Title: “Stats_Assignment 5”

Author: “Ajinkya Prashant Dalvi”

Date: “12/9/2019”

Chapter 1 : Importing the dataset

All used Packages for this Assignment

library(dplyr)
## 
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
## 
##     filter, lag
## The following objects are masked from 'package:base':
## 
##     intersect, setdiff, setequal, union
library(ggplot2)
library(corrplot)
## corrplot 0.84 loaded

Imported data from FAA1 dataset

Dataset1 = read.csv("FAA1.csv",header = TRUE)

Printing the first 10 rows of the dataset

head(Dataset1,10)
##    ï..aircraft  duration no_pasg speed_ground speed_air   height    pitch
## 1       boeing  98.47909      53    107.91568  109.3284 27.41892 4.043515
## 2       boeing 125.73330      69    101.65559  102.8514 27.80472 4.117432
## 3       boeing 112.01700      61     71.05196        NA 18.58939 4.434043
## 4       boeing 196.82569      56     85.81333        NA 30.74460 3.884236
## 5       boeing  90.09538      70     59.88853        NA 32.39769 4.026096
## 6       boeing 137.59582      55     75.01434        NA 41.21496 4.203853
## 7       boeing  73.02379      54     54.42980        NA 24.03532 3.837646
## 8       boeing  52.90319      57     57.10166        NA 19.38884 4.643672
## 9       boeing 155.51862      61     85.44362        NA 35.37539 4.228728
## 10      boeing 176.86203      56     61.79671        NA 36.74882 4.184399
##     distance
## 1  3369.8364
## 2  2987.8039
## 3  1144.9224
## 4  1664.2182
## 5  1050.2645
## 6  1627.0682
## 7   805.3040
## 8   573.6218
## 9  1698.9928
## 10 1137.7458

Final Observation from this dataset

There are in total 800 observation in the 8 columns in this dataset

nrow(Dataset1)
## [1] 800
ncol(Dataset1)
## [1] 8

Chapter 2 : Data Cleaning

TO CHECK MISSING VALUES

colSums(is.na(Dataset1))
##  ï..aircraft     duration      no_pasg speed_ground    speed_air 
##            0            0            0            0          600 
##       height        pitch     distance 
##            0            0            0

OMITTING OR REMOVING MISSING VALUES

subset_dataset = na.omit(Dataset1) 

CHECKING AGAIN FOR MISSING VALUES

colSums(is.na(subset_dataset))
##  ï..aircraft     duration      no_pasg speed_ground    speed_air 
##            0            0            0            0            0 
##       height        pitch     distance 
##            0            0            0

TO REMOVE DUPLICATES

distinct(subset_dataset)
##     ï..aircraft  duration no_pasg speed_ground speed_air    height
## 1        boeing  98.47909      53    107.91568 109.32838 27.418924
## 2        boeing 125.73330      69    101.65559 102.85141 27.804716
## 3        boeing 180.61656      54    141.21864 141.72494 23.575935
## 4        boeing  72.28963      54     93.39176  92.86956 32.223489
## 5        boeing 187.59955      58     94.03641  96.19646 33.661226
## 6        boeing 233.80250      69    104.80843 103.86846 43.882732
## 7        boeing 163.90650      55    119.38046 120.44471 38.558536
## 8        boeing 126.54029      70     94.78123  91.14207 39.476299
## 9        boeing 112.90010      53     98.18041  99.13583 28.152991
## 10       boeing  86.82891      62     91.71454  92.87485 28.773729
## 11       boeing 140.23631      65    118.74200 119.40215 19.856192
## 12       boeing 130.46356      52    116.71343 117.65650 36.195527
## 13       boeing  93.52863      61     90.33190  90.11101 42.408190
## 14       boeing 202.54628      65     93.61520  95.32244 18.586453
## 15       boeing 194.67245      63     95.73291  97.18505 47.586622
## 16       boeing  79.99931      64    100.17254 100.26067 48.602825
## 17       boeing 121.10832      63    101.04739 101.72214 40.038554
## 18       boeing 116.98454      67    122.75656 123.88257 30.216568
## 19       boeing 154.06174      63     94.63081  93.93528 41.423375
## 20       boeing 107.12014      60     93.89934  93.18624 26.470877
## 21       boeing 161.89247      72    129.26492 128.41773 33.948999
## 22       boeing 130.48885      68     94.37662  92.15346 19.574381
## 23       boeing 130.42435      60    111.88831 110.20458 10.255225
## 24       boeing  83.51501      44     95.06873  96.08420 17.376660
## 25       boeing 180.14354      65     91.00027  91.58605 17.641254
## 26       boeing 218.02088      61     98.20617  96.03340 24.531204
## 27       boeing 133.55693      72     94.27133  92.87774 33.046424
## 28       boeing 156.80569      47     95.32258  94.21516 30.270100
## 29       boeing 205.87361      62    113.99631 110.65992 34.443425
## 30       boeing 125.22795      58     99.16859  96.92801 36.694347
## 31       boeing 153.78655      58    109.53851 109.38230 12.990661
## 32       boeing 108.34193      58    108.13311 108.50090 42.952396
## 33       boeing 163.08537      61    106.67585 104.44716 18.847638
## 34       boeing 151.87842      57     91.50821  90.50332 17.087228
## 35       boeing 131.74744      61    105.06368 107.44169 25.443920
## 36       boeing 124.78661      68    106.12024 104.13468 42.895160
## 37       boeing  99.15687      59     93.25356  93.47108 25.763979
## 38       boeing 150.30400      60     95.82178  96.55238 27.403567
## 39       boeing  95.29773      52     92.76937  91.07250 35.463228
## 40       boeing 150.39249      46    112.10344 111.43507 19.715772
## 41       boeing 209.10635      58    124.56986 125.98691 40.101122
## 42       boeing  65.69551      64     92.64536  94.73526 23.529869
## 43       boeing 127.99133      59    114.29273 113.86394 25.468139
## 44       boeing 100.97740      57     91.22413  90.00286 45.024392
## 45       boeing  78.45566      70    107.98596 109.45813 19.703121
## 46       boeing 217.92742      59     96.37331  97.10336 29.911516
## 47       boeing 114.76272      49    107.13152 107.51990 25.200025
## 48       boeing 244.15893      54    102.86234 104.43771 27.615830
## 49       boeing 113.36296      56    113.96403 113.74609 44.735463
## 50       boeing 119.92455      64    136.65916 136.42342 44.286109
## 51       boeing 197.17730      58    113.88914 113.44548 33.455376
## 52       boeing 120.82453      57    102.05412 101.33561 20.834550
## 53       boeing 147.75443      46    110.14590 110.60412 25.817053
## 54       boeing 287.00252      53     91.39993  93.34317 26.329235
## 55       boeing 139.41387      61     93.27329  93.49604 21.128504
## 56       boeing 211.08978      54     89.95089  91.11934 33.658158
## 57       boeing 154.99002      66    108.99642 108.36091 15.538766
## 58       boeing 128.93811      79    106.93389 108.42651 30.457709
## 59       boeing 197.54635      68    126.66918 127.96414 23.764231
## 60       boeing 232.79386      56    123.95687 122.18668 26.367547
## 61       boeing 154.19447      66    107.05909 108.17747 27.407951
## 62       boeing  95.46378      57     90.82324  92.91770 40.490463
## 63       boeing 104.86600      59     90.20736  90.79071 28.275040
## 64       boeing 107.33618      64     99.02079  97.33032 32.890789
## 65       boeing 182.20102      61    104.29513 103.09644 32.659534
## 66       boeing 190.94950      53    100.58975  98.33931 18.835041
## 67       boeing 272.03906      59    118.92272 120.39704 15.049349
## 68       boeing 206.16697      58    104.66394 104.70414 38.214350
## 69       boeing 130.21785      56     93.54933  90.76800 16.292894
## 70       boeing 222.28989      63    101.52331 101.11892 27.158311
## 71       boeing 159.85144      61    107.30146 105.91314 15.326207
## 72       boeing 260.03402      46     91.65670  93.05483 44.601461
## 73       boeing 169.84419      59     91.78849  91.27691 31.441321
## 74       boeing 189.66294      46    105.68599 107.65427 36.485676
## 75       boeing 277.17601      52    119.65394 120.19232 25.182763
## 76       boeing 205.92345      59     92.09829  92.16903 44.697092
## 77       boeing 107.73178      64     93.74599  94.40577 29.612945
## 78       boeing 202.68866      69     90.94389  90.53335 39.461285
## 79       boeing  96.94122      70     94.03049  94.52062 23.594477
## 80       boeing 164.23895      59    113.02952 113.17469 38.348270
## 81       boeing 149.22418      60     99.47419 101.09512 19.852904
## 82       boeing 142.13800      61    105.10045 103.35311 28.633774
## 83       boeing 175.29995      62     89.53340  90.47672 39.563714
## 84       boeing 127.22258      59    107.61448 107.87262 31.388204
## 85       boeing 124.48006      60    114.48072 114.69029 45.077666
## 86       boeing 109.45172      66    117.64059 112.26495 35.910036
## 87       boeing 233.42754      65     92.48929  94.52436 20.912577
## 88       boeing 169.83635      63     93.98511  96.26242 29.633599
## 89       boeing 106.51409      64     92.88591  92.64579 20.386141
## 90       boeing  79.70586      75    106.74612 106.73318 18.346202
## 91       boeing 152.57631      60    101.44035 101.69323 23.452540
## 92       boeing 174.60690      48    100.27343  98.71605 25.320302
## 93       boeing 155.00793      43     92.13091  93.67582 35.186989
## 94       boeing  14.76421      59    108.29169 109.32758 46.930874
## 95       boeing 136.95960      57     95.22782  94.20363 22.603042
## 96       boeing 154.52460      67    129.30718 127.59332 23.978497
## 97       boeing  89.35808      55    111.20255 110.68408 41.852413
## 98       boeing 195.28768      52    111.12793 109.82162 28.883346
## 99       boeing  75.01276      60     99.37869  99.94451 33.945667
## 100      boeing 204.95501      64     95.67754  99.11260 41.444766
## 101      boeing 167.61572      56    110.99011 109.75179 58.081790
## 102      boeing 166.10453      48    116.59249 118.01142 13.263240
## 103      boeing 102.41984      66    104.03291 102.84676 27.833615
## 104      boeing  79.27589      55     90.25381  90.36740 40.279043
## 105      boeing 197.87679      59     88.68758  90.73047 38.027849
## 106      boeing 176.25513      60     93.06721  94.97020 35.551604
## 107      boeing 126.04012      57    105.71922 105.10448 37.325700
## 108      boeing  99.19386      60    119.67749 123.04933 27.558025
## 109      boeing  72.50494      60     93.14475  91.58630 28.311008
## 110      boeing 163.60834      60     97.50272  99.43391 34.082267
## 111      boeing 128.88757      63    102.54307 104.62440 28.788569
## 112      boeing  87.73641      67     92.40024  92.42514 34.107757
## 113      boeing 224.74613      59     91.22207  92.75258 31.363682
## 114      boeing 121.93412      52     99.85309 100.66156 17.884148
## 115      boeing 193.72629      61     91.51151  93.20778 29.836885
## 116      boeing  31.39101      51     98.21980  99.05751 52.473141
## 117      boeing  92.45029      49    101.54350 101.84980 18.169394
## 118      boeing 106.10805      69     97.17487  98.63772 38.441153
## 119      boeing  63.32952      52    132.78468 132.91146 18.177030
## 120      boeing  99.68150      61    121.83714 120.95341 33.184597
## 121      boeing 212.29018      46     89.53371  90.62618 35.494743
## 122      boeing 153.83445      61    126.83928 126.11865 20.547834
## 123      airbus 132.46942      80    100.01055 100.89168 41.033011
## 124      airbus  93.95293      58     96.87869  98.08588 29.178095
## 125      airbus  99.14806      63     97.09691  96.91374 33.144246
## 126      airbus 112.87150      60    104.45540 103.67154 23.783587
## 127      airbus 148.49500      53     99.87452  98.72406 39.520426
## 128      airbus 217.12308      66     94.81426  97.63134 33.058366
## 129      airbus 131.73110      60    131.03518 131.33795 28.277966
## 130      airbus 160.39282      55    103.27582 105.18710 54.198540
## 131      airbus 122.73330      68     94.35155  97.56674 45.457866
## 132      airbus 123.30242      41     97.56820  96.97844 38.409193
## 133      airbus  45.50278      58    107.28767 105.68512 21.833564
## 134      airbus  16.89345      54     94.51105  95.93093 37.476967
## 135      airbus 113.37605      52     98.89157 100.52806 33.573007
## 136      airbus 247.49599      66    100.75477 100.83679 19.028711
## 137      airbus 193.12008      59     96.19656  98.11607 42.307732
## 138      airbus 249.89360      70     99.06971  98.87142 36.195843
## 139      airbus 108.72207      64     99.81738 100.30990 16.215281
## 140      airbus 145.17027      67    109.61058 107.31454 27.894764
## 141      airbus 223.95233      56     99.32504  99.39736 36.782683
## 142      airbus 123.18315      63    106.92923 106.76025 26.927860
## 143      airbus  77.46403      66    103.31639  98.12993 20.116604
## 144      airbus 184.61819      65     95.61697  95.01136 23.278395
## 145      airbus 168.79553      47     92.90759  95.76298 23.784897
## 146      airbus 140.41824      61    100.08904 100.51143 35.489405
## 147      airbus 157.16729      48    101.83850 103.63497 23.011622
## 148      airbus  55.91944      71     98.67330  98.93870 40.214749
## 149      airbus 190.79171      58     93.67228  95.09882 33.630979
## 150      airbus 207.39498      73    104.70011 107.78666  9.697216
## 151      airbus 151.67842      68    100.64167 102.11015 32.977374
## 152      airbus 214.72721      65    114.64797 114.16252 35.640282
## 153      airbus 199.33501      63    106.32542 105.11007 42.972776
## 154      airbus 199.91969      48    109.30116 109.55663 33.066514
## 155      airbus 139.31381      44     99.59684  99.16027 35.187030
## 156      airbus  84.37515      49    112.18972 112.19018 30.202559
## 157      airbus 177.25965      63     98.59362  97.48393 22.126151
## 158      airbus 192.58242      60    110.40812 110.03857 39.817281
## 159      airbus 173.77141      65     94.74180  95.28745 38.731918
## 160      airbus 158.53503      62    118.51898 117.65423 25.785069
## 161      airbus 145.77939      52    111.67392 111.33236 36.042803
## 162      airbus 194.68890      61    113.81884 113.57055 33.466774
## 163      airbus 157.97521      56    109.18165 108.23199 21.249105
## 164      airbus 201.18798      54     99.01740  98.22192 39.319647
## 165      airbus 121.91996      65    108.14498 106.70400 21.444463
## 166      airbus  95.84732      62     96.92270  99.83695 21.418855
## 167      airbus 149.33131      62     98.72752  98.14793 16.097139
## 168      airbus 191.42502      66     98.26399  99.96063 45.148967
## 169      airbus 140.67120      48    120.45476 118.67260 30.351507
## 170      airbus 220.30837      57    101.13020 101.80643 32.952280
## 171      airbus 137.58573      66    126.24430 127.93711 35.175701
## 172      airbus  71.56955      65     95.78227  96.31288 27.686330
## 173      airbus 170.11618      54    112.82932 108.21624 35.479682
## 174      airbus 163.67501      55    113.02073 114.87786 28.637640
## 175      airbus  85.68192      56     97.34540  96.17500 19.239272
## 176      airbus 110.58282      62     99.69191  97.49079 24.088743
## 177      airbus 150.60053      49    111.23656 109.85430 42.832497
## 178      airbus 239.99222      68    104.19586 104.96261 27.317381
## 179      airbus 140.45311      75    120.41895 118.48470 31.263446
## 180      airbus 123.07246      62    106.07949 105.31303 32.780367
## 181      airbus 130.85088      63     97.37950  96.72959 22.499126
## 182      airbus 186.09732      53     98.43812  98.56170 48.847023
## 183      airbus 162.71456      54     98.18733  96.51504 29.625193
## 184      airbus 154.23623      65    102.87894 100.66931 24.347516
## 185      airbus 156.01336      72     96.41315  96.12697 20.472816
## 186      airbus 122.33507      56     99.55913  98.87575 35.561255
## 187      airbus 124.69702      51    109.78499 110.56965 10.099991
## 188      airbus 182.64550      69    105.88725 107.52804 35.286189
## 189      airbus 161.23109      62    100.63019 100.87746 20.288655
## 190      airbus 164.83945      62     93.39940  95.57055 25.826906
## 191      airbus 127.30610      60     99.68960  99.45920 28.970864
## 192      airbus 157.57858      64    101.37497 101.35383 21.405236
## 193      airbus 130.31912      58    110.76702 112.53178 50.765799
## 194      airbus 175.51443      49    125.21230 125.13855 22.524779
## 195      airbus 141.88878      60    103.86693 105.55937 38.127302
## 196      airbus 147.71753      67    114.84661 113.17086 58.227800
## 197      airbus 220.05713      61    120.55794 118.28818 15.665658
## 198      airbus  98.50031      66    123.31053 124.39077 22.327176
## 199      airbus 264.59337      55    102.74650 102.41247 38.534021
## 200      airbus 149.36036      67     98.02641  99.42169 40.993053
##        pitch distance
## 1   4.043515 3369.836
## 2   4.117432 2987.804
## 3   5.216802 6533.048
## 4   3.818276 2128.708
## 5   4.636185 2304.858
## 6   3.245098 3213.985
## 7   3.701449 4524.279
## 8   3.594936 2182.221
## 9   3.987471 2586.665
## 10  3.305888 2313.336
## 11  4.646266 4217.129
## 12  3.894352 4240.094
## 13  4.415128 2259.844
## 14  4.160108 1987.817
## 15  3.732112 2526.475
## 16  5.055818 2771.131
## 17  3.899869 2830.438
## 18  3.213703 4807.880
## 19  4.757853 2342.773
## 20  3.850436 2157.419
## 21  4.139951 5381.959
## 22  4.636507 1995.366
## 23  4.511726 3164.468
## 24  3.201149 2183.798
## 25  4.407987 1838.568
## 26  4.380465 2149.557
## 27  3.785795 2351.071
## 28  3.645135 2233.049
## 29  3.873845 3405.351
## 30  4.227166 2556.595
## 31  3.987957 3188.268
## 32  4.625702 3545.253
## 33  3.509450 2850.706
## 34  3.674610 1780.110
## 35  5.310678 3062.065
## 36  4.036322 2924.841
## 37  4.419372 2047.697
## 38  4.115288 2206.675
## 39  4.234651 1960.400
## 40  4.504393 3479.133
## 41  4.648428 5147.410
## 42  5.256831 2022.732
## 43  5.138243 3668.888
## 44  4.103694 2187.235
## 45  4.762115 3184.326
## 46  4.552148 2217.831
## 47  4.679503 3011.380
## 48  4.675239 2792.971
## 49  3.937906 4017.785
## 50  4.169404 6309.946
## 51  4.233058 3785.654
## 52  3.985369 2498.817
## 53  4.725850 3435.392
## 54  4.658435 2020.273
## 55  4.155737 2191.327
## 56  4.285029 2110.291
## 57  4.548028 3097.065
## 58  4.842149 3203.319
## 59  2.993151 5031.386
## 60  4.061951 4483.860
## 61  4.227419 3158.878
## 62  5.005951 2272.097
## 63  4.723400 1880.295
## 64  4.377685 2405.908
## 65  3.872559 2689.160
## 66  4.488083 2164.522
## 67  4.106572 4279.567
## 68  5.051623 2930.209
## 69  3.461763 1852.001
## 70  3.360349 2849.457
## 71  4.250258 2652.802
## 72  3.692308 2482.656
## 73  4.553410 2051.219
## 74  3.548427 3447.362
## 75  4.934241 4292.168
## 76  4.234070 2339.384
## 77  4.300254 2101.768
## 78  3.125823 2191.100
## 79  4.152119 2135.786
## 80  3.276835 3913.229
## 81  3.302747 2560.761
## 82  3.454210 3152.597
## 83  4.114118 2196.473
## 84  4.552326 3133.348
## 85  4.334137 3873.096
## 86  4.058218 3741.068
## 87  3.940869 2104.090
## 88  4.470942 2444.529
## 89  4.117407 1977.117
## 90  4.807402 2785.855
## 91  3.653297 2740.802
## 92  4.161058 2503.700
## 93  3.690854 2370.007
## 94  4.809622 3645.611
## 95  4.132198 2270.054
## 96  5.154699 5058.470
## 97  3.861643 3698.126
## 98  4.766635 3439.725
## 99  4.396186 2578.238
## 100 4.777534 2718.430
## 101 4.495264 3723.055
## 102 3.133959 4129.042
## 103 4.860966 2637.532
## 104 3.946045 2001.054
## 105 5.118423 2073.155
## 106 5.117117 2238.360
## 107 4.060051 2984.024
## 108 3.640565 4455.648
## 109 4.729996 2072.907
## 110 4.737542 2652.956
## 111 4.704166 2774.454
## 112 4.335353 2144.585
## 113 4.254654 2174.699
## 114 4.638566 2478.609
## 115 4.070322 2186.622
## 116 4.162337 2808.315
## 117 4.822683 2573.053
## 118 3.577309 2628.536
## 119 4.110664 5343.201
## 120 3.867476 4427.671
## 121 4.001038 2148.108
## 122 4.334558 4736.605
## 123 4.297502 2554.833
## 124 3.967524 2008.221
## 125 3.516298 2060.169
## 126 3.902655 2488.998
## 127 3.904121 2404.743
## 128 3.823555 2017.601
## 129 3.660194 4896.295
## 130 3.952123 2837.081
## 131 4.211726 2376.801
## 132 3.532272 2167.758
## 133 3.399819 2542.336
## 134 4.173322 2162.927
## 135 3.503461 2169.673
## 136 3.167978 2123.147
## 137 3.613914 2330.988
## 138 4.491129 2268.783
## 139 4.314092 2080.220
## 140 4.215413 2781.726
## 141 3.180071 2059.538
## 142 3.203514 2770.430
## 143 4.333835 2167.273
## 144 4.565551 1763.771
## 145 3.908674 1955.303
## 146 3.527174 2369.084
## 147 4.942973 2524.568
## 148 3.879809 2189.996
## 149 3.459215 2048.494
## 150 3.172457 2340.583
## 151 4.483192 2454.203
## 152 3.800255 3541.578
## 153 3.626330 2762.476
## 154 4.035050 3177.189
## 155 3.840267 2116.081
## 156 4.753384 3313.067
## 157 3.431559 1899.708
## 158 2.826184 2919.579
## 159 3.158703 1882.941
## 160 3.523655 3469.147
## 161 3.514983 3311.837
## 162 3.631032 3296.365
## 163 3.262348 2810.696
## 164 4.393525 2481.258
## 165 3.355367 2435.825
## 166 3.844892 2093.997
## 167 4.318246 1885.746
## 168 4.393900 2640.379
## 169 4.371072 3891.472
## 170 4.159192 2461.988
## 171 2.701924 4795.636
## 172 3.417140 1740.902
## 173 4.030304 2808.991
## 174 4.754211 3559.758
## 175 3.319058 1790.239
## 176 3.872403 1783.813
## 177 3.919742 3156.526
## 178 3.837824 2606.250
## 179 2.796731 3470.584
## 180 3.362904 2493.198
## 181 3.810677 2092.856
## 182 3.312405 2299.952
## 183 3.053515 1975.111
## 184 2.935757 2119.314
## 185 4.304832 1816.594
## 186 3.894868 2283.195
## 187 4.465461 3054.412
## 188 3.389987 2948.810
## 189 2.861640 1990.853
## 190 3.103442 1868.165
## 191 4.107103 2032.774
## 192 3.239965 2028.968
## 193 3.384856 3437.657
## 194 4.365772 4254.933
## 195 4.239918 2711.464
## 196 3.672759 3665.804
## 197 4.111265 3499.734
## 198 4.276710 4295.901
## 199 4.169718 2623.651
## 200 4.726821 2440.381

Removing abnormal values from the dataset

nrow(subset_dataset)
## [1] 200
subset_dataset = filter(subset_dataset,duration > 40)
nrow(subset_dataset)
## [1] 197
subset_dataset = filter(subset_dataset,speed_ground > 30 & speed_ground <140)
nrow(subset_dataset)
## [1] 196
subset_dataset = filter(subset_dataset,speed_air>30 & speed_air <140)
nrow(subset_dataset)
## [1] 196
subset_dataset = filter(subset_dataset,height >= 6)
nrow(subset_dataset)
## [1] 196
subset_dataset = filter(subset_dataset,distance < 6000)
nrow(subset_dataset)
## [1] 195

To check further for any negative values

sum(subset_dataset<0) 
## Warning in Ops.factor(left, right): '<' not meaningful for factors
## [1] NA
subset_dataset
##     ï..aircraft  duration no_pasg speed_ground speed_air    height
## 1        boeing  98.47909      53    107.91568 109.32838 27.418924
## 2        boeing 125.73330      69    101.65559 102.85141 27.804716
## 3        boeing  72.28963      54     93.39176  92.86956 32.223489
## 4        boeing 187.59955      58     94.03641  96.19646 33.661226
## 5        boeing 233.80250      69    104.80843 103.86846 43.882732
## 6        boeing 163.90650      55    119.38046 120.44471 38.558536
## 7        boeing 126.54029      70     94.78123  91.14207 39.476299
## 8        boeing 112.90010      53     98.18041  99.13583 28.152991
## 9        boeing  86.82891      62     91.71454  92.87485 28.773729
## 10       boeing 140.23631      65    118.74200 119.40215 19.856192
## 11       boeing 130.46356      52    116.71343 117.65650 36.195527
## 12       boeing  93.52863      61     90.33190  90.11101 42.408190
## 13       boeing 202.54628      65     93.61520  95.32244 18.586453
## 14       boeing 194.67245      63     95.73291  97.18505 47.586622
## 15       boeing  79.99931      64    100.17254 100.26067 48.602825
## 16       boeing 121.10832      63    101.04739 101.72214 40.038554
## 17       boeing 116.98454      67    122.75656 123.88257 30.216568
## 18       boeing 154.06174      63     94.63081  93.93528 41.423375
## 19       boeing 107.12014      60     93.89934  93.18624 26.470877
## 20       boeing 161.89247      72    129.26492 128.41773 33.948999
## 21       boeing 130.48885      68     94.37662  92.15346 19.574381
## 22       boeing 130.42435      60    111.88831 110.20458 10.255225
## 23       boeing  83.51501      44     95.06873  96.08420 17.376660
## 24       boeing 180.14354      65     91.00027  91.58605 17.641254
## 25       boeing 218.02088      61     98.20617  96.03340 24.531204
## 26       boeing 133.55693      72     94.27133  92.87774 33.046424
## 27       boeing 156.80569      47     95.32258  94.21516 30.270100
## 28       boeing 205.87361      62    113.99631 110.65992 34.443425
## 29       boeing 125.22795      58     99.16859  96.92801 36.694347
## 30       boeing 153.78655      58    109.53851 109.38230 12.990661
## 31       boeing 108.34193      58    108.13311 108.50090 42.952396
## 32       boeing 163.08537      61    106.67585 104.44716 18.847638
## 33       boeing 151.87842      57     91.50821  90.50332 17.087228
## 34       boeing 131.74744      61    105.06368 107.44169 25.443920
## 35       boeing 124.78661      68    106.12024 104.13468 42.895160
## 36       boeing  99.15687      59     93.25356  93.47108 25.763979
## 37       boeing 150.30400      60     95.82178  96.55238 27.403567
## 38       boeing  95.29773      52     92.76937  91.07250 35.463228
## 39       boeing 150.39249      46    112.10344 111.43507 19.715772
## 40       boeing 209.10635      58    124.56986 125.98691 40.101122
## 41       boeing  65.69551      64     92.64536  94.73526 23.529869
## 42       boeing 127.99133      59    114.29273 113.86394 25.468139
## 43       boeing 100.97740      57     91.22413  90.00286 45.024392
## 44       boeing  78.45566      70    107.98596 109.45813 19.703121
## 45       boeing 217.92742      59     96.37331  97.10336 29.911516
## 46       boeing 114.76272      49    107.13152 107.51990 25.200025
## 47       boeing 244.15893      54    102.86234 104.43771 27.615830
## 48       boeing 113.36296      56    113.96403 113.74609 44.735463
## 49       boeing 197.17730      58    113.88914 113.44548 33.455376
## 50       boeing 120.82453      57    102.05412 101.33561 20.834550
## 51       boeing 147.75443      46    110.14590 110.60412 25.817053
## 52       boeing 287.00252      53     91.39993  93.34317 26.329235
## 53       boeing 139.41387      61     93.27329  93.49604 21.128504
## 54       boeing 211.08978      54     89.95089  91.11934 33.658158
## 55       boeing 154.99002      66    108.99642 108.36091 15.538766
## 56       boeing 128.93811      79    106.93389 108.42651 30.457709
## 57       boeing 197.54635      68    126.66918 127.96414 23.764231
## 58       boeing 232.79386      56    123.95687 122.18668 26.367547
## 59       boeing 154.19447      66    107.05909 108.17747 27.407951
## 60       boeing  95.46378      57     90.82324  92.91770 40.490463
## 61       boeing 104.86600      59     90.20736  90.79071 28.275040
## 62       boeing 107.33618      64     99.02079  97.33032 32.890789
## 63       boeing 182.20102      61    104.29513 103.09644 32.659534
## 64       boeing 190.94950      53    100.58975  98.33931 18.835041
## 65       boeing 272.03906      59    118.92272 120.39704 15.049349
## 66       boeing 206.16697      58    104.66394 104.70414 38.214350
## 67       boeing 130.21785      56     93.54933  90.76800 16.292894
## 68       boeing 222.28989      63    101.52331 101.11892 27.158311
## 69       boeing 159.85144      61    107.30146 105.91314 15.326207
## 70       boeing 260.03402      46     91.65670  93.05483 44.601461
## 71       boeing 169.84419      59     91.78849  91.27691 31.441321
## 72       boeing 189.66294      46    105.68599 107.65427 36.485676
## 73       boeing 277.17601      52    119.65394 120.19232 25.182763
## 74       boeing 205.92345      59     92.09829  92.16903 44.697092
## 75       boeing 107.73178      64     93.74599  94.40577 29.612945
## 76       boeing 202.68866      69     90.94389  90.53335 39.461285
## 77       boeing  96.94122      70     94.03049  94.52062 23.594477
## 78       boeing 164.23895      59    113.02952 113.17469 38.348270
## 79       boeing 149.22418      60     99.47419 101.09512 19.852904
## 80       boeing 142.13800      61    105.10045 103.35311 28.633774
## 81       boeing 175.29995      62     89.53340  90.47672 39.563714
## 82       boeing 127.22258      59    107.61448 107.87262 31.388204
## 83       boeing 124.48006      60    114.48072 114.69029 45.077666
## 84       boeing 109.45172      66    117.64059 112.26495 35.910036
## 85       boeing 233.42754      65     92.48929  94.52436 20.912577
## 86       boeing 169.83635      63     93.98511  96.26242 29.633599
## 87       boeing 106.51409      64     92.88591  92.64579 20.386141
## 88       boeing  79.70586      75    106.74612 106.73318 18.346202
## 89       boeing 152.57631      60    101.44035 101.69323 23.452540
## 90       boeing 174.60690      48    100.27343  98.71605 25.320302
## 91       boeing 155.00793      43     92.13091  93.67582 35.186989
## 92       boeing 136.95960      57     95.22782  94.20363 22.603042
## 93       boeing 154.52460      67    129.30718 127.59332 23.978497
## 94       boeing  89.35808      55    111.20255 110.68408 41.852413
## 95       boeing 195.28768      52    111.12793 109.82162 28.883346
## 96       boeing  75.01276      60     99.37869  99.94451 33.945667
## 97       boeing 204.95501      64     95.67754  99.11260 41.444766
## 98       boeing 167.61572      56    110.99011 109.75179 58.081790
## 99       boeing 166.10453      48    116.59249 118.01142 13.263240
## 100      boeing 102.41984      66    104.03291 102.84676 27.833615
## 101      boeing  79.27589      55     90.25381  90.36740 40.279043
## 102      boeing 197.87679      59     88.68758  90.73047 38.027849
## 103      boeing 176.25513      60     93.06721  94.97020 35.551604
## 104      boeing 126.04012      57    105.71922 105.10448 37.325700
## 105      boeing  99.19386      60    119.67749 123.04933 27.558025
## 106      boeing  72.50494      60     93.14475  91.58630 28.311008
## 107      boeing 163.60834      60     97.50272  99.43391 34.082267
## 108      boeing 128.88757      63    102.54307 104.62440 28.788569
## 109      boeing  87.73641      67     92.40024  92.42514 34.107757
## 110      boeing 224.74613      59     91.22207  92.75258 31.363682
## 111      boeing 121.93412      52     99.85309 100.66156 17.884148
## 112      boeing 193.72629      61     91.51151  93.20778 29.836885
## 113      boeing  92.45029      49    101.54350 101.84980 18.169394
## 114      boeing 106.10805      69     97.17487  98.63772 38.441153
## 115      boeing  63.32952      52    132.78468 132.91146 18.177030
## 116      boeing  99.68150      61    121.83714 120.95341 33.184597
## 117      boeing 212.29018      46     89.53371  90.62618 35.494743
## 118      boeing 153.83445      61    126.83928 126.11865 20.547834
## 119      airbus 132.46942      80    100.01055 100.89168 41.033011
## 120      airbus  93.95293      58     96.87869  98.08588 29.178095
## 121      airbus  99.14806      63     97.09691  96.91374 33.144246
## 122      airbus 112.87150      60    104.45540 103.67154 23.783587
## 123      airbus 148.49500      53     99.87452  98.72406 39.520426
## 124      airbus 217.12308      66     94.81426  97.63134 33.058366
## 125      airbus 131.73110      60    131.03518 131.33795 28.277966
## 126      airbus 160.39282      55    103.27582 105.18710 54.198540
## 127      airbus 122.73330      68     94.35155  97.56674 45.457866
## 128      airbus 123.30242      41     97.56820  96.97844 38.409193
## 129      airbus  45.50278      58    107.28767 105.68512 21.833564
## 130      airbus 113.37605      52     98.89157 100.52806 33.573007
## 131      airbus 247.49599      66    100.75477 100.83679 19.028711
## 132      airbus 193.12008      59     96.19656  98.11607 42.307732
## 133      airbus 249.89360      70     99.06971  98.87142 36.195843
## 134      airbus 108.72207      64     99.81738 100.30990 16.215281
## 135      airbus 145.17027      67    109.61058 107.31454 27.894764
## 136      airbus 223.95233      56     99.32504  99.39736 36.782683
## 137      airbus 123.18315      63    106.92923 106.76025 26.927860
## 138      airbus  77.46403      66    103.31639  98.12993 20.116604
## 139      airbus 184.61819      65     95.61697  95.01136 23.278395
## 140      airbus 168.79553      47     92.90759  95.76298 23.784897
## 141      airbus 140.41824      61    100.08904 100.51143 35.489405
## 142      airbus 157.16729      48    101.83850 103.63497 23.011622
## 143      airbus  55.91944      71     98.67330  98.93870 40.214749
## 144      airbus 190.79171      58     93.67228  95.09882 33.630979
## 145      airbus 207.39498      73    104.70011 107.78666  9.697216
## 146      airbus 151.67842      68    100.64167 102.11015 32.977374
## 147      airbus 214.72721      65    114.64797 114.16252 35.640282
## 148      airbus 199.33501      63    106.32542 105.11007 42.972776
## 149      airbus 199.91969      48    109.30116 109.55663 33.066514
## 150      airbus 139.31381      44     99.59684  99.16027 35.187030
## 151      airbus  84.37515      49    112.18972 112.19018 30.202559
## 152      airbus 177.25965      63     98.59362  97.48393 22.126151
## 153      airbus 192.58242      60    110.40812 110.03857 39.817281
## 154      airbus 173.77141      65     94.74180  95.28745 38.731918
## 155      airbus 158.53503      62    118.51898 117.65423 25.785069
## 156      airbus 145.77939      52    111.67392 111.33236 36.042803
## 157      airbus 194.68890      61    113.81884 113.57055 33.466774
## 158      airbus 157.97521      56    109.18165 108.23199 21.249105
## 159      airbus 201.18798      54     99.01740  98.22192 39.319647
## 160      airbus 121.91996      65    108.14498 106.70400 21.444463
## 161      airbus  95.84732      62     96.92270  99.83695 21.418855
## 162      airbus 149.33131      62     98.72752  98.14793 16.097139
## 163      airbus 191.42502      66     98.26399  99.96063 45.148967
## 164      airbus 140.67120      48    120.45476 118.67260 30.351507
## 165      airbus 220.30837      57    101.13020 101.80643 32.952280
## 166      airbus 137.58573      66    126.24430 127.93711 35.175701
## 167      airbus  71.56955      65     95.78227  96.31288 27.686330
## 168      airbus 170.11618      54    112.82932 108.21624 35.479682
## 169      airbus 163.67501      55    113.02073 114.87786 28.637640
## 170      airbus  85.68192      56     97.34540  96.17500 19.239272
## 171      airbus 110.58282      62     99.69191  97.49079 24.088743
## 172      airbus 150.60053      49    111.23656 109.85430 42.832497
## 173      airbus 239.99222      68    104.19586 104.96261 27.317381
## 174      airbus 140.45311      75    120.41895 118.48470 31.263446
## 175      airbus 123.07246      62    106.07949 105.31303 32.780367
## 176      airbus 130.85088      63     97.37950  96.72959 22.499126
## 177      airbus 186.09732      53     98.43812  98.56170 48.847023
## 178      airbus 162.71456      54     98.18733  96.51504 29.625193
## 179      airbus 154.23623      65    102.87894 100.66931 24.347516
## 180      airbus 156.01336      72     96.41315  96.12697 20.472816
## 181      airbus 122.33507      56     99.55913  98.87575 35.561255
## 182      airbus 124.69702      51    109.78499 110.56965 10.099991
## 183      airbus 182.64550      69    105.88725 107.52804 35.286189
## 184      airbus 161.23109      62    100.63019 100.87746 20.288655
## 185      airbus 164.83945      62     93.39940  95.57055 25.826906
## 186      airbus 127.30610      60     99.68960  99.45920 28.970864
## 187      airbus 157.57858      64    101.37497 101.35383 21.405236
## 188      airbus 130.31912      58    110.76702 112.53178 50.765799
## 189      airbus 175.51443      49    125.21230 125.13855 22.524779
## 190      airbus 141.88878      60    103.86693 105.55937 38.127302
## 191      airbus 147.71753      67    114.84661 113.17086 58.227800
## 192      airbus 220.05713      61    120.55794 118.28818 15.665658
## 193      airbus  98.50031      66    123.31053 124.39077 22.327176
## 194      airbus 264.59337      55    102.74650 102.41247 38.534021
## 195      airbus 149.36036      67     98.02641  99.42169 40.993053
##        pitch distance
## 1   4.043515 3369.836
## 2   4.117432 2987.804
## 3   3.818276 2128.708
## 4   4.636185 2304.858
## 5   3.245098 3213.985
## 6   3.701449 4524.279
## 7   3.594936 2182.221
## 8   3.987471 2586.665
## 9   3.305888 2313.336
## 10  4.646266 4217.129
## 11  3.894352 4240.094
## 12  4.415128 2259.844
## 13  4.160108 1987.817
## 14  3.732112 2526.475
## 15  5.055818 2771.131
## 16  3.899869 2830.438
## 17  3.213703 4807.880
## 18  4.757853 2342.773
## 19  3.850436 2157.419
## 20  4.139951 5381.959
## 21  4.636507 1995.366
## 22  4.511726 3164.468
## 23  3.201149 2183.798
## 24  4.407987 1838.568
## 25  4.380465 2149.557
## 26  3.785795 2351.071
## 27  3.645135 2233.049
## 28  3.873845 3405.351
## 29  4.227166 2556.595
## 30  3.987957 3188.268
## 31  4.625702 3545.253
## 32  3.509450 2850.706
## 33  3.674610 1780.110
## 34  5.310678 3062.065
## 35  4.036322 2924.841
## 36  4.419372 2047.697
## 37  4.115288 2206.675
## 38  4.234651 1960.400
## 39  4.504393 3479.133
## 40  4.648428 5147.410
## 41  5.256831 2022.732
## 42  5.138243 3668.888
## 43  4.103694 2187.235
## 44  4.762115 3184.326
## 45  4.552148 2217.831
## 46  4.679503 3011.380
## 47  4.675239 2792.971
## 48  3.937906 4017.785
## 49  4.233058 3785.654
## 50  3.985369 2498.817
## 51  4.725850 3435.392
## 52  4.658435 2020.273
## 53  4.155737 2191.327
## 54  4.285029 2110.291
## 55  4.548028 3097.065
## 56  4.842149 3203.319
## 57  2.993151 5031.386
## 58  4.061951 4483.860
## 59  4.227419 3158.878
## 60  5.005951 2272.097
## 61  4.723400 1880.295
## 62  4.377685 2405.908
## 63  3.872559 2689.160
## 64  4.488083 2164.522
## 65  4.106572 4279.567
## 66  5.051623 2930.209
## 67  3.461763 1852.001
## 68  3.360349 2849.457
## 69  4.250258 2652.802
## 70  3.692308 2482.656
## 71  4.553410 2051.219
## 72  3.548427 3447.362
## 73  4.934241 4292.168
## 74  4.234070 2339.384
## 75  4.300254 2101.768
## 76  3.125823 2191.100
## 77  4.152119 2135.786
## 78  3.276835 3913.229
## 79  3.302747 2560.761
## 80  3.454210 3152.597
## 81  4.114118 2196.473
## 82  4.552326 3133.348
## 83  4.334137 3873.096
## 84  4.058218 3741.068
## 85  3.940869 2104.090
## 86  4.470942 2444.529
## 87  4.117407 1977.117
## 88  4.807402 2785.855
## 89  3.653297 2740.802
## 90  4.161058 2503.700
## 91  3.690854 2370.007
## 92  4.132198 2270.054
## 93  5.154699 5058.470
## 94  3.861643 3698.126
## 95  4.766635 3439.725
## 96  4.396186 2578.238
## 97  4.777534 2718.430
## 98  4.495264 3723.055
## 99  3.133959 4129.042
## 100 4.860966 2637.532
## 101 3.946045 2001.054
## 102 5.118423 2073.155
## 103 5.117117 2238.360
## 104 4.060051 2984.024
## 105 3.640565 4455.648
## 106 4.729996 2072.907
## 107 4.737542 2652.956
## 108 4.704166 2774.454
## 109 4.335353 2144.585
## 110 4.254654 2174.699
## 111 4.638566 2478.609
## 112 4.070322 2186.622
## 113 4.822683 2573.053
## 114 3.577309 2628.536
## 115 4.110664 5343.201
## 116 3.867476 4427.671
## 117 4.001038 2148.108
## 118 4.334558 4736.605
## 119 4.297502 2554.833
## 120 3.967524 2008.221
## 121 3.516298 2060.169
## 122 3.902655 2488.998
## 123 3.904121 2404.743
## 124 3.823555 2017.601
## 125 3.660194 4896.295
## 126 3.952123 2837.081
## 127 4.211726 2376.801
## 128 3.532272 2167.758
## 129 3.399819 2542.336
## 130 3.503461 2169.673
## 131 3.167978 2123.147
## 132 3.613914 2330.988
## 133 4.491129 2268.783
## 134 4.314092 2080.220
## 135 4.215413 2781.726
## 136 3.180071 2059.538
## 137 3.203514 2770.430
## 138 4.333835 2167.273
## 139 4.565551 1763.771
## 140 3.908674 1955.303
## 141 3.527174 2369.084
## 142 4.942973 2524.568
## 143 3.879809 2189.996
## 144 3.459215 2048.494
## 145 3.172457 2340.583
## 146 4.483192 2454.203
## 147 3.800255 3541.578
## 148 3.626330 2762.476
## 149 4.035050 3177.189
## 150 3.840267 2116.081
## 151 4.753384 3313.067
## 152 3.431559 1899.708
## 153 2.826184 2919.579
## 154 3.158703 1882.941
## 155 3.523655 3469.147
## 156 3.514983 3311.837
## 157 3.631032 3296.365
## 158 3.262348 2810.696
## 159 4.393525 2481.258
## 160 3.355367 2435.825
## 161 3.844892 2093.997
## 162 4.318246 1885.746
## 163 4.393900 2640.379
## 164 4.371072 3891.472
## 165 4.159192 2461.988
## 166 2.701924 4795.636
## 167 3.417140 1740.902
## 168 4.030304 2808.991
## 169 4.754211 3559.758
## 170 3.319058 1790.239
## 171 3.872403 1783.813
## 172 3.919742 3156.526
## 173 3.837824 2606.250
## 174 2.796731 3470.584
## 175 3.362904 2493.198
## 176 3.810677 2092.856
## 177 3.312405 2299.952
## 178 3.053515 1975.111
## 179 2.935757 2119.314
## 180 4.304832 1816.594
## 181 3.894868 2283.195
## 182 4.465461 3054.412
## 183 3.389987 2948.810
## 184 2.861640 1990.853
## 185 3.103442 1868.165
## 186 4.107103 2032.774
## 187 3.239965 2028.968
## 188 3.384856 3437.657
## 189 4.365772 4254.933
## 190 4.239918 2711.464
## 191 3.672759 3665.804
## 192 4.111265 3499.734
## 193 4.276710 4295.901
## 194 4.169718 2623.651
## 195 4.726821 2440.381

Copying the subset to the old dataset

Dataset1 = subset_dataset
nrow(Dataset1)
## [1] 195

Observations:

  1. There were around 600 missing values for speed_air

  2. 3 abnormal values for duration.

  3. 1 abnormal value for speed_ground.

  4. 1 abnormal value for height.

Chapter 3 : Data Visualization Using R

Plotting Distance against given predictor variables

  1. Distance vs Duration
ggplot(data = Dataset1, mapping = aes(x = duration, y = distance)) + geom_point()

  1. Distance vs no_pasg
ggplot(data = Dataset1, mapping = aes(x = no_pasg, y = distance)) + geom_point()

  1. Distance vs speed_ground
ggplot(data = Dataset1, mapping = aes(x = speed_ground, y = distance)) + geom_point()

  1. Distance vs speed_air
ggplot(data = Dataset1, mapping = aes(x = speed_air, y = distance)) + geom_point()

  1. Distance vs height
ggplot(data = Dataset1, mapping = aes(x = height, y = distance)) + geom_point()

  1. Distance vs pitch
ggplot(data = Dataset1, mapping = aes(x = pitch, y = distance)) + geom_point()

Resetting the column name of “i..aircraft” to “aircraft”

colnames(Dataset1)[1] <- "aircraft"
  1. Distance vs aircraft
ggplot(data = Dataset1, mapping = aes(x = aircraft , y = distance)) + geom_point()

Plotting Correlation Matrix

correlation <- cor(Dataset1[,2:8])
round(correlation, 2)
##              duration no_pasg speed_ground speed_air height pitch distance
## duration         1.00   -0.07         0.02      0.04   0.07 -0.06     0.05
## no_pasg         -0.07    1.00         0.00      0.00  -0.01 -0.04    -0.03
## speed_ground     0.02    0.00         1.00      0.99  -0.10 -0.06     0.93
## speed_air        0.04    0.00         0.99      1.00  -0.09 -0.05     0.94
## height           0.07   -0.01        -0.10     -0.09   1.00 -0.03     0.06
## pitch           -0.06   -0.04        -0.06     -0.05  -0.03  1.00     0.03
## distance         0.05   -0.03         0.93      0.94   0.06  0.03     1.00

Observations:

We can see a strong correlation between distance and speed_ground(0.93), distance and speed_air(0.94), speed_air and speed_ground(0.99)

Chapter 4: Model Fitting

creating a linear model

Model=lm(distance~aircraft+duration+no_pasg+speed_ground+speed_air+height+pitch,data = Dataset1)

Getting Model Summary

summary(Model)
## 
## Call:
## lm(formula = distance ~ aircraft + duration + no_pasg + speed_ground + 
##     speed_air + height + pitch, data = Dataset1)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -287.36  -85.69   11.25   83.50  359.85 
## 
## Coefficients:
##                  Estimate Std. Error t value Pr(>|t|)    
## (Intercept)    -6229.6000   161.7147 -38.522   <2e-16 ***
## aircraftboeing   437.9428    21.2621  20.597   <2e-16 ***
## duration           0.1276     0.2039   0.626    0.532    
## no_pasg           -1.9812     1.3780  -1.438    0.152    
## speed_ground      -3.5464     6.4160  -0.553    0.581    
## speed_air         85.5469     6.5221  13.117   <2e-16 ***
## height            13.6756     1.0386  13.168   <2e-16 ***
## pitch            -13.4897    18.6077  -0.725    0.469    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 134.5 on 187 degrees of freedom
## Multiple R-squared:  0.9747, Adjusted R-squared:  0.9738 
## F-statistic:  1030 on 7 and 187 DF,  p-value: < 2.2e-16

Observations:

From the above summary we can see that aircraft, speed_air and height show a significant value and hence are considered for modelling. Therefore, Landing Distance = -6229.6 + 437.9428 * aircraftboeing + 85.5469 * speed_air + 13..6756 * height This model covers 97.38 % of the data which is inferred from R-Squared value and it is considering only boieng aircraft.

Chapter 5 : Modelling for each Aircraft

Splitting the aircraft type into boeing and airbus and building the model.

boeingdata = filter(Dataset1,aircraft== 'boeing')
nrow(boeingdata)
## [1] 118
model_boeing<-lm(distance~duration+no_pasg+speed_ground+speed_air+height+pitch,data = boeingdata)
summary(model_boeing)
## 
## Call:
## lm(formula = distance ~ duration + no_pasg + speed_ground + speed_air + 
##     height + pitch, data = boeingdata)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -300.52  -81.44   -0.90   79.13  338.10 
## 
## Coefficients:
##                Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  -5517.0309   192.2178 -28.702  < 2e-16 ***
## duration         0.1884     0.2430   0.775    0.440    
## no_pasg         -0.5819     1.7843  -0.326    0.745    
## speed_ground    -2.0530     8.1325  -0.252    0.801    
## speed_air       83.8793     8.2148  10.211  < 2e-16 ***
## height          13.8645     1.3093  10.589  < 2e-16 ***
## pitch          -97.7307    23.0082  -4.248 4.51e-05 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 128.7 on 111 degrees of freedom
## Multiple R-squared:   0.98,  Adjusted R-squared:  0.9789 
## F-statistic:   905 on 6 and 111 DF,  p-value: < 2.2e-16
airbusdata = filter(Dataset1,aircraft== 'airbus')
nrow(airbusdata)
## [1] 77
model_airbus<-lm(distance~duration+no_pasg+speed_ground+speed_air+height+pitch,data = airbusdata)
summary(model_airbus)
## 
## Call:
## lm(formula = distance ~ duration + no_pasg + speed_ground + speed_air + 
##     height + pitch, data = airbusdata)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -190.80  -77.22    1.91   81.02  318.28 
## 
## Coefficients:
##                Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  -6.715e+03  2.440e+02 -27.519  < 2e-16 ***
## duration     -1.269e-04  2.994e-01   0.000    1.000    
## no_pasg      -2.087e+00  1.820e+00  -1.146    0.256    
## speed_ground -9.355e+00  8.573e+00  -1.091    0.279    
## speed_air     9.172e+01  8.848e+00  10.367 8.75e-16 ***
## height        1.329e+01  1.398e+00   9.512 3.07e-14 ***
## pitch         1.147e+02  2.577e+01   4.449 3.17e-05 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 116.1 on 70 degrees of freedom
## Multiple R-squared:  0.9751, Adjusted R-squared:  0.973 
## F-statistic:   457 on 6 and 70 DF,  p-value: < 2.2e-16

Observation:

  1. Boeing data covers 97.89 % of the data.
  2. It shows speed_air, height and pitch as significant variables with p-value less than 0.05.
  3. Airbus data covers 97.3% of the data.
  4. Airbus also shows speed_air, height and pitch as significant variables with p-value less than 0.05
  5. Thus, the overall make of an aircraft affects the landing distance.