Problem 1

Using R, generate a random variable X that has 10,000 random uniform numbers from 1 to N, where N can be any number of your choosing greater than or equal to 6. Then generate a random variable Y that has 10,000 random normal numbers with a mean of μ=σ=(N+1)/2.

set.seed(10000)
N <- 25
X <- round(runif(10000, 1, N))
Y <- round(rnorm(10000, mean = (N+1)/2, sd = (N+1)/2))

Probability. Calculate as a minimum the below probabilities a through c. Assume the small letter “x” is estimated as the median of the X variable, and the small letter “y” is estimated as the 1st quartile of the Y variable. Interpret the meaning of all probabilities.

x <- median(X)
y <- quantile(Y,0.25,names=FALSE)

a.P(X>x | X>y)

(a<-min(pnorm(X>x | X>y)))
## [1] 0.5

The minimum probabilty of random uniform number X being greater than median number x given X is greater than the 1st quartile value in y is 0.5

b.P(X>x, Y>y)

(b<-min(pnorm(X>x ,Y>y)))
## [1] 0.1586553

The minimum probabilty of random uniform number X being greater than median number x and random normal number Y is greater than the 1st quartile value in y is 0.16

c.P(X<x | X>y)

(c<-min(pnorm(X<x, X>y)))
## [1] 0.1586553

The minimum probabilty of random uniform number X being less than median number x and X is greater than the 1st quartile value in y is 0.16

Investigate whether P(X>x and Y>y)=P(X>x)P(Y>y) by building a table and evaluating the marginal and joint probabilities.

The probability table for X>x * Y>y and X>x + Y>y show that joint probability differ.

a<-pnorm(X>x)*pnorm(Y>y)
#a<-rbinom(n=6, size = 10000, prob =dnorm((X>x)*(Y>y)))/10000
b<-pnorm((X>x)*(Y>y))
#b<-rbinom(n=6, size = 10000, prob =dnorm(X>x)*dnorm(Y>y))/10000
r<-rbind(table(a),table(b))
## Warning in rbind(table(a), table(b)): number of columns of result is not a
## multiple of vector length (arg 2)
#r<-rbind(a[1:6],b[1:6])
row.names(r)<-c('P(X>x and Y>y)','P(X>x)P(Y>y)')
colnames(r)<-names(table(round(a,2)))
#colnames(r)<-c(1,2,3,4,5,6)
rp<-round(addmargins(prop.table(r)),2)
ftable(round(a,2))
##  0.25 0.42 0.71
##                
##  1334 5058 3608
ftable(round(b,2))
##   0.5 0.84
##           
##  6392 3608
rp
##                0.25 0.42 0.71  Sum
## P(X>x and Y>y) 0.05 0.19 0.14 0.38
## P(X>x)P(Y>y)   0.24 0.14 0.24 0.62
## Sum            0.29 0.33 0.38 1.00

Check to see if independence holds by using Fisher’s Exact Test and the Chi Square Test. What is the difference between the two? Which is most appropriate?

fst<-fisher.test(rp[1,],rp[2,])
cst<-chisq.test(rp[1,],rp[2,])
## Warning in chisq.test(rp[1, ], rp[2, ]): Chi-squared approximation may be
## incorrect
print(fst$p.value)
## [1] 1
print(cst$p.value)
## [1] 0.2381033

For independency we will use Chisquare test and Fisher test. Here Fisher test is used for small datesets. We got Fisher test value as 1 which fits the data better when compared to Chisquare having P value 0.24

Problem 2

You are to register for Kaggle.com (free) and compete in the House Prices: Advanced Regression Techniques competition. https://www.kaggle.com/c/house-prices-advanced-regression-techniques . I want you to do the following.

Descriptive and Inferential Statistics. Provide univariate descriptive statistics and appropriate plots for the training data set. Provide a scatterplot matrix for at least two of the independent variables and the dependent variable. Derive a correlation matrix for any three quantitative variables in the dataset. Test the hypotheses that the correlations between each pairwise set of variables is 0 and provide an 80% confidence interval. Discuss the meaning of your analysis. Would you be worried about familywise error? Why or why not?

Here the variables i am using from the dataset is SalePrice, GrLivArea, BedroomAbvGr, YearBuilt

df.train <- read.csv("train.csv")
summary(df.train$GrLivArea)
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##     334    1130    1464    1515    1777    5642
a_sd <- sd(df.train$GrLivArea)
a_mean <- mean(df.train$GrLivArea)
a_max <- max(df.train$GrLivArea)
a_min <- min(df.train$GrLivArea)
a_x <- 0:a_max
a_y <- dnorm(x=a_x, mean=a_mean, sd=a_sd)
hist(df.train$GrLivArea, probability = T)
lines(x=a_x, y=a_y, col='red')

summary(df.train$SalePrice)
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##   34900  129975  163000  180921  214000  755000
a_sd <- sd(df.train$SalePrice)
a_mean <- mean(df.train$SalePrice)
a_max <- max(df.train$SalePrice)
a_min <- min(df.train$SalePrice)
a_x <- 0:a_max
a_y <- dnorm(x=a_x, mean=a_mean, sd=a_sd)
hist(df.train$SalePrice, probability = T)
lines(x=a_x, y=a_y, col='red')

# Scatter Plot with Regression Line
plot(SalePrice~GrLivArea, data = df.train)
a_lm <- lm(SalePrice~GrLivArea, data = df.train)
abline(a_lm, col = 'blue')

# Residual Analysis
plot(fitted(a_lm), resid(a_lm), main = "Residuals")
abline(h = 0, lty = 3)

qqnorm(a_lm$residuals, main = "Q-Q plot")
qqline(a_lm$residuals, col = 'blue')

After comparing the relation between GrLiveArea variable and Saleprice variable, both seems to be nearly normal. Scatter plot and Residual plots shows that Linear correlation exists between them.

The Scatterplot Matrix below shows 3 independent variables (GrLivArea, BedroomAbvGr, YearBuilt) and the dependent variable (SalePrice).

# Plot function for variables
plot(df.train[,c("SalePrice", "GrLivArea", "BedroomAbvGr", "YearBuilt")])

Below is the Correlation Matrix for the same set of variables.

(cm_a <- cor(df.train[,c("SalePrice", "GrLivArea", "BedroomAbvGr", "YearBuilt")]))
##              SalePrice GrLivArea BedroomAbvGr   YearBuilt
## SalePrice    1.0000000 0.7086245   0.16821315  0.52289733
## GrLivArea    0.7086245 1.0000000   0.52126951  0.19900971
## BedroomAbvGr 0.1682132 0.5212695   1.00000000 -0.07065122
## YearBuilt    0.5228973 0.1990097  -0.07065122  1.00000000

Performing Pairwise correlation Testing indicated that correlation between each pairwise set of variables is not 0. (using the 80% confidence interval)

cor.test(~GrLivArea+YearBuilt, data = df.train, conf.level = 0.8)
## 
##  Pearson's product-moment correlation
## 
## data:  GrLivArea and YearBuilt
## t = 7.754, df = 1458, p-value = 1.66e-14
## alternative hypothesis: true correlation is not equal to 0
## 80 percent confidence interval:
##  0.1665605 0.2310283
## sample estimates:
##       cor 
## 0.1990097
cor.test(~BedroomAbvGr+YearBuilt, data = df.train, conf.level = 0.8)
## 
##  Pearson's product-moment correlation
## 
## data:  BedroomAbvGr and YearBuilt
## t = -2.7045, df = 1458, p-value = 0.006921
## alternative hypothesis: true correlation is not equal to 0
## 80 percent confidence interval:
##  -0.10396633 -0.03717773
## sample estimates:
##         cor 
## -0.07065122
cor.test(~BedroomAbvGr+GrLivArea, data = df.train, conf.level = 0.8)
## 
##  Pearson's product-moment correlation
## 
## data:  BedroomAbvGr and GrLivArea
## t = 23.323, df = 1458, p-value < 2.2e-16
## alternative hypothesis: true correlation is not equal to 0
## 80 percent confidence interval:
##  0.4963921 0.5452915
## sample estimates:
##       cor 
## 0.5212695

Despite the above hypothesis rejections, I would be worried about the familywise error, given that there are a lot of observations and the likelihood of the error is almost guaranteed.

Linear Algebra and Correlation. Invert your correlation matrix from above. (This is known as the precision matrix and contains variance inflation factors on the diagonal.) Multiply the correlation matrix by the precision matrix, and then multiply the precision matrix by the correlation matrix. Conduct LU decomposition on the matrix.

(cm_b <- solve(cm_a))
##               SalePrice  GrLivArea BedroomAbvGr   YearBuilt
## SalePrice     3.1146672 -2.2892182   0.58943471 -1.13143025
## GrLivArea    -2.2892182  3.1697849  -1.23338893  0.47906764
## BedroomAbvGr  0.5894347 -1.2333889   1.54706581  0.04654462
## YearBuilt    -1.1314302  0.4790676   0.04654462  1.49957118
cm_a %*% cm_b
##                  SalePrice     GrLivArea BedroomAbvGr     YearBuilt
## SalePrice     1.000000e+00  0.000000e+00 2.081668e-17  1.110223e-16
## GrLivArea    -1.942890e-16  1.000000e+00 3.469447e-18  1.110223e-16
## BedroomAbvGr -1.387779e-17 -2.775558e-17 1.000000e+00 -1.387779e-17
## YearBuilt    -2.220446e-16 -2.220446e-16 0.000000e+00  1.000000e+00
cm_b %*% cm_a
##                  SalePrice     GrLivArea  BedroomAbvGr     YearBuilt
## SalePrice     1.000000e+00 -6.383782e-16 -2.359224e-16 -2.220446e-16
## GrLivArea     4.996004e-16  1.000000e+00  1.942890e-16  0.000000e+00
## BedroomAbvGr -1.977585e-16 -2.168404e-16  1.000000e+00 -4.857226e-17
## YearBuilt     1.110223e-16  5.551115e-17 -2.775558e-17  1.000000e+00

To conduct LU decomposition on the matrix, I have written the lu_decomp function below

library(matrixcalc)
(m_lu <- lu.decomposition(cm_b))
## $L
##            [,1]       [,2]       [,3] [,4]
## [1,]  1.0000000  0.0000000 0.00000000    0
## [2,] -0.7349800  1.0000000 0.00000000    0
## [3,]  0.1892448 -0.5380153 1.00000000    0
## [4,] -0.3632588 -0.2370212 0.07065122    1
## 
## $U
##          [,1]          [,2]       [,3]        [,4]
## [1,] 3.114667 -2.289218e+00  0.5894347 -1.13143025
## [2,] 0.000000  1.487255e+00 -0.8001662 -0.35251098
## [3,] 0.000000  1.110223e-16  1.0050166  0.07100565
## [4,] 0.000000 -7.843861e-18  0.0000000  1.00000000
# Validating the decomposition by multiplying both halves of the matrix to get the original one.
message("Validating the decomposition, by getting the original matrix")
## Validating the decomposition, by getting the original matrix
m_lu$L %*% m_lu$U
##            [,1]       [,2]        [,3]        [,4]
## [1,]  3.1146672 -2.2892182  0.58943471 -1.13143025
## [2,] -2.2892182  3.1697849 -1.23338893  0.47906764
## [3,]  0.5894347 -1.2333889  1.54706581  0.04654462
## [4,] -1.1314302  0.4790676  0.04654462  1.49957118

Calculus-Based Probability & Statistics. Many times, it makes sense to fit a closed form distribution to data. Select a variable in the Kaggle.com training dataset that is skewed to the right, shift it so that the minimum value is absolutely above zero if necessary. Then load the MASS package and run fitdistr to fit an exponential probability density function. (See https://stat.ethz.ch/R-manual/R-devel/library/MASS/html/fitdistr.html ). Find the optimal value of  for this distribution, and then take 1000 samples from this exponential distribution using this value (e.g., rexp(1000, )). Plot a histogram and compare it with a histogram of your original variable. Using the exponential pdf, find the 5th and 95th percentiles using the cumulative distribution function (CDF). Also generate a 95% confidence interval from the empirical data, assuming normality. Finally, provide the empirical 5th percentile and 95th percentile of the data. Discuss.

library(MASS)

hs_liv <- df.train$GrLivArea
(fd_rate <- fitdistr(hs_liv, "exponential"))
##        rate    
##   6.598640e-04 
##  (1.726943e-05)
# Taking sample size 1000
fd_liv <- rexp(1000, rate = fd_rate$estimate)
# graph
par(mfrow = c(1, 2))
hist(hs_liv, main = "Histogram of GrLivArea")
hist(fd_liv, main = "Histogram of fitted distribution")

I selected GrLivArea variable which appears to be somewhat right-skewed. Fitting an “exponential” distribution, resulted in an optimal value of λ=7×10−4

# Find the 5th and 95th percentiles
qexp(c(0.05, 0.95), rate = fd_rate$estimate)
## [1]   77.73313 4539.92351
# Generate a 95% confidence interval from the empirical data, assuming normality.
(a_qn <- qnorm(c(0.05, 0.95), mean = mean(hs_liv), sd = sd(hs_liv)))
## [1]  651.1254 2379.8020
# Provide the empirical 5th and 95th percentiles of the data
quantile(ecdf(hs_liv), c(0.05, 0.95))
##     5%    95% 
##  848.0 2466.1
a_x <- seq(1, max(hs_liv), length.out = length(hs_liv))
a_y <- dnorm(x = a_x, mean = mean(hs_liv), sd = sd(hs_liv))
hist(hs_liv, probability = T)
lines(x = a_x, y = a_y, col = 'blue')
abline(v = a_qn, col = 'red')

Even though, the data for the GrLivArea variable appeares to be right-skewed, the interval numbers and the plots above show that it is better described by a normal distribution rather than an exponential one.

Modeling. Build some type of multiple regression model and submit your model to the competition board. Provide your complete model summary and results with analysis. Report your Kaggle.com user name and score.

trn <- df.train[,(names(df.train) %in% c("MSSubClass", "MSZoning", "LotFrontage", "LotArea", "LotShape", "LandContour", "LotConfig", "LandSlope", "Neighborhood", "Condition1", "Condition2", "BldgType", "HouseStyle", "OverallQual", "OverallCond", "Exterior1st", "Exterior2nd", "ExterQual", "ExterCond", "Foundation", "HeatingQC", "CentralAir", "GrLivArea", "TotRmsAbvGrd", "GarageArea"))]

# Impute missing data
mean_LotFrontage <- as.integer(summary(trn$LotFrontage)["Mean"])
trn$LotFrontage <- replace(trn$LotFrontage, is.na(trn$LotFrontage), mean_LotFrontage)

# Derive/Calculate additional features
trn$AgeSold <- df.train$YrSold - df.train$YearBuilt + 1
trn$AgeRemod <- df.train$YrSold - df.train$YearRemodAdd + 1

# Rescale numeric data
# Use Standardization: Subtract the mean and divide by variance
# This way the features are centered around zero and have variance one
standardScaler <- function(x) {
  m <- mean(x)
  s <- sd(x)
  return ((x - m) / s)
}
trn$GrLivArea <- standardScaler(trn$GrLivArea)
trn$GarageArea <- standardScaler(trn$GarageArea)
trn$AgeSold <- standardScaler(trn$AgeSold)
trn$AgeRemod <- standardScaler(trn$AgeRemod)
trn$SalePrice <- df.train$SalePrice


hs.lm <- lm(SalePrice~MSSubClass +  MSZoning   +  LotFrontage + LotArea   +  LotShape   +  LandContour + LotConfig  +  LandSlope  +  Neighborhood+ Condition1 +  Condition2 +  BldgType    +
+ HouseStyle +  OverallQual+  OverallCond + Exterior1st+  Exterior2nd+  ExterQual   +
+ ExterCond  +  Foundation +  HeatingQC   + CentralAir +  GrLivArea  +  TotRmsAbvGrd
+ GarageArea +  AgeSold    +  AgeRemod, data = trn)

summary(hs.lm)
## 
## Call:
## lm(formula = SalePrice ~ MSSubClass + MSZoning + LotFrontage + 
##     LotArea + LotShape + LandContour + LotConfig + LandSlope + 
##     Neighborhood + Condition1 + Condition2 + BldgType + +HouseStyle + 
##     OverallQual + OverallCond + Exterior1st + Exterior2nd + ExterQual + 
##     +ExterCond + Foundation + HeatingQC + CentralAir + GrLivArea + 
##     TotRmsAbvGrd + GarageArea + AgeSold + AgeRemod, data = trn)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -346415  -13916    -356   11491  236400 
## 
## Coefficients: (1 not defined because of singularities)
##                       Estimate Std. Error t value Pr(>|t|)    
## (Intercept)          1.094e+05  4.093e+04   2.673 0.007605 ** 
## MSSubClass          -1.093e+02  1.025e+02  -1.066 0.286558    
## MSZoningFV           2.890e+04  1.487e+04   1.943 0.052206 .  
## MSZoningRH           1.760e+04  1.496e+04   1.176 0.239730    
## MSZoningRL           2.342e+04  1.263e+04   1.854 0.064022 .  
## MSZoningRM           2.414e+04  1.181e+04   2.045 0.041040 *  
## LotFrontage         -8.340e+01  5.257e+01  -1.586 0.112864    
## LotArea              6.713e-01  1.214e-01   5.529 3.86e-08 ***
## LotShapeIR2          3.082e+03  5.394e+03   0.571 0.567924    
## LotShapeIR3         -3.563e+04  1.079e+04  -3.301 0.000987 ***
## LotShapeReg         -3.984e+02  2.085e+03  -0.191 0.848528    
## LandContourHLS       2.506e+04  6.509e+03   3.851 0.000123 ***
## LandContourLow       2.056e+04  7.853e+03   2.618 0.008942 ** 
## LandContourLvl       1.636e+04  4.623e+03   3.538 0.000417 ***
## LotConfigCulDSac     8.088e+03  4.185e+03   1.933 0.053482 .  
## LotConfigFR2        -5.291e+03  5.181e+03  -1.021 0.307316    
## LotConfigFR3        -1.083e+04  1.651e+04  -0.656 0.511969    
## LotConfigInside      3.137e+01  2.287e+03   0.014 0.989058    
## LandSlopeMod         1.096e+04  4.961e+03   2.210 0.027271 *  
## LandSlopeSev        -1.578e+04  1.170e+04  -1.349 0.177630    
## NeighborhoodBlueste  2.180e+03  2.431e+04   0.090 0.928555    
## NeighborhoodBrDale   2.554e+03  1.372e+04   0.186 0.852289    
## NeighborhoodBrkSide -1.035e+04  1.160e+04  -0.892 0.372621    
## NeighborhoodClearCr -7.798e+03  1.140e+04  -0.684 0.494039    
## NeighborhoodCollgCr -1.480e+04  8.987e+03  -1.647 0.099734 .  
## NeighborhoodCrawfor  6.833e+03  1.068e+04   0.640 0.522272    
## NeighborhoodEdwards -2.372e+04  9.827e+03  -2.413 0.015937 *  
## NeighborhoodGilbert -1.776e+04  9.756e+03  -1.821 0.068906 .  
## NeighborhoodIDOTRR  -1.922e+04  1.328e+04  -1.448 0.147896    
## NeighborhoodMeadowV -1.203e+04  1.396e+04  -0.861 0.389249    
## NeighborhoodMitchel -2.424e+04  1.014e+04  -2.391 0.016958 *  
## NeighborhoodNAmes   -2.027e+04  9.614e+03  -2.108 0.035179 *  
## NeighborhoodNoRidge  3.882e+04  1.032e+04   3.763 0.000175 ***
## NeighborhoodNPkVill  4.562e+03  1.787e+04   0.255 0.798528    
## NeighborhoodNridgHt  3.930e+04  9.148e+03   4.296 1.86e-05 ***
## NeighborhoodNWAmes  -2.384e+04  1.001e+04  -2.381 0.017396 *  
## NeighborhoodOldTown -2.563e+04  1.190e+04  -2.154 0.031450 *  
## NeighborhoodSawyer  -1.545e+04  1.012e+04  -1.527 0.126943    
## NeighborhoodSawyerW -8.704e+03  9.678e+03  -0.899 0.368658    
## NeighborhoodSomerst -2.648e+03  1.114e+04  -0.238 0.812118    
## NeighborhoodStoneBr  4.815e+04  1.044e+04   4.612 4.37e-06 ***
## NeighborhoodSWISU   -1.794e+04  1.210e+04  -1.483 0.138239    
## NeighborhoodTimber  -4.441e+03  1.033e+04  -0.430 0.667404    
## NeighborhoodVeenker  2.134e+04  1.312e+04   1.627 0.103995    
## Condition1Feedr     -5.298e+03  6.292e+03  -0.842 0.399916    
## Condition1Norm       7.738e+03  5.197e+03   1.489 0.136777    
## Condition1PosA       4.580e+03  1.260e+04   0.363 0.716337    
## Condition1PosN       1.467e+04  9.372e+03   1.565 0.117864    
## Condition1RRAe      -2.396e+04  1.158e+04  -2.070 0.038687 *  
## Condition1RRAn       1.133e+04  8.694e+03   1.303 0.192736    
## Condition1RRNe      -7.436e+03  2.304e+04  -0.323 0.746919    
## Condition1RRNn       7.789e+03  1.623e+04   0.480 0.631440    
## Condition2Feedr     -3.011e+04  2.848e+04  -1.057 0.290667    
## Condition2Norm      -2.000e+04  2.436e+04  -0.821 0.411966    
## Condition2PosA      -2.021e+04  4.658e+04  -0.434 0.664396    
## Condition2PosN      -2.057e+05  3.442e+04  -5.975 2.94e-09 ***
## Condition2RRAe      -3.665e+04  4.023e+04  -0.911 0.362567    
## Condition2RRAn      -3.415e+04  4.016e+04  -0.850 0.395291    
## Condition2RRNn      -1.689e+04  3.376e+04  -0.500 0.617025    
## BldgType2fmCon       7.447e+03  1.530e+04   0.487 0.626653    
## BldgTypeDuplex      -9.971e+03  7.282e+03  -1.369 0.171124    
## BldgTypeTwnhs       -2.994e+04  1.246e+04  -2.403 0.016382 *  
## BldgTypeTwnhsE      -2.011e+04  1.114e+04  -1.805 0.071275 .  
## HouseStyle1.5Unf     7.205e+03  9.553e+03   0.754 0.450844    
## HouseStyle1Story     1.360e+04  4.316e+03   3.152 0.001660 ** 
## HouseStyle2.5Fin    -1.523e+04  1.262e+04  -1.207 0.227614    
## HouseStyle2.5Unf    -8.911e+03  1.116e+04  -0.799 0.424679    
## HouseStyle2Story    -3.354e+03  3.852e+03  -0.871 0.384099    
## HouseStyleSFoyer     2.525e+04  7.255e+03   3.481 0.000516 ***
## HouseStyleSLvl       1.354e+04  6.213e+03   2.179 0.029527 *  
## OverallQual          1.267e+04  1.200e+03  10.555  < 2e-16 ***
## OverallCond          5.449e+03  1.046e+03   5.210 2.18e-07 ***
## Exterior1stAsphShn  -4.097e+04  4.123e+04  -0.994 0.320442    
## Exterior1stBrkComm  -3.722e+04  3.400e+04  -1.095 0.273924    
## Exterior1stBrkFace   1.482e+04  1.515e+04   0.979 0.327989    
## Exterior1stCBlock    1.862e+03  3.426e+04   0.054 0.956661    
## Exterior1stCemntBd   6.079e+03  2.375e+04   0.256 0.798055    
## Exterior1stHdBoard  -3.197e+03  1.512e+04  -0.211 0.832540    
## Exterior1stImStucc  -6.420e+04  3.575e+04  -1.796 0.072772 .  
## Exterior1stMetalSd   2.818e+03  1.748e+04   0.161 0.871957    
## Exterior1stPlywood   7.193e+02  1.485e+04   0.048 0.961380    
## Exterior1stStone    -1.561e+04  2.767e+04  -0.564 0.572890    
## Exterior1stStucco   -4.527e+03  1.682e+04  -0.269 0.787818    
## Exterior1stVinylSd  -1.357e+04  1.598e+04  -0.849 0.396109    
## Exterior1stWd Sdng  -6.157e+03  1.463e+04  -0.421 0.674010    
## Exterior1stWdShing   6.430e+03  1.582e+04   0.406 0.684477    
## Exterior2ndAsphShn   9.195e+03  2.687e+04   0.342 0.732202    
## Exterior2ndBrk Cmn   1.366e+04  2.554e+04   0.535 0.592967    
## Exterior2ndBrkFace   2.615e+03  1.623e+04   0.161 0.872043    
## Exterior2ndCBlock           NA         NA      NA       NA    
## Exterior2ndCmentBd   7.904e+03  2.384e+04   0.332 0.740304    
## Exterior2ndHdBoard   1.077e+03  1.498e+04   0.072 0.942718    
## Exterior2ndImStucc   3.606e+04  1.760e+04   2.049 0.040687 *  
## Exterior2ndMetalSd   3.663e+02  1.753e+04   0.021 0.983331    
## Exterior2ndOther     1.506e+04  3.529e+04   0.427 0.669736    
## Exterior2ndPlywood   8.642e+02  1.446e+04   0.060 0.952346    
## Exterior2ndStone    -9.046e+03  2.086e+04  -0.434 0.664618    
## Exterior2ndStucco   -6.917e+03  1.659e+04  -0.417 0.676756    
## Exterior2ndVinylSd   1.665e+04  1.587e+04   1.049 0.294155    
## Exterior2ndWd Sdng   7.366e+03  1.455e+04   0.506 0.612871    
## Exterior2ndWd Shng  -3.772e+03  1.516e+04  -0.249 0.803613    
## ExterQualFa         -3.947e+04  1.232e+04  -3.203 0.001393 ** 
## ExterQualGd         -4.951e+04  5.478e+03  -9.039  < 2e-16 ***
## ExterQualTA         -4.967e+04  6.230e+03  -7.972 3.31e-15 ***
## ExterCondFa          9.502e+01  2.331e+04   0.004 0.996748    
## ExterCondGd         -4.339e+03  2.221e+04  -0.195 0.845175    
## ExterCondPo         -1.009e+04  3.940e+04  -0.256 0.797812    
## ExterCondTA         -1.954e+03  2.218e+04  -0.088 0.929812    
## FoundationCBlock     3.729e+03  3.940e+03   0.946 0.344179    
## FoundationPConc      7.952e+03  4.344e+03   1.830 0.067406 .  
## FoundationSlab      -9.945e+03  7.774e+03  -1.279 0.201043    
## FoundationStone     -8.599e+03  1.342e+04  -0.641 0.521741    
## FoundationWood      -1.791e+04  1.873e+04  -0.956 0.339058    
## HeatingQCFa         -5.481e+02  5.451e+03  -0.101 0.919920    
## HeatingQCGd         -4.563e+03  2.646e+03  -1.725 0.084792 .  
## HeatingQCPo          1.439e+04  3.442e+04   0.418 0.675987    
## HeatingQCTA         -4.280e+03  2.610e+03  -1.640 0.101243    
## CentralAirY         -3.364e+03  4.516e+03  -0.745 0.456418    
## GrLivArea            3.489e+04  2.103e+03  16.588  < 2e-16 ***
## TotRmsAbvGrd        -6.577e+02  1.046e+03  -0.629 0.529585    
## GarageArea           5.961e+03  1.171e+03   5.093 4.04e-07 ***
## AgeSold             -9.305e+03  2.474e+03  -3.760 0.000177 ***
## AgeRemod            -2.277e+03  1.339e+03  -1.700 0.089284 .  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 30660 on 1338 degrees of freedom
## Multiple R-squared:  0.8634, Adjusted R-squared:  0.8511 
## F-statistic: 69.91 on 121 and 1338 DF,  p-value: < 2.2e-16
# Remove insignificant features and rebuil the model
# Removed Features: LotConfig, Exterior1st, Exterior2nd, ExterCond, HeatingQC
hs.lm <- lm(SalePrice~MSSubClass +  MSZoning   +  LotFrontage + LotArea   +  LotShape   +  LandContour +  LandSlope  +  Neighborhood+ Condition1 +  Condition2 +  BldgType    +
+ HouseStyle +  OverallQual+  OverallCond + ExterQual   +
+ Foundation +  CentralAir +  GrLivArea  +  TotRmsAbvGrd
+ GarageArea +  AgeSold    +  AgeRemod, data = trn)

summary(hs.lm)
## 
## Call:
## lm(formula = SalePrice ~ MSSubClass + MSZoning + LotFrontage + 
##     LotArea + LotShape + LandContour + LandSlope + Neighborhood + 
##     Condition1 + Condition2 + BldgType + +HouseStyle + OverallQual + 
##     OverallCond + ExterQual + +Foundation + CentralAir + GrLivArea + 
##     TotRmsAbvGrd + GarageArea + AgeSold + AgeRemod, data = trn)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -365214  -13095    -757   12322  261389 
## 
## Coefficients:
##                       Estimate Std. Error t value Pr(>|t|)    
## (Intercept)          1.149e+05  3.290e+04   3.491 0.000496 ***
## MSSubClass          -1.530e+02  1.020e+02  -1.500 0.133862    
## MSZoningFV           2.440e+04  1.476e+04   1.654 0.098366 .  
## MSZoningRH           1.287e+04  1.489e+04   0.864 0.387549    
## MSZoningRL           1.992e+04  1.248e+04   1.596 0.110696    
## MSZoningRM           2.054e+04  1.168e+04   1.759 0.078879 .  
## LotFrontage         -1.046e+02  5.032e+01  -2.079 0.037761 *  
## LotArea              6.772e-01  1.192e-01   5.679 1.65e-08 ***
## LotShapeIR2          2.721e+03  5.345e+03   0.509 0.610711    
## LotShapeIR3         -3.441e+04  1.081e+04  -3.183 0.001489 ** 
## LotShapeReg         -9.790e+02  1.983e+03  -0.494 0.621647    
## LandContourHLS       2.509e+04  6.422e+03   3.907 9.79e-05 ***
## LandContourLow       1.969e+04  7.732e+03   2.546 0.011004 *  
## LandContourLvl       1.696e+04  4.553e+03   3.724 0.000204 ***
## LandSlopeMod         1.229e+04  4.854e+03   2.531 0.011486 *  
## LandSlopeSev        -1.217e+04  1.157e+04  -1.051 0.293307    
## NeighborhoodBlueste  1.976e+03  2.416e+04   0.082 0.934825    
## NeighborhoodBrDale   3.621e+03  1.340e+04   0.270 0.787003    
## NeighborhoodBrkSide -1.007e+04  1.137e+04  -0.886 0.375920    
## NeighborhoodClearCr -5.353e+03  1.121e+04  -0.478 0.633054    
## NeighborhoodCollgCr -1.419e+04  8.957e+03  -1.585 0.113273    
## NeighborhoodCrawfor  7.042e+03  1.046e+04   0.673 0.500824    
## NeighborhoodEdwards -2.339e+04  9.709e+03  -2.409 0.016114 *  
## NeighborhoodGilbert -1.853e+04  9.667e+03  -1.917 0.055481 .  
## NeighborhoodIDOTRR  -1.709e+04  1.298e+04  -1.317 0.188104    
## NeighborhoodMeadowV  3.939e+02  1.270e+04   0.031 0.975261    
## NeighborhoodMitchel -2.185e+04  1.000e+04  -2.184 0.029127 *  
## NeighborhoodNAmes   -1.944e+04  9.460e+03  -2.055 0.040077 *  
## NeighborhoodNoRidge  3.868e+04  1.016e+04   3.807 0.000147 ***
## NeighborhoodNPkVill  1.058e+04  1.346e+04   0.786 0.431989    
## NeighborhoodNridgHt  3.734e+04  9.079e+03   4.112 4.15e-05 ***
## NeighborhoodNWAmes  -2.520e+04  9.797e+03  -2.572 0.010215 *  
## NeighborhoodOldTown -2.452e+04  1.167e+04  -2.100 0.035912 *  
## NeighborhoodSawyer  -1.695e+04  9.985e+03  -1.698 0.089786 .  
## NeighborhoodSawyerW -1.030e+04  9.494e+03  -1.085 0.278116    
## NeighborhoodSomerst -1.231e+02  1.107e+04  -0.011 0.991130    
## NeighborhoodStoneBr  4.894e+04  1.020e+04   4.797 1.78e-06 ***
## NeighborhoodSWISU   -1.604e+04  1.201e+04  -1.336 0.181700    
## NeighborhoodTimber  -6.282e+03  1.021e+04  -0.615 0.538367    
## NeighborhoodVeenker  2.394e+04  1.265e+04   1.892 0.058667 .  
## Condition1Feedr     -6.302e+03  6.187e+03  -1.019 0.308575    
## Condition1Norm       6.751e+03  5.140e+03   1.313 0.189255    
## Condition1PosA       6.200e+03  1.241e+04   0.500 0.617390    
## Condition1PosN       1.572e+04  9.321e+03   1.686 0.091949 .  
## Condition1RRAe      -2.112e+04  1.110e+04  -1.903 0.057277 .  
## Condition1RRAn       1.188e+04  8.598e+03   1.381 0.167373    
## Condition1RRNe      -7.284e+03  2.296e+04  -0.317 0.751150    
## Condition1RRNn       9.337e+03  1.563e+04   0.597 0.550332    
## Condition2Feedr     -3.415e+04  2.819e+04  -1.211 0.225928    
## Condition2Norm      -1.836e+04  2.420e+04  -0.759 0.448155    
## Condition2PosA      -2.331e+04  4.094e+04  -0.570 0.569104    
## Condition2PosN      -1.988e+05  3.407e+04  -5.836 6.67e-09 ***
## Condition2RRAe      -3.131e+04  4.010e+04  -0.781 0.435168    
## Condition2RRAn      -2.587e+04  3.983e+04  -0.650 0.516056    
## Condition2RRNn      -1.313e+04  3.339e+04  -0.393 0.694197    
## BldgType2fmCon       1.345e+04  1.508e+04   0.892 0.372544    
## BldgTypeDuplex      -9.923e+03  7.173e+03  -1.383 0.166781    
## BldgTypeTwnhs       -2.756e+04  1.229e+04  -2.243 0.025086 *  
## BldgTypeTwnhsE      -1.630e+04  1.104e+04  -1.477 0.139966    
## HouseStyle1.5Unf     1.071e+04  9.207e+03   1.163 0.244844    
## HouseStyle1Story     1.263e+04  4.242e+03   2.978 0.002952 ** 
## HouseStyle2.5Fin    -1.315e+04  1.249e+04  -1.053 0.292575    
## HouseStyle2.5Unf    -9.817e+03  1.099e+04  -0.893 0.371836    
## HouseStyle2Story    -3.857e+03  3.798e+03  -1.016 0.310030    
## HouseStyleSFoyer     2.786e+04  7.171e+03   3.886 0.000107 ***
## HouseStyleSLvl       1.410e+04  6.123e+03   2.302 0.021461 *  
## OverallQual          1.294e+04  1.176e+03  11.007  < 2e-16 ***
## OverallCond          5.651e+03  9.802e+02   5.765 1.01e-08 ***
## ExterQualFa         -4.451e+04  1.157e+04  -3.848 0.000125 ***
## ExterQualGd         -5.253e+04  5.338e+03  -9.842  < 2e-16 ***
## ExterQualTA         -5.438e+04  6.074e+03  -8.953  < 2e-16 ***
## FoundationCBlock     2.795e+03  3.871e+03   0.722 0.470317    
## FoundationPConc      7.753e+03  4.291e+03   1.807 0.070998 .  
## FoundationSlab      -8.395e+03  7.634e+03  -1.100 0.271644    
## FoundationStone     -1.061e+04  1.331e+04  -0.797 0.425667    
## FoundationWood      -1.843e+04  1.879e+04  -0.981 0.326766    
## CentralAirY         -2.649e+03  4.193e+03  -0.632 0.527638    
## GrLivArea            3.562e+04  2.048e+03  17.395  < 2e-16 ***
## TotRmsAbvGrd        -6.337e+02  1.038e+03  -0.610 0.541824    
## GarageArea           5.684e+03  1.154e+03   4.924 9.53e-07 ***
## AgeSold             -1.086e+04  2.355e+03  -4.612 4.36e-06 ***
## AgeRemod            -2.021e+03  1.292e+03  -1.563 0.118170    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 30850 on 1378 degrees of freedom
## Multiple R-squared:  0.8575, Adjusted R-squared:  0.8492 
## F-statistic: 102.4 on 81 and 1378 DF,  p-value: < 2.2e-16
# Backward Elimination Process
hs.lm <- update(hs.lm, .~. - TotRmsAbvGrd, data = trn)
summary(hs.lm)
## 
## Call:
## lm(formula = SalePrice ~ MSSubClass + MSZoning + LotFrontage + 
##     LotArea + LotShape + LandContour + LandSlope + Neighborhood + 
##     Condition1 + Condition2 + BldgType + HouseStyle + OverallQual + 
##     OverallCond + ExterQual + Foundation + CentralAir + GrLivArea + 
##     GarageArea + AgeSold + AgeRemod, data = trn)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -362823  -13089    -760   12351  263131 
## 
## Coefficients:
##                       Estimate Std. Error t value Pr(>|t|)    
## (Intercept)          1.095e+05  3.168e+04   3.455 0.000567 ***
## MSSubClass          -1.540e+02  1.020e+02  -1.510 0.131259    
## MSZoningFV           2.489e+04  1.473e+04   1.690 0.091344 .  
## MSZoningRH           1.283e+04  1.489e+04   0.862 0.388742    
## MSZoningRL           2.004e+04  1.248e+04   1.607 0.108360    
## MSZoningRM           2.061e+04  1.168e+04   1.765 0.077865 .  
## LotFrontage         -1.041e+02  5.030e+01  -2.070 0.038635 *  
## LotArea              6.763e-01  1.192e-01   5.673 1.71e-08 ***
## LotShapeIR2          2.812e+03  5.341e+03   0.526 0.598710    
## LotShapeIR3         -3.411e+04  1.080e+04  -3.159 0.001618 ** 
## LotShapeReg         -9.795e+02  1.983e+03  -0.494 0.621409    
## LandContourHLS       2.507e+04  6.421e+03   3.905 9.87e-05 ***
## LandContourLow       1.982e+04  7.728e+03   2.564 0.010445 *  
## LandContourLvl       1.702e+04  4.551e+03   3.739 0.000192 ***
## LandSlopeMod         1.249e+04  4.842e+03   2.580 0.009970 ** 
## LandSlopeSev        -1.155e+04  1.152e+04  -1.002 0.316616    
## NeighborhoodBlueste  2.820e+03  2.412e+04   0.117 0.906942    
## NeighborhoodBrDale   4.024e+03  1.338e+04   0.301 0.763639    
## NeighborhoodBrkSide -8.817e+03  1.118e+04  -0.789 0.430425    
## NeighborhoodClearCr -4.470e+03  1.111e+04  -0.402 0.687600    
## NeighborhoodCollgCr -1.333e+04  8.841e+03  -1.507 0.131996    
## NeighborhoodCrawfor  8.072e+03  1.032e+04   0.782 0.434127    
## NeighborhoodEdwards -2.244e+04  9.580e+03  -2.342 0.019318 *  
## NeighborhoodGilbert -1.767e+04  9.563e+03  -1.848 0.064778 .  
## NeighborhoodIDOTRR  -1.603e+04  1.286e+04  -1.247 0.212637    
## NeighborhoodMeadowV  1.039e+03  1.265e+04   0.082 0.934600    
## NeighborhoodMitchel -2.093e+04  9.887e+03  -2.117 0.034431 *  
## NeighborhoodNAmes   -1.858e+04  9.352e+03  -1.987 0.047162 *  
## NeighborhoodNoRidge  3.996e+04  9.936e+03   4.022 6.08e-05 ***
## NeighborhoodNPkVill  1.085e+04  1.345e+04   0.807 0.419914    
## NeighborhoodNridgHt  3.784e+04  9.039e+03   4.186 3.02e-05 ***
## NeighborhoodNWAmes  -2.444e+04  9.715e+03  -2.515 0.012005 *  
## NeighborhoodOldTown -2.333e+04  1.151e+04  -2.027 0.042851 *  
## NeighborhoodSawyer  -1.608e+04  9.881e+03  -1.628 0.103809    
## NeighborhoodSawyerW -9.408e+03  9.379e+03  -1.003 0.315985    
## NeighborhoodSomerst  4.873e+02  1.102e+04   0.044 0.964737    
## NeighborhoodStoneBr  4.968e+04  1.013e+04   4.906 1.04e-06 ***
## NeighborhoodSWISU   -1.483e+04  1.184e+04  -1.253 0.210458    
## NeighborhoodTimber  -5.533e+03  1.013e+04  -0.546 0.584999    
## NeighborhoodVeenker  2.488e+04  1.255e+04   1.982 0.047629 *  
## Condition1Feedr     -6.363e+03  6.185e+03  -1.029 0.303756    
## Condition1Norm       6.714e+03  5.138e+03   1.307 0.191542    
## Condition1PosA       6.217e+03  1.241e+04   0.501 0.616316    
## Condition1PosN       1.550e+04  9.312e+03   1.665 0.096159 .  
## Condition1RRAe      -2.132e+04  1.109e+04  -1.922 0.054807 .  
## Condition1RRAn       1.169e+04  8.590e+03   1.360 0.173933    
## Condition1RRNe      -7.121e+03  2.296e+04  -0.310 0.756473    
## Condition1RRNn       9.201e+03  1.562e+04   0.589 0.556034    
## Condition2Feedr     -3.423e+04  2.818e+04  -1.215 0.224656    
## Condition2Norm      -1.865e+04  2.419e+04  -0.771 0.440722    
## Condition2PosA      -2.266e+04  4.091e+04  -0.554 0.579743    
## Condition2PosN      -1.975e+05  3.399e+04  -5.810 7.75e-09 ***
## Condition2RRAe      -3.268e+04  4.003e+04  -0.816 0.414388    
## Condition2RRAn      -2.609e+04  3.982e+04  -0.655 0.512366    
## Condition2RRNn      -1.327e+04  3.338e+04  -0.398 0.691026    
## BldgType2fmCon       1.323e+04  1.507e+04   0.878 0.380367    
## BldgTypeDuplex      -1.060e+04  7.086e+03  -1.496 0.134964    
## BldgTypeTwnhs       -2.679e+04  1.222e+04  -2.191 0.028584 *  
## BldgTypeTwnhsE      -1.544e+04  1.095e+04  -1.411 0.158589    
## HouseStyle1.5Unf     1.097e+04  9.195e+03   1.193 0.233043    
## HouseStyle1Story     1.273e+04  4.238e+03   3.004 0.002716 ** 
## HouseStyle2.5Fin    -1.380e+04  1.244e+04  -1.110 0.267307    
## HouseStyle2.5Unf    -1.036e+04  1.095e+04  -0.946 0.344377    
## HouseStyle2Story    -4.005e+03  3.789e+03  -1.057 0.290812    
## HouseStyleSFoyer     2.824e+04  7.143e+03   3.953 8.10e-05 ***
## HouseStyleSLvl       1.412e+04  6.122e+03   2.307 0.021224 *  
## OverallQual          1.297e+04  1.175e+03  11.045  < 2e-16 ***
## OverallCond          5.666e+03  9.796e+02   5.784 9.02e-09 ***
## ExterQualFa         -4.422e+04  1.156e+04  -3.827 0.000136 ***
## ExterQualGd         -5.228e+04  5.321e+03  -9.826  < 2e-16 ***
## ExterQualTA         -5.415e+04  6.061e+03  -8.935  < 2e-16 ***
## FoundationCBlock     2.979e+03  3.858e+03   0.772 0.440104    
## FoundationPConc      7.818e+03  4.289e+03   1.823 0.068546 .  
## FoundationSlab      -8.208e+03  7.626e+03  -1.076 0.281947    
## FoundationStone     -1.084e+04  1.330e+04  -0.815 0.415448    
## FoundationWood      -1.808e+04  1.877e+04  -0.963 0.335615    
## CentralAirY         -2.793e+03  4.186e+03  -0.667 0.504664    
## GrLivArea            3.485e+04  1.611e+03  21.635  < 2e-16 ***
## GarageArea           5.720e+03  1.153e+03   4.963 7.82e-07 ***
## AgeSold             -1.093e+04  2.351e+03  -4.650 3.64e-06 ***
## AgeRemod            -2.004e+03  1.292e+03  -1.551 0.121019    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 30850 on 1379 degrees of freedom
## Multiple R-squared:  0.8575, Adjusted R-squared:  0.8492 
## F-statistic: 103.7 on 80 and 1379 DF,  p-value: < 2.2e-16
hs.lm <- update(hs.lm, .~. - CentralAir, data = trn)
summary(hs.lm)
## 
## Call:
## lm(formula = SalePrice ~ MSSubClass + MSZoning + LotFrontage + 
##     LotArea + LotShape + LandContour + LandSlope + Neighborhood + 
##     Condition1 + Condition2 + BldgType + HouseStyle + OverallQual + 
##     OverallCond + ExterQual + Foundation + GrLivArea + GarageArea + 
##     AgeSold + AgeRemod, data = trn)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -362618  -13168    -864   12332  263313 
## 
## Coefficients:
##                       Estimate Std. Error t value Pr(>|t|)    
## (Intercept)          1.067e+05  3.141e+04   3.398 0.000698 ***
## MSSubClass          -1.510e+02  1.018e+02  -1.483 0.138322    
## MSZoningFV           2.443e+04  1.471e+04   1.661 0.097005 .  
## MSZoningRH           1.289e+04  1.488e+04   0.866 0.386660    
## MSZoningRL           1.970e+04  1.246e+04   1.581 0.114138    
## MSZoningRM           2.029e+04  1.167e+04   1.739 0.082289 .  
## LotFrontage         -1.038e+02  5.029e+01  -2.064 0.039164 *  
## LotArea              6.745e-01  1.192e-01   5.660 1.83e-08 ***
## LotShapeIR2          2.814e+03  5.340e+03   0.527 0.598384    
## LotShapeIR3         -3.385e+04  1.079e+04  -3.138 0.001738 ** 
## LotShapeReg         -9.988e+02  1.982e+03  -0.504 0.614434    
## LandContourHLS       2.500e+04  6.418e+03   3.895 0.000103 ***
## LandContourLow       1.965e+04  7.722e+03   2.545 0.011050 *  
## LandContourLvl       1.698e+04  4.550e+03   3.732 0.000197 ***
## LandSlopeMod         1.251e+04  4.840e+03   2.584 0.009860 ** 
## LandSlopeSev        -1.151e+04  1.152e+04  -0.999 0.318164    
## NeighborhoodBlueste  2.737e+03  2.411e+04   0.113 0.909653    
## NeighborhoodBrDale   3.731e+03  1.337e+04   0.279 0.780207    
## NeighborhoodBrkSide -8.982e+03  1.117e+04  -0.804 0.421638    
## NeighborhoodClearCr -4.619e+03  1.111e+04  -0.416 0.677624    
## NeighborhoodCollgCr -1.342e+04  8.838e+03  -1.519 0.129085    
## NeighborhoodCrawfor  7.856e+03  1.031e+04   0.762 0.446238    
## NeighborhoodEdwards -2.248e+04  9.578e+03  -2.347 0.019062 *  
## NeighborhoodGilbert -1.779e+04  9.559e+03  -1.861 0.062911 .  
## NeighborhoodIDOTRR  -1.588e+04  1.285e+04  -1.235 0.216921    
## NeighborhoodMeadowV  7.465e+02  1.264e+04   0.059 0.952928    
## NeighborhoodMitchel -2.116e+04  9.880e+03  -2.141 0.032418 *  
## NeighborhoodNAmes   -1.886e+04  9.341e+03  -2.019 0.043669 *  
## NeighborhoodNoRidge  3.991e+04  9.933e+03   4.018 6.18e-05 ***
## NeighborhoodNPkVill  1.071e+04  1.345e+04   0.797 0.425862    
## NeighborhoodNridgHt  3.785e+04  9.037e+03   4.189 2.98e-05 ***
## NeighborhoodNWAmes  -2.456e+04  9.711e+03  -2.529 0.011537 *  
## NeighborhoodOldTown -2.353e+04  1.150e+04  -2.046 0.040940 *  
## NeighborhoodSawyer  -1.635e+04  9.870e+03  -1.657 0.097760 .  
## NeighborhoodSawyerW -9.657e+03  9.369e+03  -1.031 0.302878    
## NeighborhoodSomerst  5.437e+02  1.102e+04   0.049 0.960653    
## NeighborhoodStoneBr  4.964e+04  1.013e+04   4.903 1.06e-06 ***
## NeighborhoodSWISU   -1.482e+04  1.184e+04  -1.252 0.210706    
## NeighborhoodTimber  -5.612e+03  1.013e+04  -0.554 0.579556    
## NeighborhoodVeenker  2.488e+04  1.255e+04   1.982 0.047628 *  
## Condition1Feedr     -6.555e+03  6.177e+03  -1.061 0.288750    
## Condition1Norm       6.635e+03  5.136e+03   1.292 0.196621    
## Condition1PosA       6.275e+03  1.240e+04   0.506 0.612967    
## Condition1PosN       1.563e+04  9.309e+03   1.679 0.093357 .  
## Condition1RRAe      -2.120e+04  1.109e+04  -1.912 0.056105 .  
## Condition1RRAn       1.157e+04  8.587e+03   1.348 0.177971    
## Condition1RRNe      -7.128e+03  2.295e+04  -0.311 0.756201    
## Condition1RRNn       9.162e+03  1.562e+04   0.586 0.557636    
## Condition2Feedr     -3.225e+04  2.802e+04  -1.151 0.249954    
## Condition2Norm      -1.686e+04  2.403e+04  -0.702 0.483091    
## Condition2PosA      -2.238e+04  4.090e+04  -0.547 0.584295    
## Condition2PosN      -1.957e+05  3.388e+04  -5.777 9.39e-09 ***
## Condition2RRAe      -3.080e+04  3.992e+04  -0.772 0.440542    
## Condition2RRAn      -2.464e+04  3.975e+04  -0.620 0.535441    
## Condition2RRNn      -1.038e+04  3.309e+04  -0.314 0.753838    
## BldgType2fmCon       1.360e+04  1.506e+04   0.903 0.366442    
## BldgTypeDuplex      -1.034e+04  7.074e+03  -1.462 0.143939    
## BldgTypeTwnhs       -2.715e+04  1.221e+04  -2.224 0.026334 *  
## BldgTypeTwnhsE      -1.580e+04  1.093e+04  -1.446 0.148466    
## HouseStyle1.5Unf     1.148e+04  9.162e+03   1.252 0.210601    
## HouseStyle1Story     1.305e+04  4.211e+03   3.098 0.001986 ** 
## HouseStyle2.5Fin    -1.401e+04  1.243e+04  -1.127 0.259951    
## HouseStyle2.5Unf    -9.121e+03  1.079e+04  -0.845 0.398116    
## HouseStyle2Story    -3.734e+03  3.767e+03  -0.991 0.321720    
## HouseStyleSFoyer     2.832e+04  7.140e+03   3.966 7.69e-05 ***
## HouseStyleSLvl       1.428e+04  6.116e+03   2.335 0.019676 *  
## OverallQual          1.292e+04  1.172e+03  11.027  < 2e-16 ***
## OverallCond          5.541e+03  9.612e+02   5.764 1.01e-08 ***
## ExterQualFa         -4.404e+04  1.155e+04  -3.812 0.000144 ***
## ExterQualGd         -5.242e+04  5.316e+03  -9.861  < 2e-16 ***
## ExterQualTA         -5.447e+04  6.041e+03  -9.018  < 2e-16 ***
## FoundationCBlock     2.722e+03  3.838e+03   0.709 0.478308    
## FoundationPConc      7.587e+03  4.274e+03   1.775 0.076086 .  
## FoundationSlab      -8.012e+03  7.619e+03  -1.052 0.293176    
## FoundationStone     -1.034e+04  1.328e+04  -0.779 0.436404    
## FoundationWood      -1.807e+04  1.877e+04  -0.963 0.335779    
## GrLivArea            3.482e+04  1.610e+03  21.629  < 2e-16 ***
## GarageArea           5.677e+03  1.151e+03   4.934 9.02e-07 ***
## AgeSold             -1.069e+04  2.322e+03  -4.603 4.55e-06 ***
## AgeRemod            -1.962e+03  1.290e+03  -1.521 0.128540    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 30840 on 1380 degrees of freedom
## Multiple R-squared:  0.8574, Adjusted R-squared:  0.8493 
## F-statistic: 105.1 on 79 and 1380 DF,  p-value: < 2.2e-16
hs.lm <- update(hs.lm, .~. - Foundation, data = trn)
summary(hs.lm)
## 
## Call:
## lm(formula = SalePrice ~ MSSubClass + MSZoning + LotFrontage + 
##     LotArea + LotShape + LandContour + LandSlope + Neighborhood + 
##     Condition1 + Condition2 + BldgType + HouseStyle + OverallQual + 
##     OverallCond + ExterQual + GrLivArea + GarageArea + AgeSold + 
##     AgeRemod, data = trn)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -361478  -13279    -700   12134  263181 
## 
## Coefficients:
##                       Estimate Std. Error t value Pr(>|t|)    
## (Intercept)          1.090e+05  3.131e+04   3.481 0.000515 ***
## MSSubClass          -1.599e+02  1.010e+02  -1.583 0.113621    
## MSZoningFV           2.574e+04  1.465e+04   1.757 0.079215 .  
## MSZoningRH           1.399e+04  1.482e+04   0.944 0.345222    
## MSZoningRL           2.106e+04  1.238e+04   1.701 0.089252 .  
## MSZoningRM           2.122e+04  1.159e+04   1.831 0.067280 .  
## LotFrontage         -1.082e+02  5.000e+01  -2.164 0.030619 *  
## LotArea              6.738e-01  1.187e-01   5.677 1.66e-08 ***
## LotShapeIR2          2.331e+03  5.312e+03   0.439 0.660944    
## LotShapeIR3         -3.384e+04  1.079e+04  -3.136 0.001751 ** 
## LotShapeReg         -8.739e+02  1.983e+03  -0.441 0.659509    
## LandContourHLS       2.587e+04  6.393e+03   4.046 5.49e-05 ***
## LandContourLow       1.973e+04  7.708e+03   2.559 0.010589 *  
## LandContourLvl       1.711e+04  4.549e+03   3.760 0.000177 ***
## LandSlopeMod         1.207e+04  4.835e+03   2.497 0.012627 *  
## LandSlopeSev        -1.092e+04  1.150e+04  -0.950 0.342510    
## NeighborhoodBlueste  6.399e+02  2.403e+04   0.027 0.978760    
## NeighborhoodBrDale   2.158e+03  1.319e+04   0.164 0.870031    
## NeighborhoodBrkSide -8.318e+03  1.118e+04  -0.744 0.457099    
## NeighborhoodClearCr -4.278e+03  1.109e+04  -0.386 0.699742    
## NeighborhoodCollgCr -1.280e+04  8.848e+03  -1.446 0.148303    
## NeighborhoodCrawfor  8.467e+03  1.032e+04   0.821 0.411975    
## NeighborhoodEdwards -2.230e+04  9.582e+03  -2.327 0.020101 *  
## NeighborhoodGilbert -1.720e+04  9.562e+03  -1.798 0.072349 .  
## NeighborhoodIDOTRR  -1.388e+04  1.282e+04  -1.083 0.279113    
## NeighborhoodMeadowV  8.211e+02  1.258e+04   0.065 0.947970    
## NeighborhoodMitchel -2.128e+04  9.875e+03  -2.155 0.031319 *  
## NeighborhoodNAmes   -1.927e+04  9.273e+03  -2.078 0.037912 *  
## NeighborhoodNoRidge  4.103e+04  9.939e+03   4.129 3.87e-05 ***
## NeighborhoodNPkVill  8.516e+03  1.334e+04   0.638 0.523262    
## NeighborhoodNridgHt  3.817e+04  9.049e+03   4.218 2.62e-05 ***
## NeighborhoodNWAmes  -2.565e+04  9.633e+03  -2.663 0.007840 ** 
## NeighborhoodOldTown -2.257e+04  1.150e+04  -1.963 0.049895 *  
## NeighborhoodSawyer  -1.663e+04  9.823e+03  -1.693 0.090605 .  
## NeighborhoodSawyerW -1.021e+04  9.374e+03  -1.090 0.276086    
## NeighborhoodSomerst  9.093e+02  1.103e+04   0.082 0.934325    
## NeighborhoodStoneBr  4.966e+04  1.013e+04   4.901 1.07e-06 ***
## NeighborhoodSWISU   -1.280e+04  1.182e+04  -1.083 0.279042    
## NeighborhoodTimber  -6.628e+03  1.011e+04  -0.655 0.512383    
## NeighborhoodVeenker  2.444e+04  1.255e+04   1.948 0.051636 .  
## Condition1Feedr     -7.155e+03  6.182e+03  -1.157 0.247284    
## Condition1Norm       5.444e+03  5.123e+03   1.063 0.288166    
## Condition1PosA       5.176e+03  1.241e+04   0.417 0.676737    
## Condition1PosN       1.458e+04  9.316e+03   1.565 0.117841    
## Condition1RRAe      -2.259e+04  1.109e+04  -2.037 0.041871 *  
## Condition1RRAn       1.017e+04  8.577e+03   1.186 0.235852    
## Condition1RRNe      -6.075e+03  2.297e+04  -0.264 0.791438    
## Condition1RRNn       8.254e+03  1.563e+04   0.528 0.597422    
## Condition2Feedr     -3.099e+04  2.805e+04  -1.105 0.269517    
## Condition2Norm      -1.644e+04  2.406e+04  -0.683 0.494607    
## Condition2PosA      -2.377e+04  4.096e+04  -0.580 0.561836    
## Condition2PosN      -1.950e+05  3.393e+04  -5.748 1.11e-08 ***
## Condition2RRAe      -2.888e+04  3.996e+04  -0.723 0.469919    
## Condition2RRAn      -2.210e+04  3.978e+04  -0.556 0.578598    
## Condition2RRNn      -1.163e+04  3.313e+04  -0.351 0.725677    
## BldgType2fmCon       1.477e+04  1.493e+04   0.989 0.322834    
## BldgTypeDuplex      -1.243e+04  6.972e+03  -1.783 0.074744 .  
## BldgTypeTwnhs       -2.616e+04  1.213e+04  -2.157 0.031141 *  
## BldgTypeTwnhsE      -1.447e+04  1.085e+04  -1.334 0.182312    
## HouseStyle1.5Unf     1.155e+04  9.156e+03   1.261 0.207352    
## HouseStyle1Story     1.332e+04  4.191e+03   3.178 0.001516 ** 
## HouseStyle2.5Fin    -1.229e+04  1.242e+04  -0.990 0.322463    
## HouseStyle2.5Unf    -8.255e+03  1.079e+04  -0.765 0.444416    
## HouseStyle2Story    -2.829e+03  3.736e+03  -0.757 0.449058    
## HouseStyleSFoyer     2.877e+04  7.091e+03   4.057 5.26e-05 ***
## HouseStyleSLvl       1.516e+04  6.059e+03   2.502 0.012474 *  
## OverallQual          1.324e+04  1.154e+03  11.468  < 2e-16 ***
## OverallCond          5.359e+03  9.454e+02   5.669 1.75e-08 ***
## ExterQualFa         -4.452e+04  1.151e+04  -3.868 0.000115 ***
## ExterQualGd         -5.180e+04  5.312e+03  -9.751  < 2e-16 ***
## ExterQualTA         -5.406e+04  6.020e+03  -8.981  < 2e-16 ***
## GrLivArea            3.474e+04  1.608e+03  21.598  < 2e-16 ***
## GarageArea           5.646e+03  1.148e+03   4.919 9.72e-07 ***
## AgeSold             -1.238e+04  2.133e+03  -5.804 8.03e-09 ***
## AgeRemod            -2.270e+03  1.274e+03  -1.782 0.075022 .  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 30890 on 1385 degrees of freedom
## Multiple R-squared:  0.8565, Adjusted R-squared:  0.8488 
## F-statistic: 111.7 on 74 and 1385 DF,  p-value: < 2.2e-16
hs.lm <- update(hs.lm, .~. - MSZoning, data = trn)
summary(hs.lm)
## 
## Call:
## lm(formula = SalePrice ~ MSSubClass + LotFrontage + LotArea + 
##     LotShape + LandContour + LandSlope + Neighborhood + Condition1 + 
##     Condition2 + BldgType + HouseStyle + OverallQual + OverallCond + 
##     ExterQual + GrLivArea + GarageArea + AgeSold + AgeRemod, 
##     data = trn)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -361183  -13393    -789   12437  263162 
## 
## Coefficients:
##                       Estimate Std. Error t value Pr(>|t|)    
## (Intercept)          1.280e+05  2.798e+04   4.575 5.19e-06 ***
## MSSubClass          -1.506e+02  1.008e+02  -1.494 0.135450    
## LotFrontage         -1.080e+02  4.996e+01  -2.161 0.030850 *  
## LotArea              6.735e-01  1.187e-01   5.676 1.68e-08 ***
## LotShapeIR2          2.441e+03  5.309e+03   0.460 0.645772    
## LotShapeIR3         -3.355e+04  1.078e+04  -3.111 0.001900 ** 
## LotShapeReg         -8.843e+02  1.971e+03  -0.449 0.653681    
## LandContourHLS       2.487e+04  6.372e+03   3.903 9.96e-05 ***
## LandContourLow       1.866e+04  7.677e+03   2.430 0.015212 *  
## LandContourLvl       1.675e+04  4.541e+03   3.690 0.000233 ***
## LandSlopeMod         1.187e+04  4.830e+03   2.457 0.014116 *  
## LandSlopeSev        -1.011e+04  1.149e+04  -0.880 0.379247    
## NeighborhoodBlueste  6.673e+02  2.360e+04   0.028 0.977442    
## NeighborhoodBrDale   2.141e+03  1.231e+04   0.174 0.861962    
## NeighborhoodBrkSide -7.324e+03  1.036e+04  -0.707 0.479832    
## NeighborhoodClearCr -3.685e+03  1.097e+04  -0.336 0.737013    
## NeighborhoodCollgCr -1.258e+04  8.714e+03  -1.443 0.149200    
## NeighborhoodCrawfor  8.742e+03  1.015e+04   0.861 0.389227    
## NeighborhoodEdwards -2.188e+04  9.390e+03  -2.330 0.019949 *  
## NeighborhoodGilbert -1.710e+04  9.456e+03  -1.809 0.070699 .  
## NeighborhoodIDOTRR  -1.771e+04  1.088e+04  -1.628 0.103790    
## NeighborhoodMeadowV  1.165e+03  1.165e+04   0.100 0.920326    
## NeighborhoodMitchel -2.073e+04  9.702e+03  -2.137 0.032812 *  
## NeighborhoodNAmes   -1.879e+04  9.125e+03  -2.059 0.039720 *  
## NeighborhoodNoRidge  4.124e+04  9.853e+03   4.185 3.03e-05 ***
## NeighborhoodNPkVill  8.540e+03  1.333e+04   0.641 0.521880    
## NeighborhoodNridgHt  3.833e+04  9.007e+03   4.255 2.23e-05 ***
## NeighborhoodNWAmes  -2.529e+04  9.500e+03  -2.662 0.007852 ** 
## NeighborhoodOldTown -2.184e+04  1.001e+04  -2.182 0.029273 *  
## NeighborhoodSawyer  -1.610e+04  9.666e+03  -1.665 0.096094 .  
## NeighborhoodSawyerW -1.048e+04  9.276e+03  -1.129 0.258975    
## NeighborhoodSomerst  4.495e+03  8.783e+03   0.512 0.608872    
## NeighborhoodStoneBr  4.992e+04  1.012e+04   4.934 9.03e-07 ***
## NeighborhoodSWISU   -1.367e+04  1.162e+04  -1.176 0.239641    
## NeighborhoodTimber  -6.213e+03  1.001e+04  -0.621 0.534987    
## NeighborhoodVeenker  2.484e+04  1.250e+04   1.987 0.047109 *  
## Condition1Feedr     -7.698e+03  6.169e+03  -1.248 0.212343    
## Condition1Norm       5.347e+03  5.117e+03   1.045 0.296206    
## Condition1PosA       5.150e+03  1.241e+04   0.415 0.678253    
## Condition1PosN       1.452e+04  9.311e+03   1.560 0.119059    
## Condition1RRAe      -2.206e+04  1.105e+04  -1.995 0.046205 *  
## Condition1RRAn       9.903e+03  8.522e+03   1.162 0.245408    
## Condition1RRNe      -5.888e+03  2.295e+04  -0.257 0.797597    
## Condition1RRNn       8.569e+03  1.538e+04   0.557 0.577405    
## Condition2Feedr     -3.342e+04  2.777e+04  -1.203 0.229090    
## Condition2Norm      -1.638e+04  2.388e+04  -0.686 0.492907    
## Condition2PosA      -2.236e+04  4.083e+04  -0.548 0.584061    
## Condition2PosN      -1.950e+05  3.379e+04  -5.771 9.70e-09 ***
## Condition2RRAe      -2.816e+04  3.987e+04  -0.706 0.480090    
## Condition2RRAn      -2.156e+04  3.968e+04  -0.543 0.586896    
## Condition2RRNn      -1.082e+04  3.283e+04  -0.330 0.741767    
## BldgType2fmCon       1.340e+04  1.489e+04   0.900 0.368439    
## BldgTypeDuplex      -1.285e+04  6.942e+03  -1.851 0.064341 .  
## BldgTypeTwnhs       -2.683e+04  1.204e+04  -2.229 0.025981 *  
## BldgTypeTwnhsE      -1.523e+04  1.072e+04  -1.421 0.155495    
## HouseStyle1.5Unf     1.142e+04  9.125e+03   1.251 0.211085    
## HouseStyle1Story     1.338e+04  4.188e+03   3.196 0.001423 ** 
## HouseStyle2.5Fin    -1.217e+04  1.241e+04  -0.980 0.327259    
## HouseStyle2.5Unf    -9.918e+03  1.075e+04  -0.922 0.356463    
## HouseStyle2Story    -2.868e+03  3.717e+03  -0.772 0.440526    
## HouseStyleSFoyer     2.816e+04  7.073e+03   3.981 7.23e-05 ***
## HouseStyleSLvl       1.475e+04  6.047e+03   2.439 0.014853 *  
## OverallQual          1.341e+04  1.148e+03  11.675  < 2e-16 ***
## OverallCond          5.451e+03  9.442e+02   5.773 9.60e-09 ***
## ExterQualFa         -4.729e+04  1.141e+04  -4.145 3.61e-05 ***
## ExterQualGd         -5.166e+04  5.310e+03  -9.729  < 2e-16 ***
## ExterQualTA         -5.387e+04  6.016e+03  -8.955  < 2e-16 ***
## GrLivArea            3.465e+04  1.607e+03  21.562  < 2e-16 ***
## GarageArea           5.470e+03  1.144e+03   4.783 1.92e-06 ***
## AgeSold             -1.260e+04  2.119e+03  -5.947 3.46e-09 ***
## AgeRemod            -2.265e+03  1.274e+03  -1.778 0.075659 .  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 30890 on 1389 degrees of freedom
## Multiple R-squared:  0.856,  Adjusted R-squared:  0.8488 
## F-statistic:   118 on 70 and 1389 DF,  p-value: < 2.2e-16
hs.lm <- update(hs.lm, .~. - MSSubClass, data = trn)
summary(hs.lm)
## 
## Call:
## lm(formula = SalePrice ~ LotFrontage + LotArea + LotShape + LandContour + 
##     LandSlope + Neighborhood + Condition1 + Condition2 + BldgType + 
##     HouseStyle + OverallQual + OverallCond + ExterQual + GrLivArea + 
##     GarageArea + AgeSold + AgeRemod, data = trn)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -362056  -13274    -649   12645  263281 
## 
## Coefficients:
##                       Estimate Std. Error t value Pr(>|t|)    
## (Intercept)          1.203e+05  2.751e+04   4.373 1.32e-05 ***
## LotFrontage         -1.075e+02  4.998e+01  -2.151 0.031628 *  
## LotArea              6.808e-01  1.186e-01   5.740 1.16e-08 ***
## LotShapeIR2          2.513e+03  5.311e+03   0.473 0.636140    
## LotShapeIR3         -3.357e+04  1.079e+04  -3.113 0.001892 ** 
## LotShapeReg         -9.131e+02  1.971e+03  -0.463 0.643322    
## LandContourHLS       2.436e+04  6.366e+03   3.827 0.000135 ***
## LandContourLow       1.742e+04  7.635e+03   2.281 0.022691 *  
## LandContourLvl       1.657e+04  4.541e+03   3.648 0.000274 ***
## LandSlopeMod         1.210e+04  4.829e+03   2.505 0.012356 *  
## LandSlopeSev        -9.685e+03  1.150e+04  -0.843 0.399642    
## NeighborhoodBlueste  6.686e+02  2.361e+04   0.028 0.977407    
## NeighborhoodBrDale   2.335e+03  1.231e+04   0.190 0.849616    
## NeighborhoodBrkSide -7.579e+03  1.037e+04  -0.731 0.464806    
## NeighborhoodClearCr -4.482e+03  1.096e+04  -0.409 0.682711    
## NeighborhoodCollgCr -1.248e+04  8.718e+03  -1.432 0.152402    
## NeighborhoodCrawfor  8.656e+03  1.015e+04   0.852 0.394133    
## NeighborhoodEdwards -2.175e+04  9.394e+03  -2.315 0.020764 *  
## NeighborhoodGilbert -1.719e+04  9.460e+03  -1.817 0.069454 .  
## NeighborhoodIDOTRR  -1.796e+04  1.088e+04  -1.650 0.099131 .  
## NeighborhoodMeadowV  8.678e+02  1.165e+04   0.074 0.940634    
## NeighborhoodMitchel -2.066e+04  9.706e+03  -2.129 0.033461 *  
## NeighborhoodNAmes   -1.834e+04  9.125e+03  -2.010 0.044655 *  
## NeighborhoodNoRidge  4.130e+04  9.858e+03   4.190 2.97e-05 ***
## NeighborhoodNPkVill  8.687e+03  1.334e+04   0.651 0.514922    
## NeighborhoodNridgHt  3.836e+04  9.011e+03   4.257 2.21e-05 ***
## NeighborhoodNWAmes  -2.506e+04  9.503e+03  -2.637 0.008457 ** 
## NeighborhoodOldTown -2.144e+04  1.001e+04  -2.142 0.032385 *  
## NeighborhoodSawyer  -1.593e+04  9.669e+03  -1.647 0.099741 .  
## NeighborhoodSawyerW -1.039e+04  9.280e+03  -1.120 0.262891    
## NeighborhoodSomerst  4.473e+03  8.787e+03   0.509 0.610763    
## NeighborhoodStoneBr  4.952e+04  1.012e+04   4.894 1.10e-06 ***
## NeighborhoodSWISU   -1.369e+04  1.163e+04  -1.178 0.239084    
## NeighborhoodTimber  -5.886e+03  1.001e+04  -0.588 0.556824    
## NeighborhoodVeenker  2.501e+04  1.251e+04   2.000 0.045725 *  
## Condition1Feedr     -7.065e+03  6.157e+03  -1.147 0.251394    
## Condition1Norm       5.715e+03  5.113e+03   1.118 0.263865    
## Condition1PosA       5.685e+03  1.241e+04   0.458 0.647012    
## Condition1PosN       1.508e+04  9.307e+03   1.620 0.105403    
## Condition1RRAe      -2.193e+04  1.106e+04  -1.983 0.047571 *  
## Condition1RRAn       1.009e+04  8.525e+03   1.184 0.236631    
## Condition1RRNe      -5.579e+03  2.296e+04  -0.243 0.808066    
## Condition1RRNn       8.043e+03  1.538e+04   0.523 0.601070    
## Condition2Feedr     -3.412e+04  2.778e+04  -1.228 0.219548    
## Condition2Norm      -1.652e+04  2.389e+04  -0.692 0.489346    
## Condition2PosA      -2.241e+04  4.085e+04  -0.549 0.583296    
## Condition2PosN      -1.955e+05  3.381e+04  -5.784 8.99e-09 ***
## Condition2RRAe      -2.784e+04  3.989e+04  -0.698 0.485254    
## Condition2RRAn      -2.492e+04  3.963e+04  -0.629 0.529507    
## Condition2RRNn      -1.105e+04  3.284e+04  -0.336 0.736695    
## BldgType2fmCon      -6.818e+03  6.213e+03  -1.097 0.272679    
## BldgTypeDuplex      -2.016e+04  4.925e+03  -4.094 4.48e-05 ***
## BldgTypeTwnhs       -4.186e+04  6.621e+03  -6.322 3.47e-10 ***
## BldgTypeTwnhsE      -2.998e+04  4.177e+03  -7.176 1.16e-12 ***
## HouseStyle1.5Unf     1.230e+04  9.110e+03   1.350 0.177253    
## HouseStyle1Story     1.690e+04  3.463e+03   4.881 1.18e-06 ***
## HouseStyle2.5Fin    -1.556e+04  1.221e+04  -1.275 0.202608    
## HouseStyle2.5Unf    -1.329e+04  1.052e+04  -1.264 0.206566    
## HouseStyle2Story    -4.996e+03  3.434e+03  -1.455 0.146024    
## HouseStyleSFoyer     2.419e+04  6.560e+03   3.688 0.000235 ***
## HouseStyleSLvl       9.915e+03  5.111e+03   1.940 0.052579 .  
## OverallQual          1.342e+04  1.149e+03  11.686  < 2e-16 ***
## OverallCond          5.496e+03  9.441e+02   5.821 7.26e-09 ***
## ExterQualFa         -4.498e+04  1.131e+04  -3.977 7.34e-05 ***
## ExterQualGd         -5.165e+04  5.312e+03  -9.723  < 2e-16 ***
## ExterQualTA         -5.378e+04  6.018e+03  -8.936  < 2e-16 ***
## GrLivArea            3.458e+04  1.607e+03  21.517  < 2e-16 ***
## GarageArea           5.507e+03  1.144e+03   4.814 1.64e-06 ***
## AgeSold             -1.298e+04  2.105e+03  -6.165 9.22e-10 ***
## AgeRemod            -2.271e+03  1.274e+03  -1.782 0.075041 .  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 30910 on 1390 degrees of freedom
## Multiple R-squared:  0.8558, Adjusted R-squared:  0.8486 
## F-statistic: 119.6 on 69 and 1390 DF,  p-value: < 2.2e-16

Residual Analysis

plot(fitted(hs.lm), resid(hs.lm))
abline(h = 0)

qqnorm(resid(hs.lm))
qqline(resid(hs.lm))

Predicting Response

df.test <- read.csv("test.csv")

tst <- df.test[,(names(df.test) %in% c("MSSubClass", "MSZoning", "LotFrontage", "LotArea", "LotShape", "LandContour", "LotConfig", "LandSlope", "Neighborhood", "Condition1", "Condition2", "BldgType", "HouseStyle", "OverallQual", "OverallCond", "Exterior1st", "Exterior2nd", "ExterQual", "ExterCond", "Foundation", "HeatingQC", "CentralAir", "GrLivArea", "TotRmsAbvGrd", "GarageArea"))]

# Impute missing data
mean_LotFrontage <- as.integer(summary(tst$LotFrontage)["Mean"])
tst$LotFrontage <- replace(tst$LotFrontage, is.na(tst$LotFrontage), mean_LotFrontage)
mean_GarageArea <- as.integer(summary(tst$GarageArea)["Mean"])
tst$GarageArea <- replace(tst$GarageArea, is.na(tst$GarageArea), mean_GarageArea)

# Derive/Calculate additional features
tst$AgeSold <- df.test$YrSold - df.test$YearBuilt + 1
tst$AgeRemod <- df.test$YrSold - df.test$YearRemodAdd + 1

# Rescale numeric data
# Use Standardization: Subtract the mean and divide by variance
#   This way the features are centered around zero and have variance one
tst$GrLivArea <- standardScaler(tst$GrLivArea)
tst$GarageArea <- standardScaler(tst$GarageArea)
tst$AgeSold <- standardScaler(tst$AgeSold)
tst$AgeRemod <- standardScaler(tst$AgeRemod)

# Predicting the House Prices
hs.pd <- data.frame(
  Id = seq(nrow(trn) + 1, length.out = nrow(tst)),
  SalePrice = predict(hs.lm, newdata = tst)
)
head(hs.pd)
##     Id SalePrice
## 1 1461  113017.6
## 2 1462  160456.4
## 3 1463  167846.7
## 4 1464  182056.0
## 5 1465  246980.3
## 6 1466  177207.0
write.csv(hs.pd, file = "submission.csv", quote = FALSE, row.names = FALSE)

summary(hs.pd$SalePrice)
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##   -3935  128784  165085  180770  218227  572421
par(mfrow = c(1, 2))
hist(hs.pd$SalePrice, main = "Predicted Prices")
hist(trn$SalePrice, main = "Training Prices")

** Kaggle.com user name : vijay564(https://www.kaggle.com/vijay564)**

** Kaggle.com score : 0.42341**