library(deSolve)
library(ggplot2)
parameters <- c(d = 0.5, f = 0.5, r = 0.5, s=13, a=73, B=80)
state <- c(X = 200, I = 20, Y = 1)
#X number of susceptible foxes
#I number of incubating foxes
#Y number of infected foxes
#b birth rate per capita
#d death rate per capita
#r population growth rate
#s rate of incubation
#a death rate of rabid foxes
#b transmission coefficient
#K fox carrying capacity
N=100
Lorenz <- function(t, state, parameters) {
with(as.list(c(state, parameters )), {
dX <- r*X - f*X*N - B*X*Y
dI <- B*X*Y - (s+d+f*N)*I
dY <- f*t - (a+d+f*N)*Y
list(c(dX, dI, dY))
})
}
times <- seq(0, 1, by = 0.01)
out <- ode(y = state, times = times, func = Lorenz, parms = parameters)
head(out)
time X I Y
[1,] 0.00 200.000000 20.000000 1.000000000
[2,] 0.01 77.009903 51.705353 0.290852015
[3,] 0.02 41.071046 32.795173 0.084635815
[4,] 0.03 24.080212 18.258112 0.024689681
[5,] 0.04 14.512375 9.828561 0.007283975
[6,] 0.05 8.816238 5.236199 0.002250508
outf <- data.frame(times, out)
ggplot(outf, aes(x = X, y = Y)) +
geom_point()

X exeni hassas olan tilki sayısı Y ekseni ise enfekte olan tilki sayısını göstermektedir. transmission coefficient (80) ise enfeksiyonun ayayılma hızıdır. Örneğin 80 ni 650 yaptığımızda enfekte olan tilki sayısı dramatik bir şekilde artıyor. Bu değeri 0 girdiğimizde ise daha yavaş olüler gerçekleşiyor.
LS0tDQp0aXRsZTogIktlbWFsIEtvw6dha2zEsSBSIE5vdGVib29rIg0Kb3V0cHV0OiBodG1sX25vdGVib29rDQotLS0NCmBgYHtyfQ0KbGlicmFyeShkZVNvbHZlKQ0KbGlicmFyeShnZ3Bsb3QyKQ0KDQpwYXJhbWV0ZXJzIDwtIGMoZCA9IDAuNSwgZiA9IDAuNSwgciA9IDAuNSwgcz0xMywgYT03MywgQj04MCkNCnN0YXRlIDwtIGMoWCA9IDIwMCwgSSA9IDIwLCBZID0gMSkNCiNYIG51bWJlciBvZiBzdXNjZXB0aWJsZSBmb3hlcw0KI0kgbnVtYmVyIG9mIGluY3ViYXRpbmcgZm94ZXMNCiNZIG51bWJlciBvZiBpbmZlY3RlZCBmb3hlcw0KI2IgYmlydGggcmF0ZSBwZXIgY2FwaXRhDQojZCBkZWF0aCByYXRlIHBlciBjYXBpdGENCiNyIHBvcHVsYXRpb24gZ3Jvd3RoIHJhdGUNCiNzIHJhdGUgb2YgaW5jdWJhdGlvbg0KI2EgZGVhdGggcmF0ZSBvZiByYWJpZCBmb3hlcw0KI2IgdHJhbnNtaXNzaW9uIGNvZWZmaWNpZW50DQojSyBmb3ggY2FycnlpbmcgY2FwYWNpdHkNCg0KTj0xMDANCkxvcmVueiA8LSBmdW5jdGlvbih0LCBzdGF0ZSwgcGFyYW1ldGVycykgew0KICB3aXRoKGFzLmxpc3QoYyhzdGF0ZSwgcGFyYW1ldGVycyApKSwgew0KICAgIGRYIDwtIHIqWCAtIGYqWCpOIC0gQipYKlkNCiAgICBkSSA8LSBCKlgqWSAtIChzK2QrZipOKSpJDQogICAgZFkgPC0gZip0IC0gKGErZCtmKk4pKlkNCiAgICBsaXN0KGMoZFgsIGRJLCBkWSkpDQogIH0pDQp9DQp0aW1lcyA8LSBzZXEoMCwgMSwgYnkgPSAwLjAxKQ0Kb3V0IDwtIG9kZSh5ID0gc3RhdGUsIHRpbWVzID0gdGltZXMsIGZ1bmMgPSBMb3JlbnosIHBhcm1zID0gcGFyYW1ldGVycykNCmhlYWQob3V0KQ0Kb3V0ZiA8LSBkYXRhLmZyYW1lKHRpbWVzLCBvdXQpDQpnZ3Bsb3Qob3V0ZiwgYWVzKHggPSBYLCB5ID0gWSkpICsNCiAgZ2VvbV9wb2ludCgpIA0KYGBgDQoNCiMgWCBleGVuaSBoYXNzYXMgb2xhbiB0aWxraSBzYXnEsXPEsSBZIGVrc2VuaSBpc2UgZW5mZWt0ZSBvbGFuIHRpbGtpIHNhecSxc8SxbsSxIGfDtnN0ZXJtZWt0ZWRpci4gIHRyYW5zbWlzc2lvbiBjb2VmZmljaWVudCAoODApIGlzZSBlbmZla3NpeW9udW4gYXlhecSxbG1hIGjEsXrEsWTEsXIuIMOWcm5lxJ9pbiA4MCBuaSA2NTAgeWFwdMSxxJ/EsW3EsXpkYSBlbmZla3RlIG9sYW4gdGlsa2kgc2F5xLFzxLEgZHJhbWF0aWsgYmlyIMWfZWtpbGRlIGFydMSxeW9yLiBCdSBkZcSfZXJpIDAgZ2lyZGnEn2ltaXpkZSBpc2UgZGFoYSB5YXZhxZ8gb2zDvGxlciBnZXLDp2VrbGXFn2l5b3IuDQoNCg0KDQoNCg0KDQoNCg0KDQoNCg0KDQoNCg0KDQoNCg0KDQoNCg0KDQoNCg0KDQoNCg==