DATA 606 Final Project

Introduction

Research question
About Company: Dream Housing Finance company deals in all home loans. They have presence across all urban, semi urban and rural areas. Customer first apply for home loan after that company validates the customer eligibility for loan.
Problem: Company wants to automate the loan eligibility process (real time) based on customer detail provided while filling online application form. These details are Gender, Marital Status, Education, Number of Dependents, Income, Loan Amount, Credit History and others. To automate this process, they have given a problem to identify the customers segments, those are eligible for loan amount so that they can specifically target these customers.

Data

This data source was given as part of a data science challenge or practice problem. I downloaded the data and loaded to my git-hub account. I will read the data into R from my git-hub account using raw link of the csv file using read.csv command.

Source: https://datahack.analyticsvidhya.com/contest/practice-problem-loan-prediction-iii/

##    Loan_ID Gender Married Dependents    Education Self_Employed
## 1 LP001002   Male      No          0     Graduate            No
## 2 LP001003   Male     Yes          1     Graduate            No
## 3 LP001005   Male     Yes          0     Graduate           Yes
## 4 LP001006   Male     Yes          0 Not Graduate            No
## 5 LP001008   Male      No          0     Graduate            No
## 6 LP001011   Male     Yes          2     Graduate           Yes
##   ApplicantIncome CoapplicantIncome LoanAmount Loan_Amount_Term
## 1            5849                 0         NA              360
## 2            4583              1508        128              360
## 3            3000                 0         66              360
## 4            2583              2358        120              360
## 5            6000                 0        141              360
## 6            5417              4196        267              360
##   Credit_History Property_Area Loan_Status
## 1              1         Urban           Y
## 2              1         Rural           N
## 3              1         Urban           Y
## 4              1         Urban           Y
## 5              1         Urban           Y
## 6              1         Urban           Y
## [1] 614  13

There are 614 cases and 13 columns. Each case or observation represent a loan application.

Exploratory Data Analysis & Inference

Dependent Variable

Loan_Status is the response variable. It is a categorical variable which gives us yes and no for loan approval status.

Independent Variable

I have few independent variables that i will consider for now. I will choose the most appropiate variables after doing exploratory analysis.

Applicants took a loan before. Credit history is the variable which answers that.
Applicants with higher incomes. So, we might look at the applicant income variable.
Applicants with higher education.
Gender of the applicant.
Number of Dependens an applicant has.
Property area contains location information of the loan property applied for.

Relevant summary statistics

## 'data.frame':    614 obs. of  13 variables:
##  $ Loan_ID          : Factor w/ 614 levels "LP001002","LP001003",..: 1 2 3 4 5 6 7 8 9 10 ...
##  $ Gender           : Factor w/ 3 levels "","Female","Male": 3 3 3 3 3 3 3 3 3 3 ...
##  $ Married          : Factor w/ 3 levels "","No","Yes": 2 3 3 3 2 3 3 3 3 3 ...
##  $ Dependents       : Factor w/ 5 levels "","0","1","2",..: 2 3 2 2 2 4 2 5 4 3 ...
##  $ Education        : Factor w/ 2 levels "Graduate","Not Graduate": 1 1 1 2 1 1 2 1 1 1 ...
##  $ Self_Employed    : Factor w/ 3 levels "","No","Yes": 2 2 3 2 2 3 2 2 2 2 ...
##  $ ApplicantIncome  : int  5849 4583 3000 2583 6000 5417 2333 3036 4006 12841 ...
##  $ CoapplicantIncome: num  0 1508 0 2358 0 ...
##  $ LoanAmount       : int  NA 128 66 120 141 267 95 158 168 349 ...
##  $ Loan_Amount_Term : int  360 360 360 360 360 360 360 360 360 360 ...
##  $ Credit_History   : int  1 1 1 1 1 1 1 0 1 1 ...
##  $ Property_Area    : Factor w/ 3 levels "Rural","Semiurban",..: 3 1 3 3 3 3 3 2 3 2 ...
##  $ Loan_Status      : Factor w/ 2 levels "N","Y": 2 1 2 2 2 2 2 1 2 1 ...
##      Loan_ID       Gender    Married   Dependents        Education  
##  LP001002:  1         : 13      :  3     : 15     Graduate    :480  
##  LP001003:  1   Female:112   No :213   0 :345     Not Graduate:134  
##  LP001005:  1   Male  :489   Yes:398   1 :102                       
##  LP001006:  1                          2 :101                       
##  LP001008:  1                          3+: 51                       
##  LP001011:  1                                                       
##  (Other) :608                                                       
##  Self_Employed ApplicantIncome CoapplicantIncome   LoanAmount   
##     : 32       Min.   :  150   Min.   :    0     Min.   :  9.0  
##  No :500       1st Qu.: 2878   1st Qu.:    0     1st Qu.:100.0  
##  Yes: 82       Median : 3812   Median : 1188     Median :128.0  
##                Mean   : 5403   Mean   : 1621     Mean   :146.4  
##                3rd Qu.: 5795   3rd Qu.: 2297     3rd Qu.:168.0  
##                Max.   :81000   Max.   :41667     Max.   :700.0  
##                                                  NA's   :22     
##  Loan_Amount_Term Credit_History     Property_Area Loan_Status
##  Min.   : 12      Min.   :0.0000   Rural    :179   N:192      
##  1st Qu.:360      1st Qu.:1.0000   Semiurban:233   Y:422      
##  Median :360      Median :1.0000   Urban    :202              
##  Mean   :342      Mean   :0.8422                              
##  3rd Qu.:360      3rd Qu.:1.0000                              
##  Max.   :480      Max.   :1.0000                              
##  NA's   :14       NA's   :50

Data Cleaning

LoanAmount variable has 22 Null Value -Loan_Amount_Term has 14 null values -Credit_History has 50 Null values Data set observation.

##      Loan_ID Gender Married Dependents    Education Self_Employed
## 1   LP001002   Male      No          0     Graduate            No
## 17  LP001034   Male      No          1 Not Graduate            No
## 20  LP001041   Male     Yes          0     Graduate              
## 25  LP001052   Male     Yes          1     Graduate              
## 31  LP001091   Male     Yes          1     Graduate              
## 36  LP001106   Male     Yes          0     Graduate            No
## 37  LP001109   Male     Yes          0     Graduate            No
## 43  LP001123   Male     Yes          0     Graduate            No
## 45  LP001136   Male     Yes          0 Not Graduate           Yes
## 46  LP001137 Female      No          0     Graduate            No
## 64  LP001213   Male     Yes          1     Graduate            No
## 74  LP001250   Male     Yes         3+ Not Graduate            No
## 80  LP001264   Male     Yes         3+ Not Graduate           Yes
## 82  LP001266   Male     Yes          1     Graduate           Yes
## 84  LP001273   Male     Yes          0     Graduate            No
## 87  LP001280   Male     Yes          2 Not Graduate            No
## 96  LP001326   Male      No          0     Graduate              
## 103 LP001350   Male     Yes                Graduate            No
## 104 LP001356   Male     Yes          0     Graduate            No
## 113 LP001391   Male     Yes          0 Not Graduate            No
## 114 LP001392 Female      No          1     Graduate           Yes
## 118 LP001405   Male     Yes          1     Graduate            No
## 126 LP001443 Female      No          0     Graduate            No
## 128 LP001449   Male      No          0     Graduate            No
## 130 LP001465   Male     Yes          0     Graduate            No
## 131 LP001469   Male      No          0     Graduate           Yes
## 157 LP001541   Male     Yes          1     Graduate            No
## 166 LP001574   Male     Yes          0     Graduate            No
## 182 LP001634   Male      No          0     Graduate            No
## 188 LP001643   Male     Yes          0     Graduate            No
## 198 LP001669 Female      No          0 Not Graduate            No
## 199 LP001671 Female     Yes          0     Graduate            No
## 203 LP001682   Male     Yes         3+ Not Graduate            No
## 220 LP001734 Female     Yes          2     Graduate            No
## 224 LP001749   Male     Yes          0     Graduate            No
## 233 LP001770   Male      No          0 Not Graduate            No
## 237 LP001786   Male     Yes          0     Graduate              
## 238 LP001788 Female      No          0     Graduate           Yes
## 260 LP001864   Male     Yes         3+ Not Graduate            No
## 261 LP001865   Male     Yes          1     Graduate            No
## 280 LP001908 Female     Yes          0 Not Graduate            No
## 285 LP001922   Male     Yes          0     Graduate            No
## 306 LP001990   Male      No          0 Not Graduate            No
## 310 LP001998   Male     Yes          2 Not Graduate            No
## 314 LP002008   Male     Yes          2     Graduate           Yes
## 318 LP002036   Male     Yes          0     Graduate            No
## 319 LP002043 Female      No          1     Graduate            No
## 323 LP002054   Male     Yes          2 Not Graduate            No
## 324 LP002055 Female      No          0     Graduate            No
## 336 LP002106   Male     Yes                Graduate           Yes
## 339 LP002113 Female      No         3+ Not Graduate            No
## 349 LP002137   Male     Yes          0     Graduate            No
## 364 LP002178   Male     Yes          0     Graduate            No
## 368 LP002188   Male      No          0     Graduate            No
## 378 LP002223   Male     Yes          0     Graduate            No
## 388 LP002243   Male     Yes          0 Not Graduate            No
## 393 LP002263   Male     Yes          0     Graduate            No
## 396 LP002272   Male     Yes          2     Graduate            No
## 412 LP002319   Male     Yes          0     Graduate              
## 422 LP002357 Female      No          0 Not Graduate            No
## 424 LP002362   Male     Yes          1     Graduate            No
## 436 LP002393 Female                        Graduate            No
## 438 LP002401   Male     Yes          0     Graduate            No
## 445 LP002424   Male     Yes          0     Graduate            No
## 450 LP002444   Male      No          1 Not Graduate           Yes
## 452 LP002447   Male     Yes          2 Not Graduate            No
## 461 LP002478            Yes          0     Graduate           Yes
## 474 LP002522 Female      No          0     Graduate           Yes
## 480 LP002533   Male     Yes          2     Graduate            No
## 491 LP002560   Male      No          0 Not Graduate            No
## 492 LP002562   Male     Yes          1 Not Graduate            No
## 498 LP002588   Male     Yes          0     Graduate            No
## 504 LP002618   Male     Yes          1 Not Graduate            No
## 507 LP002624   Male     Yes          0     Graduate            No
## 525 LP002697   Male      No          0     Graduate            No
## 531 LP002717   Male     Yes          0     Graduate            No
## 534 LP002729   Male      No          1     Graduate            No
## 545 LP002757 Female     Yes          0 Not Graduate            No
## 551 LP002778   Male     Yes          2     Graduate           Yes
## 552 LP002784   Male     Yes          1 Not Graduate            No
## 557 LP002794 Female      No          0     Graduate            No
## 566 LP002833   Male     Yes          0 Not Graduate            No
## 584 LP002898   Male     Yes          1     Graduate            No
## 601 LP002949 Female      No         3+     Graduate              
## 606 LP002960   Male     Yes          0 Not Graduate            No
##     ApplicantIncome CoapplicantIncome LoanAmount Loan_Amount_Term
## 1              5849                 0         NA              360
## 17             3596                 0        100              240
## 20             2600              3500        115               NA
## 25             3717              2925        151              360
## 31             4166              3369        201              360
## 36             2275              2067         NA              360
## 37             1828              1330        100               NA
## 43             2400                 0         75              360
## 45             4695                 0         96               NA
## 46             3410                 0         88               NA
## 64             4945                 0         NA              360
## 74             4755                 0         95               NA
## 80             3333              2166        130              360
## 82             2395                 0         NA              360
## 84             6000              2250        265              360
## 87             3333              2000         99              360
## 96             6782                 0         NA              360
## 103           13650                 0         NA              360
## 104            4652              3583         NA              360
## 113            3572              4114        152               NA
## 114            7451                 0         NA              360
## 118            2214              1398         85              360
## 126            3692                 0         93              360
## 128            3865              1640         NA              360
## 130            6080              2569        182              360
## 131           20166                 0        650              480
## 157            6000                 0        160              360
## 166            3707              3166        182               NA
## 182            1916              5063         67              360
## 188            2383              2138         58              360
## 198            1907              2365        120               NA
## 199            3416              2816        113              360
## 203            3992                 0         NA              180
## 220            4283              2383        127              360
## 224            7578              1010        175               NA
## 233            3189              2598        120               NA
## 237            5746                 0        255              360
## 238            3463                 0        122              360
## 260            4931                 0        128              360
## 261            6083              4250        330              360
## 280            4100                 0        124              360
## 285           20667                 0         NA              360
## 306            2000                 0         NA              360
## 310            7667                 0        185              360
## 314            5746                 0        144               84
## 318            2058              2134         88              360
## 319            3541                 0        112              360
## 323            3601              1590         NA              360
## 324            3166              2985        132              360
## 336            5503              4490         70               NA
## 339            1830                 0         NA              360
## 349            6333              4583        259              360
## 364            3013              3033         95              300
## 368            5124                 0        124               NA
## 378            4310                 0        130              360
## 388            3010              3136         NA              360
## 393            2583              2115        120              360
## 396            3276               484        135              360
## 412            6256                 0        160              360
## 422            2720                 0         80               NA
## 424            7250              1667        110               NA
## 436           10047                 0         NA              240
## 438            2213              1125         NA              360
## 445            7333              8333        175              300
## 450            2769              1542        190              360
## 452            1958              1456         60              300
## 461            2083              4083        160              360
## 474            2500                 0         93              360
## 480            2947              1603         NA              360
## 491            2699              2785         96              360
## 492            5333              1131        186              360
## 498            4625              2857        111               12
## 504            4050              5302        138              360
## 507           20833              6667        480              360
## 525            4680              2087         NA              360
## 531            1025              5500        216              360
## 534           11250                 0        196              360
## 545            3017               663        102              360
## 551            6633                 0         NA              360
## 552            2492              2375         NA              360
## 557            2667              1625         84              360
## 566            4467                 0        120              360
## 584            1880                 0         61              360
## 601             416             41667        350              180
## 606            2400              3800         NA              180
##     Credit_History Property_Area Loan_Status
## 1                1         Urban           Y
## 17              NA         Urban           Y
## 20               1         Urban           Y
## 25              NA     Semiurban           N
## 31              NA         Urban           N
## 36               1         Urban           Y
## 37               0         Urban           N
## 43              NA         Urban           Y
## 45               1         Urban           Y
## 46               1         Urban           Y
## 64               0         Rural           N
## 74               0     Semiurban           N
## 80              NA     Semiurban           Y
## 82               1     Semiurban           Y
## 84              NA     Semiurban           N
## 87              NA     Semiurban           Y
## 96              NA         Urban           N
## 103              1         Urban           Y
## 104              1     Semiurban           Y
## 113              0         Rural           N
## 114              1     Semiurban           Y
## 118             NA         Urban           Y
## 126             NA         Rural           Y
## 128              1         Rural           Y
## 130             NA         Rural           N
## 131             NA         Urban           Y
## 157             NA         Rural           Y
## 166              1         Rural           Y
## 182             NA         Rural           N
## 188             NA         Rural           Y
## 198              1         Urban           Y
## 199             NA     Semiurban           Y
## 203              1         Urban           N
## 220             NA     Semiurban           Y
## 224              1     Semiurban           Y
## 233              1         Rural           Y
## 237             NA         Urban           N
## 238             NA         Urban           Y
## 260             NA     Semiurban           N
## 261             NA         Urban           Y
## 280             NA         Rural           Y
## 285              1         Rural           N
## 306              1         Urban           N
## 310             NA         Rural           Y
## 314             NA         Rural           Y
## 318             NA         Urban           Y
## 319             NA     Semiurban           Y
## 323              1         Rural           Y
## 324             NA         Rural           Y
## 336              1     Semiurban           Y
## 339              0         Urban           N
## 349             NA     Semiurban           Y
## 364             NA         Urban           Y
## 368              0         Rural           N
## 378             NA     Semiurban           Y
## 388              0         Urban           N
## 393             NA         Urban           Y
## 396             NA     Semiurban           Y
## 412             NA         Urban           Y
## 422              0         Urban           N
## 424              0         Urban           N
## 436              1     Semiurban           Y
## 438              1         Urban           Y
## 445             NA         Rural           Y
## 450             NA     Semiurban           N
## 452             NA         Urban           Y
## 461             NA     Semiurban           Y
## 474             NA         Urban           Y
## 480              1         Urban           N
## 491             NA     Semiurban           Y
## 492             NA         Urban           Y
## 498             NA         Urban           Y
## 504             NA         Rural           N
## 507             NA         Urban           Y
## 525              1     Semiurban           N
## 531             NA         Rural           Y
## 534             NA     Semiurban           N
## 545             NA     Semiurban           Y
## 551              0         Rural           N
## 552              1         Rural           Y
## 557             NA         Urban           Y
## 566             NA         Rural           Y
## 584             NA         Rural           N
## 601             NA         Urban           N
## 606              1         Urban           N

Visual Analysis

Property Area:

##     Rural Semiurban     Urban 
##       155       209       165
## Warning: Ignoring unknown parameters: binwidth, bins, pad

Histogram of Property Area shows that Loan approval is more into Semiurban area than Rural and Urban. Urban area has lowest loan approval. Loan rejection is lowest in Rural area. Semiurban & Urban has same loan rejection

Coapplicant Income:

##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##       0       0    1086    1542    2232   33837

Histogram shows that low income peoples are mainly applying for loans and number of loan rejection is more in the lowest income segment

Education:

##     Graduate Not Graduate 
##          421          108
## Warning: Ignoring unknown parameters: binwidth, bins, pad

Based on loan approval flag shows that - loan approval rate for graduate is more than non graduate

Number of Dependents:

##       0   1   2  3+ 
##  12 295  85  92  45
## Warning: Ignoring unknown parameters: binwidth, bins, pad

Loan approval shows that -People having no dependents have maximum loan approval and rejection count

Gender:

##        Female   Male 
##     12     95    422
## Warning: Ignoring unknown parameters: binwidth, bins, pad

Male applicant has higher loan approval and rejection count than female applicant. So this looks to be an influencing factor

Logestic Regression

Logistic Regression, in simple terms, predicts the probability of occurrence of an event by fitting data to a logit function. Regression coefficients represent the mean change in the response variable for one unit of change in the predictor variable while holding other predictors in the model constant. This type of models is part of a larger class of algorithms known as Generalized Linear Model or GLM.

Logistic Regression Model

## 
## Call:
## glm(formula = Loan_Status ~ ., family = "binomial", data = traindf)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -2.4568  -0.3237   0.4808   0.6846   2.5320  
## 
## Coefficients:
##                          Estimate Std. Error z value Pr(>|z|)    
## (Intercept)             1.081e+01  6.111e+02   0.018  0.98589    
## GenderFemale            2.149e-01  8.331e-01   0.258  0.79642    
## GenderMale              4.826e-01  7.696e-01   0.627  0.53058    
## MarriedNo              -1.411e+01  6.111e+02  -0.023  0.98158    
## MarriedYes             -1.357e+01  6.111e+02  -0.022  0.98228    
## Dependents0             8.100e-01  1.192e+00   0.679  0.49685    
## Dependents1             4.394e-01  1.203e+00   0.365  0.71489    
## Dependents2             8.817e-01  1.210e+00   0.729  0.46605    
## Dependents3+            1.233e+00  1.272e+00   0.970  0.33226    
## EducationNot Graduate  -5.371e-01  3.382e-01  -1.588  0.11231    
## Self_EmployedNo        -5.074e-01  6.199e-01  -0.819  0.41301    
## Self_EmployedYes       -5.537e-01  6.876e-01  -0.805  0.42069    
## ApplicantIncome        -2.080e-06  2.857e-05  -0.073  0.94194    
## CoapplicantIncome      -2.636e-05  5.068e-05  -0.520  0.60296    
## LoanAmount             -6.392e-04  1.964e-03  -0.325  0.74483    
## Loan_Amount_Term       -1.527e-03  2.373e-03  -0.643  0.51993    
## Credit_History          4.069e+00  5.172e-01   7.868 3.61e-15 ***
## Property_AreaSemiurban  1.118e+00  3.413e-01   3.275  0.00105 ** 
## Property_AreaUrban     -1.863e-02  3.247e-01  -0.057  0.95426    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 521.94  on 422  degrees of freedom
## Residual deviance: 367.84  on 404  degrees of freedom
## AIC: 405.84
## 
## Number of Fisher Scoring iterations: 13

Most significant variables are

  • Credit_History
  • Property_AreaSemiurban
##          4         14         18         30         39         40 
## 0.69760640 0.69986730 0.03188838 0.90789019 0.65999881 0.81105889 
##         44         47         49         53         56         60 
## 0.92402335 0.75153841 0.04776744 0.85421239 0.93258247 0.70629934 
##         63         65         72         73         92         93 
## 0.04549148 0.09082769 0.88357643 0.89554146 0.93808251 0.72017125 
##         97        116        119        132        135        136 
## 0.90314301 0.78440827 0.79510727 0.70625984 0.88500588 0.93577745 
##        139        142        145        147        149        155 
## 0.10536622 0.70286357 0.84810181 0.77654341 0.62762369 0.71928099 
##        162        165        169        186        202        205 
## 0.79001026 0.84873773 0.10145128 0.91085452 0.11944255 0.89099349 
##        210        212        215        217        225        241 
## 0.88368575 0.24711231 0.79305940 0.80247664 0.92817051 0.80011242 
##        248        257        259        263        267        268 
## 0.68634336 0.02426589 0.77828094 0.86601522 0.92977344 0.09214989 
##        278        284        287        294        296        301 
## 0.80618558 0.65243304 0.85567225 0.01150891 0.91177597 0.03806886 
##        313        317        321        326        332        333 
## 0.66587059 0.93345498 0.92540217 0.03422976 0.88567936 0.52956330 
##        341        342        346        348        351        356 
## 0.77973624 0.66735082 0.92283297 0.71254337 0.92337455 0.52365996 
##        366        387        389        391        403        407 
## 0.58981379 0.80962140 0.79604799 0.78316299 0.82022176 0.69822926 
##        408        418        421        428        429        430 
## 0.53660313 0.70253745 0.80776644 0.93264766 0.81363255 0.66224382 
##        435        440        469        470        473        481 
## 0.71257139 0.64147570 0.90788824 0.79791876 0.95272422 0.52148145 
##        487        490        496        499        502        510 
## 0.04488503 0.71638938 0.91203650 0.89753808 0.85544079 0.57156303 
##        511        516        521        541        546        548 
## 0.58802588 0.85392337 0.89178412 0.89247082 0.79893656 0.70126172 
##        567        573        574        576        585        587 
## 0.71665907 0.79875462 0.86176548 0.87242612 0.04506690 0.80311795 
##        596        598        602        610 
## 0.59456155 0.05596149 0.79042980 0.66355147
##            Predictedvalue
## Actualvalue FALSE TRUE
##           N    14   19
##           Y     2   71
## [1] 0.8207547

Accuracy: 82.07%

Decision Tree

Decision trees create a set of binary splits on the predictor variables in order to create a tree that can be used to classify new observations into one of two groups. Here, we will be using classical trees. The algorithm of this model is the following:

Choose the predictor variable that best splits the data into two groups;

Separate the data into these two groups;

Repeat these steps until a subgroup contains fewer than a minimum number of observations;

To classify a case, run it down the tree to a terminal node, and assign it the model outcome value assigned in the previous step.

##           CP nsplit rel error    xerror       xstd
## 1 0.40769231      0 1.0000000 1.0000000 0.07299480
## 2 0.01346154      1 0.5923077 0.5923077 0.06104778
## 3 0.01000000      5 0.5384615 0.6384615 0.06282970

##       Predicted
## Actual   N   Y
##      N  49  64
##      Y   5 252
##     CP nsplit rel error xerror       xstd
## 1 0.42      0      1.00   1.00 0.11709266
## 2 0.01      1      0.58   0.58 0.09738725

Accuracy: 84% Results show better performance than the logistic model.

Random Forest

## 
## Call:
##  randomForest(formula = Loan_Status ~ Credit_History + Education +      Self_Employed + Property_Area + LoanAmount + ApplicantIncome,      data = trainnew, importance = TRUE, na.action = na.roughfix) 
##                Type of random forest: classification
##                      Number of trees: 500
## No. of variables tried at each split: 2
## 
##         OOB estimate of  error rate: 18.65%
## Confusion matrix:
##    N   Y class.error
## N 53  60  0.53097345
## Y  9 248  0.03501946
##                 MeanDecreaseGini
## Credit_History         41.890029
## Education               3.328873
## Self_Employed           4.921181
## Property_Area           8.718707
## LoanAmount             29.449887
## ApplicantIncome        29.320255
##       Predicted
## Actual   N   Y
##      N  24  26
##      Y   5 104

Here is the accuracy of the model: 80.50%

Conclusion

After analyzing the data from the loan prediction dataset, the data shows that Credit History and Property_AreaSemiurban are most significant variables to predict whether a loan application will approved or not. We can predict the loan approval using different models. Here, we got 82.07% accuracy for logistic regresission, 84% accuracy for Decesion tree and 80.50% accuracy for random forest.

The dataset is relatively small. A larger dataset will help to improve the model accuracy.

We can conclude that the company should target customers with Credit history and customer who lives in Semiurban area.

Forhad Akbar

12/04/2019