solution
x <- c(5.6, 8.8, 6.3, 12.4, 7, 14.8, 7.7, 18.2, 8.4, 20.8)
m <- matrix(x, ncol=2, byrow = T)
df <- data.frame(m)
(lm_df <- lm(df$X2 ~., df))
##
## Call:
## lm(formula = df$X2 ~ ., data = df)
##
## Coefficients:
## (Intercept) X1
## -14.800 4.257
summary(lm_df)
##
## Call:
## lm(formula = df$X2 ~ ., data = df)
##
## Residuals:
## 1 2 3 4 5
## -0.24 0.38 -0.20 0.22 -0.16
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -14.8000 1.0365 -14.28 0.000744 ***
## X1 4.2571 0.1466 29.04 8.97e-05 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.3246 on 3 degrees of freedom
## Multiple R-squared: 0.9965, Adjusted R-squared: 0.9953
## F-statistic: 843.1 on 1 and 3 DF, p-value: 8.971e-05
ggplot(lm_df, aes(df$X2, df$X1)) + geom_point() + stat_smooth(method="lm")
The equation is:
\(y = 4.2571x − 14.800\)
\(f(x, y) = 24x - 6xy^2 - 8y^3\)
solution:
\(\frac{df}{dx} = 24 - 6y^2\)
\(\frac{df}{dy} = - 12xy - 24y^2\)
\(\frac{df}{dx} = 24 - 6y^2 = 0 => 4 - y^2 = 0\)
\(\frac{df}{dx} = -12xy - 24y^2 = 0 => -xy - 2y^2 = 0\)
\(for(4, -2)f(x, y) = 24 * 4 - 6 * 4 * (-2)^2 - 8(-2)^3 = 64\)
\(for(4, -2)f(x, y) = 24 * (-4) - (6 * 4 * (-2)^2) - 8(-2)^3 = 64\)
=> the saddle points: (-4, 2)
xf = function(x,y){
f = 24*x - 6*x*y^2 - 8*y^3
return(c(x,y,f))
}
print(rbind(xf(-4,2),xf(4,-2)))
## [,1] [,2] [,3]
## [1,] -4 2 -64
## [2,] 4 -2 64
Solution:
\(R(x,y)=x(81−21x+17y)+y(40+11x−23y)\)
\(R(x,y)= −21x^2 + 81x + 28xy + 40y −23y^2\)
x <- 2.3
y <- 4.1
print(-21 * x^2 + 81 * x + 28 * x * y + 40 * y - 23 * y^2)
## [1] 116.62
solution:
\(x + y = 96\) since \(y = 96 − x\) =>
\(C(x, y) = x^2 − 50 ∗ x + 4636\)
we have \(x = 75 => y = 21\)
\(\int{\int{e^{8x + 3y}dA}}; R:2\le x\le 4 \text{ and $2\le y\le 4$}\)
Write your answer in exact form without decimals.
solution:
with R =>
1/24*((exp(32)+exp(16))*(exp(12) - exp(6)))
## [1] 5.341561e+17
\(\int_2^4{\int_2^4{e^{8xe^{3y}}dxdy}}\)
\(\int{e^{8x}dx}*\int{e^{3y}}dy\)
\(=\frac{1}{8}e^{8x}|^4_2 * \frac{1}{3}e^{3y}|_2^4\)
\(=\frac{1}{24}e^{8x}|^4_2 * e^{3y}|^4_2\)
\(=\frac{1}{24}(e^{32}-e^{16})(e^{12}-e^6)\)
=>\(A = 534, 156, 100, 000, 000, 000\)