aa

## [1] 100  23
##   IDAQ_1 IDAQ_3 IDAQ_4 IDAQ_5 IDAQ_6 IDAQ_7 IDAQ_9 IDAQ_10 IDAQ_11 IDAQ_12
## 1      3      3      1      1      5      5      5       1       5       1
## 2      4      1      3      3      2      2      2       1       3       4
## 3      3      2      2      4      3      3      3       1       2       1
## 4      1      2      4      2      4      4      1       5       1       1
## 5      1      1      2      1      3      4      5       3       2       4
## 6      4      2      4      5      2      1      2       5       3       3
##   IDAQ_14 IDAQ_15 IDAQ_16 IDAQ_17 IDAQ_18 IDAQ_19 IDAQ_20 IDAQ_22 IDAQ_23
## 1       5       1       5       3       1       3       5       3       1
## 2       4       3       4       4       1       3       1       2       3
## 3       2       4       4       4       1       4       1       4       2
## 4       5       3       5       1       1       1       5       2       4
## 5       2       4       4       1       3       1       2       3       4
## 6       3       1       3       3       1       3       1       2       1
##   IDAQ_24 IDAQ_25 IDAQ_26 IDAQ_27
## 1       3       3       5       5
## 2       3       1       2       1
## 3       2       1       2       3
## 4       4       4       4       5
## 5       1       4       2       2
## 6       3       2       4       2
## Minimum Rank Factor Analysis Output:
## 
## Factor Structure Matrix:
## 
##              IDAQ_1      IDAQ_3       IDAQ_4       IDAQ_5       IDAQ_6
## IDAQ_1   0.78422440 -0.09411032 -0.014641633  0.303967523 -0.275951861
## IDAQ_3  -0.09411032  0.65923785  0.484256842 -0.150305164  0.205446543
## IDAQ_4  -0.01464163  0.48425684  0.745463476  0.001286507  0.226425347
## IDAQ_5   0.30396752 -0.15030516  0.001286507  0.722380150 -0.268504432
## IDAQ_6  -0.27595186  0.20544654  0.226425347 -0.268504432  0.803996741
## IDAQ_7   0.06868662 -0.03974926 -0.079906239 -0.209274606  0.103070140
## IDAQ_9  -0.11715846  0.30012590  0.268400843 -0.339826192  0.281278591
## IDAQ_10  0.08930328 -0.02165727  0.003697077  0.109336487 -0.119403842
## IDAQ_11 -0.05852119  0.36746284  0.215147544  0.012259063  0.223999343
## IDAQ_12  0.45772876 -0.12491449 -0.046984080  0.397923605 -0.289035533
## IDAQ_14  0.23744093 -0.04363815  0.022572238  0.025466848 -0.040314005
## IDAQ_15 -0.27929423  0.10239678  0.007603907 -0.445921478  0.114245133
## IDAQ_16  0.31715617 -0.24763087 -0.155097959  0.058109511  0.038107098
## IDAQ_17  0.51677493 -0.10901050 -0.014811249  0.287793818 -0.447984479
## IDAQ_18 -0.07306737  0.31803302  0.345645165 -0.186330763  0.092975880
## IDAQ_19  0.50928570 -0.03046108 -0.031702993  0.328427123 -0.452084170
## IDAQ_20 -0.42222393  0.20193623  0.047967335 -0.295954614  0.507042141
## IDAQ_22  0.18837316 -0.08195516 -0.093162318  0.078728142 -0.080465821
## IDAQ_23 -0.25542274  0.34970123  0.293335653 -0.112869175  0.216531242
## IDAQ_24  0.09566385 -0.07368083 -0.051595202  0.182712721 -0.003553009
## IDAQ_25 -0.46964317  0.23898083  0.055769261 -0.371168521  0.442812557
## IDAQ_26  0.31224292 -0.20866213 -0.104696356  0.068414583 -0.105737797
## IDAQ_27 -0.19740277  0.38962094  0.320281324 -0.305511042  0.482487884
##                IDAQ_7      IDAQ_9       IDAQ_10      IDAQ_11     IDAQ_12
## IDAQ_1   0.0686866209 -0.11715846  0.0893032753 -0.058521190  0.45772876
## IDAQ_3  -0.0397492573  0.30012590 -0.0216572672  0.367462841 -0.12491449
## IDAQ_4  -0.0799062391  0.26840084  0.0036970769  0.215147544 -0.04698408
## IDAQ_5  -0.2092746058 -0.33982619  0.1093364865  0.012259063  0.39792360
## IDAQ_6   0.1030701397  0.28127859 -0.1194038424  0.223999343 -0.28903553
## IDAQ_7   0.7001974035  0.18169150 -0.1946127849 -0.095763870 -0.18081682
## IDAQ_9   0.1816915048  0.74949282 -0.0672879081  0.120131300 -0.21590105
## IDAQ_10 -0.1946127849 -0.06728791  0.5077967807 -0.040584621  0.13671722
## IDAQ_11 -0.0957638700  0.12013130 -0.0405846212  0.723863398 -0.16361493
## IDAQ_12 -0.1808168227 -0.21590105  0.1367172226 -0.163614935  0.64121619
## IDAQ_14  0.1719216431 -0.24017536  0.0384291311 -0.077122735  0.16977995
## IDAQ_15  0.0912856689  0.24550609 -0.0733170064 -0.032495003 -0.33489479
## IDAQ_16  0.1214608729 -0.10908091 -0.0356340941 -0.063389429  0.10215892
## IDAQ_17 -0.0588739096 -0.11775701  0.2279954245 -0.157219474  0.41949846
## IDAQ_18 -0.0003659451  0.24975473  0.0290180621  0.283823322 -0.01879822
## IDAQ_19 -0.0439775949 -0.02772731  0.0346212054  0.030755884  0.32629780
## IDAQ_20  0.2078704423  0.20093628 -0.1550890996  0.248456878 -0.38427142
## IDAQ_22  0.0415410825  0.06102951 -0.0008805267 -0.175186754  0.18224448
## IDAQ_23 -0.1412113204  0.17056461  0.0199599325  0.233219666 -0.06576360
## IDAQ_24  0.0151520326 -0.11020520  0.2082936470 -0.076767089  0.10499656
## IDAQ_25  0.0661172822  0.20201721 -0.0395727131  0.167000376 -0.43984379
## IDAQ_26  0.0889640399  0.07379297  0.2247186408 -0.007522726  0.11713687
## IDAQ_27  0.0573547131  0.43178369  0.0889410228  0.193723377 -0.26136104
##             IDAQ_14      IDAQ_15     IDAQ_16     IDAQ_17       IDAQ_18
## IDAQ_1   0.23744093 -0.279294228  0.31715617  0.51677493 -0.0730673742
## IDAQ_3  -0.04363815  0.102396781 -0.24763087 -0.10901050  0.3180330244
## IDAQ_4   0.02257224  0.007603907 -0.15509796 -0.01481125  0.3456451653
## IDAQ_5   0.02546685 -0.445921478  0.05810951  0.28779382 -0.1863307625
## IDAQ_6  -0.04031400  0.114245133  0.03810710 -0.44798448  0.0929758797
## IDAQ_7   0.17192164  0.091285669  0.12146087 -0.05887391 -0.0003659451
## IDAQ_9  -0.24017536  0.245506089 -0.10908091 -0.11775701  0.2497547340
## IDAQ_10  0.03842913 -0.073317006 -0.03563409  0.22799542  0.0290180621
## IDAQ_11 -0.07712274 -0.032495003 -0.06338943 -0.15721947  0.2838233217
## IDAQ_12  0.16977995 -0.334894794  0.10215892  0.41949846 -0.0187982200
## IDAQ_14  0.84521116 -0.196836358  0.35948318  0.24247911 -0.3358610391
## IDAQ_15 -0.19683636  0.533174308 -0.15628912 -0.23446308  0.1098627094
## IDAQ_16  0.35948318 -0.156289119  0.64745548  0.30842669 -0.1447137633
## IDAQ_17  0.24247911 -0.234463081  0.30842669  0.92785257 -0.0525688762
## IDAQ_18 -0.33586104  0.109862709 -0.14471376 -0.05256888  0.7878806451
## IDAQ_19  0.07126861 -0.236617652  0.15851952  0.56007639 -0.0210347161
## IDAQ_20 -0.06512358  0.035184710 -0.12506615 -0.37904353  0.0593462370
## IDAQ_22  0.13596058 -0.038031210  0.11463677  0.13169597 -0.1384778762
## IDAQ_23 -0.14142799  0.066572275 -0.18318193 -0.18368897  0.2841822551
## IDAQ_24  0.19611132 -0.005626330  0.04370943  0.14880200 -0.2489399144
## IDAQ_25 -0.17841524  0.234822830 -0.14861921 -0.56654154  0.1006728165
## IDAQ_26  0.30220462 -0.078376160  0.26087529  0.40236972 -0.1875325346
## IDAQ_27 -0.09610608  0.271539858 -0.01599894 -0.16328475  0.2565274486
##             IDAQ_19     IDAQ_20       IDAQ_22      IDAQ_23      IDAQ_24
## IDAQ_1   0.50928570 -0.42222393  0.1883731629 -0.255422739  0.095663854
## IDAQ_3  -0.03046108  0.20193623 -0.0819551612  0.349701230 -0.073680829
## IDAQ_4  -0.03170299  0.04796733 -0.0931623177  0.293335653 -0.051595202
## IDAQ_5   0.32842712 -0.29595461  0.0787281422 -0.112869175  0.182712721
## IDAQ_6  -0.45208417  0.50704214 -0.0804658215  0.216531242 -0.003553009
## IDAQ_7  -0.04397759  0.20787044  0.0415410825 -0.141211320  0.015152033
## IDAQ_9  -0.02772731  0.20093628  0.0610295085  0.170564609 -0.110205199
## IDAQ_10  0.03462121 -0.15508910 -0.0008805267  0.019959933  0.208293647
## IDAQ_11  0.03075588  0.24845688 -0.1751867539  0.233219666 -0.076767089
## IDAQ_12  0.32629780 -0.38427142  0.1822444844 -0.065763600  0.104996564
## IDAQ_14  0.07126861 -0.06512358  0.1359605820 -0.141427988  0.196111325
## IDAQ_15 -0.23661765  0.03518471 -0.0380312101  0.066572275 -0.005626330
## IDAQ_16  0.15851952 -0.12506615  0.1146367738 -0.183181935  0.043709426
## IDAQ_17  0.56007639 -0.37904353  0.1316959709 -0.183688965  0.148801995
## IDAQ_18 -0.02103472  0.05934624 -0.1384778762  0.284182255 -0.248939914
## IDAQ_19  0.92510344 -0.37024516  0.0117454542 -0.298154804  0.108565801
## IDAQ_20 -0.37024516  0.73639386 -0.0840900958  0.276391161 -0.029866031
## IDAQ_22  0.01174545 -0.08409010  0.4984351081  0.019707172  0.270893782
## IDAQ_23 -0.29815480  0.27639116  0.0197071721  0.584988390 -0.008798488
## IDAQ_24  0.10856580 -0.02986603  0.2708937823 -0.008798488  0.707128483
## IDAQ_25 -0.32667671  0.48606386 -0.2113612017  0.241653150  0.003118876
## IDAQ_26  0.30355805 -0.14781425  0.1781476157 -0.286332154  0.288789617
## IDAQ_27 -0.14690885  0.29214543 -0.0072896396  0.352582071  0.010514672
##              IDAQ_25      IDAQ_26     IDAQ_27
## IDAQ_1  -0.469643166  0.312242917 -0.19740277
## IDAQ_3   0.238980827 -0.208662129  0.38962094
## IDAQ_4   0.055769261 -0.104696356  0.32028132
## IDAQ_5  -0.371168521  0.068414583 -0.30551104
## IDAQ_6   0.442812557 -0.105737797  0.48248788
## IDAQ_7   0.066117282  0.088964040  0.05735471
## IDAQ_9   0.202017214  0.073792971  0.43178369
## IDAQ_10 -0.039572713  0.224718641  0.08894102
## IDAQ_11  0.167000376 -0.007522726  0.19372338
## IDAQ_12 -0.439843793  0.117136874 -0.26136104
## IDAQ_14 -0.178415239  0.302204616 -0.09610608
## IDAQ_15  0.234822830 -0.078376160  0.27153986
## IDAQ_16 -0.148619206  0.260875288 -0.01599894
## IDAQ_17 -0.566541538  0.402369723 -0.16328475
## IDAQ_18  0.100672816 -0.187532535  0.25652745
## IDAQ_19 -0.326676712  0.303558049 -0.14690885
## IDAQ_20  0.486063863 -0.147814254  0.29214543
## IDAQ_22 -0.211361202  0.178147616 -0.00728964
## IDAQ_23  0.241653150 -0.286332154  0.35258207
## IDAQ_24  0.003118876  0.288789617  0.01051467
## IDAQ_25  0.713031787 -0.254191501  0.39549517
## IDAQ_26 -0.254191501  0.620393130 -0.02124161
## IDAQ_27  0.395495170 -0.021241605  0.83931783
## 
## 
## Optimal Communalities:
## 
## X  1  0.7842 
## X  2  0.6592 
## X  3  0.7455 
## X  4  0.7224 
## X  5  0.8040 
## X  6  0.7002 
## X  7  0.7495 
## X  8  0.5078 
## X  9  0.7239 
## X 10  0.6412 
## X 11  0.8452 
## X 12  0.5332 
## X 13  0.6475 
## X 14  0.9279 
## X 15  0.7879 
## X 16  0.9251 
## X 17  0.7364 
## X 18  0.4984 
## X 19  0.5850 
## X 20  0.7071 
## X 21  0.7130 
## X 22  0.6204 
## X 23  0.8393 
## 
## 
##           Factor  1   Factor  2   Factor  3
## V  1      0.6480     -0.3038     -0.2012
## V  2     -0.4287     -0.5379     -0.0354
## V  3     -0.2859     -0.6021     -0.0466
## V  4      0.5295     -0.1597      0.2556
## V  5     -0.6180      0.0314     -0.3477
## V  6     -0.0872      0.2092     -0.4377
## V  7     -0.4245     -0.3138     -0.3028
## V  8      0.1656     -0.1726     -0.0372
## V  9     -0.3064     -0.3940      0.0017
## V 10      0.5747     -0.2434      0.1191
## V 11      0.3456      0.1093     -0.5241
## V 12     -0.3876      0.1100     -0.0727
## V 13      0.3321      0.0844     -0.4329
## V 14      0.7074     -0.3730     -0.1896
## V 15     -0.3435     -0.5386      0.1941
## V 16      0.5947     -0.4085     -0.0503
## V 17     -0.6085      0.1486     -0.2157
## V 18      0.2188      0.0245     -0.2514
## V 19     -0.4457     -0.3015      0.0821
## V 20      0.2127      0.0471     -0.3425
## V 21     -0.6852      0.1527     -0.0875
## V 22      0.4040     -0.0547     -0.4977
## V 23     -0.5553     -0.3547     -0.4050
## Warning in sqrt(d/k) * b: Recycling array of length 1 in array-vector arithmetic is deprecated.
##   Use c() or as.vector() instead.

## Warning in sqrt(d/k) * b: Recycling array of length 1 in array-vector arithmetic is deprecated.
##   Use c() or as.vector() instead.

## Warning in sqrt(d/k) * b: Recycling array of length 1 in array-vector arithmetic is deprecated.
##   Use c() or as.vector() instead.
## Warning in sqrt(d[i]/k) * b[, i]: Recycling array of length 1 in array-vector arithmetic is deprecated.
##   Use c() or as.vector() instead.

## Warning in sqrt(d[i]/k) * b[, i]: Recycling array of length 1 in array-vector arithmetic is deprecated.
##   Use c() or as.vector() instead.

## Warning in sqrt(d[i]/k) * b[, i]: Recycling array of length 1 in array-vector arithmetic is deprecated.
##   Use c() or as.vector() instead.

## Warning in sqrt(d[i]/k) * b[, i]: Recycling array of length 1 in array-vector arithmetic is deprecated.
##   Use c() or as.vector() instead.

## Warning in sqrt(d[i]/k) * b[, i]: Recycling array of length 1 in array-vector arithmetic is deprecated.
##   Use c() or as.vector() instead.

## Warning in sqrt(d[i]/k) * b[, i]: Recycling array of length 1 in array-vector arithmetic is deprecated.
##   Use c() or as.vector() instead.

## Warning in sqrt(d[i]/k) * b[, i]: Recycling array of length 1 in array-vector arithmetic is deprecated.
##   Use c() or as.vector() instead.

## Warning in sqrt(d[i]/k) * b[, i]: Recycling array of length 1 in array-vector arithmetic is deprecated.
##   Use c() or as.vector() instead.

## Warning in sqrt(d[i]/k) * b[, i]: Recycling array of length 1 in array-vector arithmetic is deprecated.
##   Use c() or as.vector() instead.

## Warning in sqrt(d[i]/k) * b[, i]: Recycling array of length 1 in array-vector arithmetic is deprecated.
##   Use c() or as.vector() instead.

## Warning in sqrt(d[i]/k) * b[, i]: Recycling array of length 1 in array-vector arithmetic is deprecated.
##   Use c() or as.vector() instead.

## Warning in sqrt(d[i]/k) * b[, i]: Recycling array of length 1 in array-vector arithmetic is deprecated.
##   Use c() or as.vector() instead.

## Warning in sqrt(d[i]/k) * b[, i]: Recycling array of length 1 in array-vector arithmetic is deprecated.
##   Use c() or as.vector() instead.

## Warning in sqrt(d[i]/k) * b[, i]: Recycling array of length 1 in array-vector arithmetic is deprecated.
##   Use c() or as.vector() instead.

## Warning in sqrt(d[i]/k) * b[, i]: Recycling array of length 1 in array-vector arithmetic is deprecated.
##   Use c() or as.vector() instead.

## Warning in sqrt(d[i]/k) * b[, i]: Recycling array of length 1 in array-vector arithmetic is deprecated.
##   Use c() or as.vector() instead.

## Warning in sqrt(d[i]/k) * b[, i]: Recycling array of length 1 in array-vector arithmetic is deprecated.
##   Use c() or as.vector() instead.

## Warning in sqrt(d[i]/k) * b[, i]: Recycling array of length 1 in array-vector arithmetic is deprecated.
##   Use c() or as.vector() instead.

## Warning in sqrt(d[i]/k) * b[, i]: Recycling array of length 1 in array-vector arithmetic is deprecated.
##   Use c() or as.vector() instead.

## Warning in sqrt(d[i]/k) * b[, i]: Recycling array of length 1 in array-vector arithmetic is deprecated.
##   Use c() or as.vector() instead.

## Warning in sqrt(d[i]/k) * b[, i]: Recycling array of length 1 in array-vector arithmetic is deprecated.
##   Use c() or as.vector() instead.

## Warning in sqrt(d[i]/k) * b[, i]: Recycling array of length 1 in array-vector arithmetic is deprecated.
##   Use c() or as.vector() instead.

## Warning in sqrt(d[i]/k) * b[, i]: Recycling array of length 1 in array-vector arithmetic is deprecated.
##   Use c() or as.vector() instead.

## Warning in sqrt(d[i]/k) * b[, i]: Recycling array of length 1 in array-vector arithmetic is deprecated.
##   Use c() or as.vector() instead.

## Warning in sqrt(d[i]/k) * b[, i]: Recycling array of length 1 in array-vector arithmetic is deprecated.
##   Use c() or as.vector() instead.

## Warning in sqrt(d[i]/k) * b[, i]: Recycling array of length 1 in array-vector arithmetic is deprecated.
##   Use c() or as.vector() instead.

## Warning in sqrt(d[i]/k) * b[, i]: Recycling array of length 1 in array-vector arithmetic is deprecated.
##   Use c() or as.vector() instead.
## HULL METHOD - CAF INDEX
## 
##         q      f          g       st
##         0      0.2509   253       0.0000 
##         1      0.4010   230       3.8330 
##         2*     0.4371   208       
##         3      0.4742   187       1.6631 
##         4      0.4947   167       0.0000 
## 
## Number of advised dimensions: 1 
## * Value outside the convex Hull 
## 
## -----------------------------------------------

## Estimated time for the analysis: less than a minute
## 
## Computing Parallel Analysis: Please wait 
## 
  |                                                                       
  |                                                                 |   0%
  |                                                                       
  |=======                                                          |  11%
  |                                                                       
  |==============                                                   |  22%
  |                                                                       
  |======================                                           |  33%
  |                                                                       
  |=============================                                    |  44%
  |                                                                       
  |====================================                             |  56%
  |                                                                       
  |===========================================                      |  67%
  |                                                                       
  |===================================================              |  78%
  |                                                                       
  |==========================================================       |  89%
  |                                                                       
  |=================================================================| 100%

## 
## Parallel Analysis (PA) based on Minimum Rank Factor Analysis
## 
## Adequacy of the Dispersion Matrix:
## 
## Determinant of the matrix     = 0.000475634672537
## Bartlett's statistic          =   692.4 (df =   253; P = 0.000000)
## Kaiser-Meyer-Olkin (KMO) test = 0.74909 (fair)
## 
## Implementation details:
## 
##   Correlation matrices analized:                Pearson correlation matrices
##   Number of random correlation matrices:        10
##   Method to obtain random correlation matrices: Permutation of the raw data
## 
## Item      Real-data        Mean of random   90 percentile of random
##           % of variance    % of variance    % of variance
## 
##    1       27.48**           9.99            10.50
##    2       11.63**           9.23             9.74
##    3       10.36**           8.62             9.28
##    4        7.37             7.90             8.30
##    5        6.67             7.45             7.77
##    6        5.43             6.91             7.10
##    7        4.59             6.36             6.50
##    8        4.22             5.84             6.05
##    9        3.49             5.44             5.57
##   10        3.28             5.05             5.28
##   11        3.04             4.64             4.86
##   12        2.58             4.13             4.23
##   13        2.06             3.79             4.02
##   14        1.64             3.24             3.45
##   15        1.44             2.80             3.08
##   16        1.33             2.42             2.56
##   17        1.17             2.00             2.26
##   18        0.99             1.60             1.83
##   19        0.72             1.17             1.42
##   20        0.24             0.71             1.01
##   21        0.16             0.42             0.60
##   22        0.12             0.28             0.38
##   23        0.00             0.00             0.00
## 
## **  Advised number of factors:   3
## 
## Computing time: 00:00:02

2019-12-05