getwd()
[1] "C:/Users/Asus/Desktop"
read.delim("Istanbul_Goztepe_Mean_Temperature_1839-2013_Monthly_data.txt")
read.table("Istanbul_Goztepe_Mean_Temperature_1839-2013_Monthly_data.txt")
read.csv2("Istanbul_Goztepe_Mean_Temperature_1839-2013_Monthly_data.txt")
temp_1 <- read.table("Istanbul_Goztepe_Mean_Temperature_1839-2013_Monthly_data.txt")
temp_1
NA
getwd()
[1] "C:/Users/Asus/Desktop"
path_my_file <- read.table("Istanbul_Goztepe_Mean_Temperature_1839-2013_Monthly_data.txt")
path_my_file
temp_2 <- path_my_file$temp
temp_2
NULL
#WAY 3 - IMPORT THE FILE #16. Use “Import Datase” #17. Assign your data as “temp_3”
temp_3 <- read.table("Istanbul_Goztepe_Mean_Temperature_1839-2013_Monthly_data.txt")
temp_3
NA
#WAY 4 - DOWNLOAD THE FILE #18. Copy the LINK of data #19. Use your best read() function #20. Read the file with this function and LINK #21. Assign your data as “temp_4” #22. Choose your favorite " temp_1 or _2 or _3 or _4" and assign as just “temp”
read.table("Istanbul_Goztepe_Mean_Temperature_1839-2013_Monthly_data.txt")
temp_4 <- read.table("Istanbul_Goztepe_Mean_Temperature_1839-2013_Monthly_data.txt")
temp_4
temp_4 <- read.table("Istanbul_Goztepe_Mean_Temperature_1839-2013_Monthly_data.txt")
temp <- temp_4
temp
#PART-2 Play with the Data #Meet with the Data #1. Look at structure #2. Learn attributes and dimensions #3. Rename attributes
str(temp)
'data.frame': 175 obs. of 13 variables:
$ V1 : int 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 ...
$ V2 : num -999.9 4.3 6.6 -999.9 -999.9 ...
$ V3 : num -999.9 3.8 4.2 -999.9 -999.9 ...
$ V4 : num -999.9 4.3 4.9 -999.9 -999.9 ...
$ V5 : num -999.9 7.7 10.7 -999.9 -999.9 ...
$ V6 : num -999.9 16.6 15.5 -999.9 -999.9 ...
$ V7 : num -999.9 19 21.3 -999.9 -999.9 ...
$ V8 : num -999.9 24.5 -999.9 -999.9 -999.9 ...
$ V9 : num -999.9 22.7 -999.9 -999.9 -999.9 ...
$ V10: num -999.9 20.3 -999.9 -999.9 -999.9 ...
$ V11: num -999.9 15.7 -999.9 -999.9 -999.9 ...
$ V12: num -999.9 12.6 -999.9 -999.9 -999.9 ...
$ V13: num 6.9 3.7 -999.9 -999.9 -999.9 ...
dim(temp)
[1] 175 13
attributes(temp)
$names
[1] "V1" "V2" "V3" "V4" "V5" "V6" "V7" "V8" "V9" "V10" "V11" "V12"
[13] "V13"
$class
[1] "data.frame"
$row.names
[1] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
[19] 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36
[37] 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54
[55] 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72
[73] 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90
[91] 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108
[109] 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126
[127] 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144
[145] 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162
[163] 163 164 165 166 167 168 169 170 171 172 173 174 175
#Clear NA and Choose Colomn #4. Print “temp” #5. Delete rows which include NA ( na.omit() ) #6. Assign it as “temp_b” #7. Select summer season #8. Assign it as “temp_b_summer”
print(temp)
temp[temp==-999.9]<- NA
temp_b <- temp
temp_b <- na.omit(temp_b)
print(temp_b)
temp_new_summer <- temp_b
temp_new_summer
help (names)
names(temp_new_summer)[1] <- "june"
names(temp_new_summer)[2] <- "july"
names(temp_new_summer)[3] <- "august"
temp_new_summer
mean(temp_new_summer$"june")
[1] 1934.014
mean(temp_new_summer$"july")
[1] 5.611972
mean(temp_new_summer$"august")
[1] 5.658451
june_mean_temperature <- mean(temp_new_summer$"june")
july_mean_temperature <-mean(temp_new_summer$"july")
august_mean_temperature <- mean(temp_new_summer$"august")
#Use Condition Statements - if #9. Compare June Mean Temperature and July Mean Temperature #10. IF June Mean Temperature is LOWER than July then print “June has LOWER Mean Temperature.”
june_mean_temperature <- mean(temp_new_summer$"june")
july_mean_temperature <-mean(temp_new_summer$"july")
if(june_mean_temperature < july_mean_temperature){
print("june has LOVER Mean Temperature")
}else{
print("June has Hæ¼ã¹¤GHER Mean Temperature")
}
temp_new_summer
colMeans(temp_new_summer, na.rm = FALSE, dims = 1)
#Plot #13. Plot temperature for June #14. Add title and unit #15. Edit x-axis, which years are they ? #16. What about July and August ? Plot them. #17. Is there any strangeness thing, what do you think ? Compare three plots.
plot(temp_new_summer$"june")
plot(temp_new_summer$"july")
plot(temp_new_summer$"august")