)
## num_imgs <= 0:
## :...num_keywords <= 7: 1 (46/15)
## num_keywords > 7:
## :...num_videos > 15: 1 (5)
## num_videos <= 15:
## :...num_hrefs <= 2: 1 (10/2)
## num_hrefs > 2: 0 (81/30)
##
##
## Evaluation on training data (3964 cases):
##
## Decision Tree
## ----------------
## Size Errors
##
## 25 1499(37.8%) <<
##
##
## (a) (b) <-classified as
## ---- ----
## 981 999 (a): class 0
## 500 1484 (b): class 1
##
##
## Attribute usage:
##
## 100.00% num_hrefs
## 100.00% global_sentiment_polarity
## 44.93% abs_title_subjectivity
## 39.38% n_non_stop_words
## 36.55% num_keywords
## 30.50% num_imgs
## 18.42% n_tokens_title
## 14.63% title_sentiment_polarity
## 12.92% kw_max_max
## 10.39% n_unique_tokens
## 2.42% num_videos
## 1.44% average_token_length
##
##
## Time: 0.1 secs
#Model training
news_pred <- predict(news_model, news_test)
CrossTable(news_test$shares, news_pred, prop.chisq = FALSE, prop.c = FALSE, prop.r = FALSE, dnn = c('actual shares', 'predicted shares'))
##
##
## Cell Contents
## |-------------------------|
## | N |
## | N / Table Total |
## |-------------------------|
##
##
## Total Observations in Table: 35679
##
##
## | predicted shares
## actual shares | 0 | 1 | Row Total |
## --------------|-----------|-----------|-----------|
## 0 | 7692 | 10410 | 18102 |
## | 0.216 | 0.292 | |
## --------------|-----------|-----------|-----------|
## 1 | 5596 | 11981 | 17577 |
## | 0.157 | 0.336 | |
## --------------|-----------|-----------|-----------|
## Column Total | 13288 | 22391 | 35679 |
## --------------|-----------|-----------|-----------|
##
##
(p3 <- table(news_pred, news_test$shares))
##
## news_pred 0 1
## 0 7692 5596
## 1 10410 11981
#Accuracy
(Accuracy <- sum(diag(p3))/sum(p3)*100)
## [1] 55.13888