Abishek, Jin, Kausika and Namrata
12/12/2019
mean_values <- dispense_usage_transactions%>%
group_by(NDC_DESC) %>%
summarise(mean = mean(COGS_PRC_MTRC,na.rm = TRUE))Two ways to verify
## [1] FALSE
## NDC_DESC mean
## Length:74 Min. : 0.1328
## Class :character 1st Qu.: 6.8276
## Mode :character Median : 26.1454
## Mean : 270.8807
## 3rd Qu.: 94.3222
## Max. :2446.6700
replace_na <- inner %>%
mutate(COGS_PRC_MTRC = ifelse(is.na(COGS_PRC_MTRC) == T , mean , COGS_PRC_MTRC))To verify
## [1] FALSE
leakage <- no_negative%>%
mutate(Leakage_1WK = DSPN_QTY_NDC_1WK - PURCH_QTY_NDC_1WK_MTRC,
Leakage_4WKS = DSPN_QTY_NDC_4WKS - PURCH_QTY_NDC_4WKS_MTRC,
Leakage_13WKS = DSPN_QTY_NDC_13WKS - PURCH_QTY_NDC_13WKS_MTRC,
Leakage_26WKS = DSPN_QTY_NDC_26WKS - PURCH_QTY_NDC_26WKS_MTRC)To have a look at our new variables
## # A tibble: 88,471 x 4
## Leakage_1WK Leakage_4WKS Leakage_13WKS Leakage_26WKS
## <dbl> <dbl> <dbl> <dbl>
## 1 120 270 900 900
## 2 240 540 1260 1260
## 3 105 360 1040 1040
## 4 40 60 170 170
## 5 0 381 2326 2326
## 6 0 0 204 204
## 7 60 240 420 420
## 8 6 7.5 16.5 16.5
## 9 180 510 1200 1200
## 10 60 60 180 180
## # … with 88,461 more rows
std_lkg <-leakage%>%
mutate(Std_Leakage_NDC_1WK=Leakage_1WK,
Std_Leakage_NDC_4WKS=Leakage_4WKS/4,
Std_Leakage_NDC_13WKS=Leakage_13WKS/13,
Std_Leakage_NDC_26WKS=Leakage_26WKS/26 )## # A tibble: 88,471 x 4
## Std_Leakage_NDC_1… Std_Leakage_NDC_4W… Std_Leakage_NDC_13… Std_Leakage_NDC_2…
## <dbl> <dbl> <dbl> <dbl>
## 1 120 67.5 69.2 34.6
## 2 240 135 96.9 48.5
## 3 105 90 80 40
## 4 40 15 13.1 6.54
## 5 0 95.2 179. 89.5
## 6 0 0 15.7 7.85
## 7 60 60 32.3 16.2
## 8 6 1.88 1.27 0.635
## 9 180 128. 92.3 46.2
## 10 60 15 13.8 6.92
## # … with 88,461 more rows
mean_lkge <-std_lkg%>%
mutate(mean_leakage_1WK=mean(Leakage_1WK),
mean_leakage_4WKS=mean(Leakage_4WKS),
mean_leakage_13WKS=mean(Leakage_13WKS),
mean_leakage_26WKS=mean(Leakage_26WKS))
mean_lkge[,53:56]## # A tibble: 88,471 x 4
## mean_leakage_1WK mean_leakage_4WKS mean_leakage_13WKS mean_leakage_26WKS
## <dbl> <dbl> <dbl> <dbl>
## 1 0.140 17.9 49.4 75.8
## 2 0.140 17.9 49.4 75.8
## 3 0.140 17.9 49.4 75.8
## 4 0.140 17.9 49.4 75.8
## 5 0.140 17.9 49.4 75.8
## 6 0.140 17.9 49.4 75.8
## 7 0.140 17.9 49.4 75.8
## 8 0.140 17.9 49.4 75.8
## 9 0.140 17.9 49.4 75.8
## 10 0.140 17.9 49.4 75.8
## # … with 88,461 more rows
x1<-c(mean(mean_lkge$Leakage_1WK),mean(mean_lkge$Leakage_4WKS),mean(mean_lkge$Leakage_13WKS),mean(mean_lkge$Leakage_26WKS))
y1<-c(std_lkg$Std_Leakage_NDC_1WK,std_lkg$Std_Leakage_NDC_4WKS,std_lkg$Std_Leakage_NDC_13WKS,std_lkg$Std_Leakage_NDC_26WKS)##
## Welch Two Sample t-test
##
## data: x1 and y1
## t = 1.9665, df = 3.0018, p-value = 0.1439
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -20.37098 86.32397
## sample estimates:
## mean of x mean of y
## 35.811278 2.834783