Importacion y presentacion de datos de la serie

Tabla

library(ggplot2)
library(forecast)
library(readxl)
ActPro_ts <- read_excel("E:/activi.profesionales.xlsx", 
    col_types = c("skip", "skip", "numeric"))
ts(data=ActPro_ts, start = c(2005,1),frequency = 12)->ActPro
print(ActPro)
##         Jan    Feb    Mar    Apr    May    Jun    Jul    Aug    Sep    Oct
## 2005  71.09  71.80  72.17  76.15  75.85  76.11  78.62  69.76  79.38  74.52
## 2006  74.71  74.77  74.04  72.67  70.65  75.06  70.38  74.04  80.40  86.41
## 2007  77.11  70.61  74.20  74.44  81.29  79.95  86.55  83.15  67.57  76.16
## 2008  75.93  81.66  79.58  80.13  75.02  73.11  75.03  82.50  82.87  91.82
## 2009  86.05  79.92  78.78  80.36  83.21  85.64  82.17  80.59  80.51  65.37
## 2010  83.64  84.78  84.85  85.13  83.45  85.00  82.36  82.27  81.01  80.57
## 2011  82.50  84.45  85.68  87.73  88.36  90.74  87.84  90.11  93.04  84.67
## 2012  98.86 100.15  97.42  94.65  96.58  94.17  94.60  97.33  90.84  88.67
## 2013  94.15  97.52  97.14  97.53  97.71  92.66  93.60  94.15  95.34  94.07
## 2014 100.60  97.10  97.12  98.75  94.65 101.77  96.57  99.59 100.72 102.62
## 2015 104.61 100.76 101.96  99.22  98.63 101.12  97.93 100.51 101.08 101.51
## 2016  98.87 100.40 102.63 101.16 102.13 105.78 106.35 105.48 104.44 104.20
## 2017 104.44 105.23 105.07 107.21 105.73 104.77 107.85 107.94 105.49 107.68
## 2018 106.04 106.36 107.48 109.41 114.06 112.33 110.85 110.20 108.98 110.29
## 2019 112.45 112.15 109.14 112.31 111.24 108.60 109.35 107.82 108.33       
##         Nov    Dec
## 2005  77.35  75.95
## 2006  90.88  70.36
## 2007  79.96  78.50
## 2008  80.56  72.72
## 2009  85.02  89.30
## 2010  82.41  83.13
## 2011  91.95  97.85
## 2012  90.76  90.30
## 2013  95.45  93.64
## 2014 103.52 106.98
## 2015 100.20 106.01
## 2016 103.75 106.30
## 2017 107.98 106.30
## 2018 110.12 111.74
## 2019

Grafico

autoplot(ActPro,xlab = "años",ylab = "Indice",main = "Actividades Profesionales, Cientificas, Tecnicas, Administrativas, de Apoyo y Otros Servicios, periodo 2005-2019 (agosto)")+theme_bw()

2 - Proyeccion para 6 meses

library(forecast)
modelo<-auto.arima(y = ActPro)
summary(modelo)
## Series: ActPro 
## ARIMA(1,1,1)(0,0,1)[12] with drift 
## 
## Coefficients:
##          ar1      ma1     sma1   drift
##       0.3159  -0.9393  -0.1456  0.2262
## s.e.  0.0865   0.0408   0.0738  0.0242
## 
## sigma^2 estimated as 13.79:  log likelihood=-479.58
## AIC=969.16   AICc=969.51   BIC=985.01
## 
## Training set error measures:
##                      ME     RMSE      MAE        MPE    MAPE      MASE
## Training set -0.0211649 3.660498 2.612876 -0.2283405 3.03555 0.5323774
##                     ACF1
## Training set -0.01299943
pronosticos<-forecast(modelo,h = 6)
autoplot(pronosticos)+xlab("años")+ylab("indice")+theme_bw()

library(forecast)
autoplot(pronosticos$x,series = "Actividades Profesionales")+autolayer(pronosticos$fitted,series = "Pronostico")+ggtitle("Ajuste SARIMA")

3 - Descomposicion de serie temporal ampliada

ActPro_h<-ts(as.numeric(rbind(as.matrix(pronosticos$x),as.matrix(pronosticos$mean))),start = c(2005,1),frequency = 12)
print(ActPro_h)
##           Jan      Feb      Mar      Apr      May      Jun      Jul
## 2005  71.0900  71.8000  72.1700  76.1500  75.8500  76.1100  78.6200
## 2006  74.7100  74.7700  74.0400  72.6700  70.6500  75.0600  70.3800
## 2007  77.1100  70.6100  74.2000  74.4400  81.2900  79.9500  86.5500
## 2008  75.9300  81.6600  79.5800  80.1300  75.0200  73.1100  75.0300
## 2009  86.0500  79.9200  78.7800  80.3600  83.2100  85.6400  82.1700
## 2010  83.6400  84.7800  84.8500  85.1300  83.4500  85.0000  82.3600
## 2011  82.5000  84.4500  85.6800  87.7300  88.3600  90.7400  87.8400
## 2012  98.8600 100.1500  97.4200  94.6500  96.5800  94.1700  94.6000
## 2013  94.1500  97.5200  97.1400  97.5300  97.7100  92.6600  93.6000
## 2014 100.6000  97.1000  97.1200  98.7500  94.6500 101.7700  96.5700
## 2015 104.6100 100.7600 101.9600  99.2200  98.6300 101.1200  97.9300
## 2016  98.8700 100.4000 102.6300 101.1600 102.1300 105.7800 106.3500
## 2017 104.4400 105.2300 105.0700 107.2100 105.7300 104.7700 107.8500
## 2018 106.0400 106.3600 107.4800 109.4100 114.0600 112.3300 110.8500
## 2019 112.4500 112.1500 109.1400 112.3100 111.2400 108.6000 109.3500
## 2020 112.5097 112.8334 113.5200                                    
##           Aug      Sep      Oct      Nov      Dec
## 2005  69.7600  79.3800  74.5200  77.3500  75.9500
## 2006  74.0400  80.4000  86.4100  90.8800  70.3600
## 2007  83.1500  67.5700  76.1600  79.9600  78.5000
## 2008  82.5000  82.8700  91.8200  80.5600  72.7200
## 2009  80.5900  80.5100  65.3700  85.0200  89.3000
## 2010  82.2700  81.0100  80.5700  82.4100  83.1300
## 2011  90.1100  93.0400  84.6700  91.9500  97.8500
## 2012  97.3300  90.8400  88.6700  90.7600  90.3000
## 2013  94.1500  95.3400  94.0700  95.4500  93.6400
## 2014  99.5900 100.7200 102.6200 103.5200 106.9800
## 2015 100.5100 101.0800 101.5100 100.2000 106.0100
## 2016 105.4800 104.4400 104.2000 103.7500 106.3000
## 2017 107.9400 105.4900 107.6800 107.9800 106.3000
## 2018 110.2000 108.9800 110.2900 110.1200 111.7400
## 2019 107.8200 108.3300 110.8712 111.9501 112.2546
## 2020

Grafico

library(stats)
fit<-stl(ActPro_h,"periodic")
autoplot(fit)+theme_bw()

Tabla

TC<-fit$time.series[,2]
print(TC)
##            Jan       Feb       Mar       Apr       May       Jun       Jul
## 2005  72.96610  73.31212  73.65815  73.95773  74.25731  74.52673  74.79615
## 2006  74.61313  74.56274  74.51236  74.92936  75.34636  75.77747  76.20859
## 2007  78.03928  78.13622  78.23315  77.96325  77.69335  77.73121  77.76906
## 2008  77.86899  77.94314  78.01728  78.53409  79.05089  79.37563  79.70037
## 2009  81.53310  81.47628  81.41946  81.10991  80.80036  80.91710  81.03385
## 2010  82.64720  82.93016  83.21311  83.37903  83.54495  83.39215  83.23936
## 2011  84.39993  85.10840  85.81687  86.62125  87.42562  88.42379  89.42196
## 2012  94.49364  94.87744  95.26123  95.22625  95.19127  94.78786  94.38446
## 2013  93.98364  94.15178  94.31991  94.61671  94.91350  95.14405  95.37461
## 2014  96.45077  96.90145  97.35213  97.94559  98.53905  99.20474  99.87043
## 2015 101.65874 101.57904 101.49933 101.31219 101.12504 100.95355 100.78206
## 2016 101.79888 102.19640 102.59391 102.92862 103.26333 103.57987 103.89641
## 2017 105.29751 105.45275 105.60798 105.84476 106.08154 106.26740 106.45326
## 2018 108.08017 108.44118 108.80220 109.14136 109.48051 109.86354 110.24656
## 2019 110.70691 110.59325 110.47960 110.42610 110.37260 110.45804 110.54347
## 2020 111.85954 112.14517 112.43080                                        
##            Aug       Sep       Oct       Nov       Dec
## 2005  75.03686  75.27758  75.23590  75.19422  74.90368
## 2006  76.40581  76.60302  76.86248  77.12195  77.58061
## 2007  78.11149  78.45392  78.47315  78.49238  78.18069
## 2008  79.89517  80.08998  80.41892  80.74785  81.14048
## 2009  81.35188  81.66990  81.94714  82.22437  82.43579
## 2010  83.14155  83.04375  83.23502  83.42628  83.91310
## 2011  90.49701  91.57205  92.43016  93.28827  93.89096
## 2012  94.08249  93.78053  93.80039  93.82025  93.90195
## 2013  95.46807  95.56154  95.69965  95.83776  96.14427
## 2014 100.38040 100.89036 101.19165 101.49295 101.57585
## 2015 100.76439 100.74673 100.92282 101.09892 101.44890
## 2016 104.22252 104.54863 104.78791 105.02720 105.16235
## 2017 106.59258 106.73189 107.00444 107.27698 107.67857
## 2018 110.53624 110.82591 110.88183 110.93775 110.82233
## 2019 110.74217 110.94086 111.15347 111.36608 111.61281
## 2020

4 - Calculo de tasas

library(dplyr)
## Warning: package 'dplyr' was built under R version 3.5.3
## 
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
## 
##     filter, lag
## The following objects are masked from 'package:base':
## 
##     intersect, setdiff, setequal, union
library(zoo)
## Warning: package 'zoo' was built under R version 3.5.3
## 
## Attaching package: 'zoo'
## The following objects are masked from 'package:base':
## 
##     as.Date, as.Date.numeric
TC %>% as.numeric() %>% as.data.frame()->TC_df
names(TC_df)<-c("TC")
TC_df %>% mutate(T_1_1=(TC/dplyr::lag(TC,n=1)-1)*100,
                 T_1_12=(TC/dplyr::lag(TC,n=12)-1)*100,
                 T_12_12=(rollapply(TC,12,mean,align='right',fill=NA)
                          /rollapply(dplyr::lag(TC,n=12),12,mean,align='right',fill=NA)-1)*100) %>%
          #Aqui se realiza el centrado
          mutate(T_1_12C=dplyr::lead(T_1_12,n = 6),
                 T_12_12C=dplyr::lead(T_12_12,n = 12)) %>% ts(start = c(2005,1),frequency = 12)->tabla_coyuntura
print(tail(tabla_coyuntura,n=12))
##                TC       T_1_1    T_1_12   T_12_12   T_1_12C T_12_12C
## Apr 2019 110.4261 -0.04842095 1.1771385 2.8907621 0.2449809       NA
## May 2019 110.3726 -0.04844441 0.8148408 2.6891184 0.3860980       NA
## Jun 2019 110.4580  0.07740472 0.5411274 2.4499655 0.7132847       NA
## Jul 2019 110.5435  0.07734485 0.2693158 2.1737235 1.0411536       NA
## Aug 2019 110.7422  0.17974307 0.1863017 1.8803528 1.4032655       NA
## Sep 2019 110.9409  0.17942057 0.1037215 1.5701096 1.7661224       NA
## Oct 2019 111.1535  0.19164284 0.2449809 1.2904817        NA       NA
## Nov 2019 111.3661  0.19127627 0.3860980 1.0410600        NA       NA
## Dec 2019 111.6128  0.22154644 0.7132847 0.8600359        NA       NA
## Jan 2020 111.8595  0.22105670 1.0411536 0.7467082        NA       NA
## Feb 2020 112.1452  0.25534887 1.4032655 0.7001249        NA       NA
## Mar 2020 112.4308  0.25469850 1.7661224 0.7199105        NA       NA

Grafico de tasas centradas

library(dplyr)
library(forecast)
library(ggplot2)
tabla_coyuntura %>% as.data.frame() %>% select(T_1_12C,T_12_12C) %>% ts(start = c(2005,1),frequency = 12)->tabla_coyuntura_graficos
autoplot(tabla_coyuntura_graficos)+theme_bw()

tabla_coyuntura %>% as.data.frame() %>% select(T_1_1) %>% ts(start = c(2005,1),frequency = 12) %>% autoplot()

Analisis de resultados

Prevision que se tiene como resultado del analisis de coyuntura del componente

###segun los resultados obetinos de los datos provenientes de actividades profesionales, cientificas, tecnicas, administrativas, de apoyo y otros servicios arroja que dicho crecimiento ha presentado un crecimiento ciclico en el periodo de 2005 al 2019, sin embargo presento una caida para el año 2013, sin embargo para este ultimo periodo se prevee que el sector presente un crecimiento