imaging data pulled: 2019-12-04
clinical data pulled: 2019-12-04
code written: 2019-09-30
last ran: 2019-12-08
website: http://rpubs.com/navona/NM_LC_demo
github: https://github.com/navonacalarco/CurAge/blob/master/scripts/analysis/04_NM_ROI_LC_demoAnalysis.Rmd
Here we conduct a preliminary group-wise analysis of neuromelanin in the locus coeruleus (LC). We use data from the N=31 participants with neuromelanin scans as of 2019-12-08, including 16 patients with late-life depression (LLD) and 15 healthy controls (HC). I have not omitted participant SEN015 (that participant was excluded in earlier pilot analyses on the basis of an outlier value in the SN.)
We calculated the primary NM outcome variables reported in Chen (2014) (i.e., volume and CNR) in all slices in which the LC was visually apparent. Volume is a simple sum across all slices. CNR is a weighted average across all slices by volume.
LLD, n=16 | HC, n=15 | p | |
---|---|---|---|
Slice count | 1.81 (0.83) | 2.20 (0.86) | .213 |
Volume | 16.25 (7.88) | 15.79 (13.61) | .908 |
CNR | 5.14 (0.51) | 4.88 (0.35) | .106 |
The null results above are not an upshot of outliers or non-normalcy in slice count, or the two main outcome variables.
We want to look at the differences in volume / CNR (outcome variable) between sexes (predictor variable), as this will indicate if sex should be covaried for in the above analyses. If there are no significant differences in volume or CNR, sex should not be covaried for.
##
## Call:
## lm(formula = totalVolume ~ Sex, data = df)
##
## Residuals:
## Min 1Q Median 3Q Max
## -17.305 -5.219 -2.105 0.781 37.495
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 18.105 2.453 7.381 3.93e-08 ***
## SexM -5.372 3.943 -1.363 0.184
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 10.69 on 29 degrees of freedom
## Multiple R-squared: 0.06017, Adjusted R-squared: 0.02776
## F-statistic: 1.856 on 1 and 29 DF, p-value: 0.1835
Above, we see that the average volume for females is 18.11 and for males is slightly lower at 12.73. The p value for the dummy variable SexM
is not significant, suggesting that there is no statistical evidence of a difference in volume between sexes.
##
## Call:
## lm(formula = weightedCNR ~ Sex, data = df)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.87463 -0.20897 -0.08194 0.27036 1.31601
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 5.1208 0.1013 50.550 <2e-16 ***
## SexM -0.2796 0.1628 -1.717 0.0966 .
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.4416 on 29 degrees of freedom
## Multiple R-squared: 0.0923, Adjusted R-squared: 0.061
## F-statistic: 2.949 on 1 and 29 DF, p-value: 0.09661
Above, we see that the average CNR for females is 5.12 and for males is slightly lower at 4.84. The p value for the dummy variable SexM
is not significant, suggesting that there is no statistical evidence of a difference in CNR between sexes.
We want to look at the differences in volume / CNR (outcome variable) between age (predictor variable), as this will indicate if age should be covaried for in the above analyses. As there are no significant differences in volume or CNR, age should not be covaried for.
model <- lm(totalVolume ~ Age, data = df)
summary(model)
##
## Call:
## lm(formula = totalVolume ~ Age, data = df)
##
## Residuals:
## Min 1Q Median 3Q Max
## -16.261 -5.541 -3.713 3.573 34.528
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -15.0271 18.6350 -0.806 0.427
## Age 0.4457 0.2661 1.675 0.105
##
## Residual standard error: 10.53 on 29 degrees of freedom
## Multiple R-squared: 0.08821, Adjusted R-squared: 0.05677
## F-statistic: 2.806 on 1 and 29 DF, p-value: 0.1047
model <- lm(weightedCNR ~ Age, data = df)
summary(model)
##
## Call:
## lm(formula = weightedCNR ~ Age, data = df)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.79481 -0.33131 -0.02052 0.24945 1.27726
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 6.19276 0.78994 7.840 1.2e-08 ***
## Age -0.01694 0.01128 -1.502 0.144
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.4464 on 29 degrees of freedom
## Multiple R-squared: 0.07216, Adjusted R-squared: 0.04016
## F-statistic: 2.255 on 1 and 29 DF, p-value: 0.144
We want to know if the relationship between sex and SN volume / CNR differs between LLD and HC groups.
totalVolume ~ Sex * Diagnosis
#first, look at interaction with LLD as reference
summary(lm(data=df, totalVolume ~ Sex * Diagnosis))
##
## Call:
## lm(formula = totalVolume ~ Sex * Diagnosis, data = df)
##
## Residuals:
## Min 1Q Median 3Q Max
## -19.667 -5.974 -2.467 0.759 35.133
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 17.015 3.051 5.578 6.48e-06 ***
## SexM -4.082 7.045 -0.579 0.567
## DiagnosisHC 3.451 5.428 0.636 0.530
## SexM:DiagnosisHC -3.718 9.123 -0.408 0.687
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 11 on 27 degrees of freedom
## Multiple R-squared: 0.07407, Adjusted R-squared: -0.02881
## F-statistic: 0.72 on 3 and 27 DF, p-value: 0.5488
#now, look at interaction with HC as reference
df$Diagnosis_recode <- fct_rev(df$Diagnosis)
summary(lm(data=df, totalVolume ~ Sex * Diagnosis_recode))
##
## Call:
## lm(formula = totalVolume ~ Sex * Diagnosis_recode, data = df)
##
## Residuals:
## Min 1Q Median 3Q Max
## -19.667 -5.974 -2.467 0.759 35.133
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 20.467 4.490 4.558 9.99e-05 ***
## SexM -7.800 5.797 -1.346 0.190
## Diagnosis_recodeLLD -3.451 5.428 -0.636 0.530
## SexM:Diagnosis_recodeLLD 3.718 9.123 0.408 0.687
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 11 on 27 degrees of freedom
## Multiple R-squared: 0.07407, Adjusted R-squared: -0.02881
## F-statistic: 0.72 on 3 and 27 DF, p-value: 0.5488
weightedCNR ~ Sex * Diagnosis
#first, look at interaction with LLD as reference
summary(lm(data=df, weightedCNR ~ Sex * Diagnosis))
##
## Call:
## lm(formula = weightedCNR ~ Sex * Diagnosis, data = df)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.9495 -0.2313 -0.1130 0.2324 1.2411
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 5.1957 0.1241 41.861 <2e-16 ***
## SexM -0.2908 0.2866 -1.014 0.319
## DiagnosisHC -0.2372 0.2209 -1.074 0.292
## SexM:DiagnosisHC 0.1522 0.3712 0.410 0.685
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.4475 on 27 degrees of freedom
## Multiple R-squared: 0.132, Adjusted R-squared: 0.03553
## F-statistic: 1.368 on 3 and 27 DF, p-value: 0.2736
#now, look at interaction with HC as reference
summary(lm(data=df, weightedCNR ~ Sex * Diagnosis_recode))
##
## Call:
## lm(formula = weightedCNR ~ Sex * Diagnosis_recode, data = df)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.9495 -0.2313 -0.1130 0.2324 1.2411
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 4.9585 0.1827 27.141 <2e-16 ***
## SexM -0.1386 0.2359 -0.587 0.562
## Diagnosis_recodeLLD 0.2372 0.2209 1.074 0.292
## SexM:Diagnosis_recodeLLD -0.1522 0.3712 -0.410 0.685
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.4475 on 27 degrees of freedom
## Multiple R-squared: 0.132, Adjusted R-squared: 0.03553
## F-statistic: 1.368 on 3 and 27 DF, p-value: 0.2736
totalVolume ~ Age * Diagnosis
#first, look at interaction with LLD as reference
summary(lm(data=df, totalVolume ~ Age * Diagnosis))
##
## Call:
## lm(formula = totalVolume ~ Age * Diagnosis, data = df)
##
## Residuals:
## Min 1Q Median 3Q Max
## -16.611 -5.772 -1.631 2.239 33.789
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.2500 31.2592 -0.008 0.994
## Age 0.2444 0.4614 0.530 0.601
## DiagnosisHC -32.1620 40.8631 -0.787 0.438
## Age:DiagnosisHC 0.4250 0.5874 0.724 0.476
##
## Residual standard error: 10.72 on 27 degrees of freedom
## Multiple R-squared: 0.1201, Adjusted R-squared: 0.02237
## F-statistic: 1.229 on 3 and 27 DF, p-value: 0.3184
#now, look at interaction with HC as reference
summary(lm(data=df, totalVolume ~ Age * Diagnosis_recode))
##
## Call:
## lm(formula = totalVolume ~ Age * Diagnosis_recode, data = df)
##
## Residuals:
## Min 1Q Median 3Q Max
## -16.611 -5.772 -1.631 2.239 33.789
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -32.4120 26.3183 -1.232 0.2287
## Age 0.6694 0.3635 1.842 0.0765 .
## Diagnosis_recodeLLD 32.1620 40.8631 0.787 0.4381
## Age:Diagnosis_recodeLLD -0.4250 0.5874 -0.724 0.4756
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 10.72 on 27 degrees of freedom
## Multiple R-squared: 0.1201, Adjusted R-squared: 0.02237
## F-statistic: 1.229 on 3 and 27 DF, p-value: 0.3184
weightedCNR ~ Age * Diagnosis
#first, look at interaction with LLD as reference
summary(lm(data=df, weightedCNR ~ Age * Diagnosis))
##
## Call:
## lm(formula = weightedCNR ~ Age * Diagnosis, data = df)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.87498 -0.24062 -0.08542 0.31495 1.03534
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 7.84419 1.22860 6.385 7.73e-07 ***
## Age -0.04004 0.01813 -2.208 0.0359 *
## DiagnosisHC -3.32847 1.60606 -2.072 0.0479 *
## Age:DiagnosisHC 0.04504 0.02309 1.951 0.0615 .
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.4214 on 27 degrees of freedom
## Multiple R-squared: 0.2303, Adjusted R-squared: 0.1448
## F-statistic: 2.693 on 3 and 27 DF, p-value: 0.06599
#now, look at interaction with HC as reference
summary(lm(data=df, weightedCNR ~ Age * Diagnosis_recode))
##
## Call:
## lm(formula = weightedCNR ~ Age * Diagnosis_recode, data = df)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.87498 -0.24062 -0.08542 0.31495 1.03534
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 4.515718 1.034400 4.366 0.000167 ***
## Age 0.004995 0.014287 0.350 0.729320
## Diagnosis_recodeLLD 3.328471 1.606061 2.072 0.047897 *
## Age:Diagnosis_recodeLLD -0.045040 0.023086 -1.951 0.061512 .
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.4214 on 27 degrees of freedom
## Multiple R-squared: 0.2303, Adjusted R-squared: 0.1448
## F-statistic: 2.693 on 3 and 27 DF, p-value: 0.06599
Volume. Here, we plot volume against continous demographic and clinical variables of interest (Pearson’s r).
The same data is plotted below, but with a unique regression line per group.
CNR. Here, we plot CNR against continous demographic and clinical variables of interest (Pearson’s r).
The same data is plotted below, but with a unique regression line per group.
Correlation values LC volume
Combined, n=31 | LLD, n=16 | HC, n=15 | |
---|---|---|---|
Age | 0.297 | 0.186 | 0.388 |
Education | -0.093 | 0.128 | -0.259 |
PHQ9 | 0.013 | -0.040 | 0.043 |
MADRS | 0.004 | 0.053 | -0.116 |
CIRS-G | 0.039 | 0.370 | -0.122 |
RBANS total | 0.023 | 0.153 | -0.036 |
RBANS immediate memory | -0.059 | -0.211 | 0.045 |
RBANS visuospatial | -0.008 | 0.366 | -0.232 |
RBANS language | -0.085 | 0.099 | -0.210 |
RBANS attention | 0.072 | 0.074 | 0.079 |
RBANS delayed memory | 0.148 | 0.075 | 0.182 |
Correlation values LC CNR
Combined, n=31 | LLD, n=16 | HC, n=15 | |
---|---|---|---|
Age | -0.269 | -0.470 | 0.111 |
Education | -0.127 | -0.158 | 0.222 |
PHQ9 | 0.319 | 0.261 | -0.530 |
MADRS | 0.310 | 0.262 | -0.287 |
CIRS-G | 0.291 | 0.200 | 0.243 |
RBANS total | 0.061 | -0.185 | 0.371 |
RBANS immediate memory | 0.008 | -0.181 | 0.488 |
RBANS visuospatial | -0.103 | -0.156 | 0.039 |
RBANS language | -0.219 | -0.354 | 0.003 |
RBANS attention | 0.051 | -0.091 | 0.363 |
RBANS delayed memory | 0.206 | -0.028 | 0.371 |