library(agricolae)
library(ggplot2)
library(asbio) # Teste Tukey de Aditividade
## Loading required package: tcltk
library(WRS2)
library(effects)
## Loading required package: carData
## lattice theme set by effectsTheme()
## See ?effectsTheme for details.
# Estimando o modelo
mod1 <- aov(altura ~ tratamento, data = pinus)
summary(pinus)
## tratamento altura
## T1:4 Min. :4.600
## T2:4 1st Qu.:5.675
## T3:4 Median :5.950
## T4:4 Mean :6.120
## T5:4 3rd Qu.:6.800
## Max. :7.200
coef(pinus)
## NULL
# Diagnostico do modelo
library(agricolae)
cv.model(mod1)
## [1] 8.347738
# Analise dos Residuos
names(mod1)
## [1] "coefficients" "residuals" "effects" "rank"
## [5] "fitted.values" "assign" "qr" "df.residual"
## [9] "contrasts" "xlevels" "call" "terms"
## [13] "model"
# Grafico dos Residuos
plot(mod1)
# Teste de Shapiro Wills
shapiro.test(mod1$residuals)
##
## Shapiro-Wilk normality test
##
## data: mod1$residuals
## W = 0.87837, p-value = 0.01654
# Analise dos Residuos
names(mod1)
## [1] "coefficients" "residuals" "effects" "rank"
## [5] "fitted.values" "assign" "qr" "df.residual"
## [9] "contrasts" "xlevels" "call" "terms"
## [13] "model"
# residuos
mod1$residuals
## 1 2 3
## -0.6499999999999992450483 -0.1500000000000017430501 0.5500000000000004884981
## 4 5 6
## 0.2499999999999997224442 -0.7750000000000004662937 0.3249999999999999555911
## 7 8 9
## 0.4250000000000004884981 0.0250000000000001054712 -0.8500000000000000888178
## 10 11 12
## 0.5500000000000002664535 0.2500000000000004440892 0.0500000000000001554312
## 13 14 15
## 0.0749999999999995947686 -0.6249999999999997779554 0.3750000000000002775558
## 16 17 18
## 0.1750000000000000999201 -0.6000000000000000888178 0.0000000000000005273559
## 19 20
## 0.1999999999999997890576 0.3999999999999999111822
# Valores previstos pelo modelo
mod1$fitted.values
## 1 2 3 4 5 6 7 8 9 10 11 12 13
## 5.250 5.250 5.250 5.250 6.775 6.775 6.775 6.775 6.650 6.650 6.650 6.650 5.525
## 14 15 16 17 18 19 20
## 5.525 5.525 5.525 6.400 6.400 6.400 6.400
# Teste de Tukey
TukeyHSD(mod1)
## Tukey multiple comparisons of means
## 95% family-wise confidence level
##
## Fit: aov(formula = altura ~ tratamento, data = pinus)
##
## $tratamento
## diff lwr upr p adj
## T2-T1 1.525 0.40949396 2.640506042 0.0056636
## T3-T1 1.400 0.28449396 2.515506042 0.0110848
## T4-T1 0.275 -0.84050604 1.390506042 0.9378222
## T5-T1 1.150 0.03449396 2.265506042 0.0418184
## T3-T2 -0.125 -1.24050604 0.990506042 0.9965682
## T4-T2 -1.250 -2.36550604 -0.134493958 0.0247157
## T5-T2 -0.375 -1.49050604 0.740506042 0.8339632
## T4-T3 -1.125 -2.24050604 -0.009493958 0.0476084
## T5-T3 -0.250 -1.36550604 0.865506042 0.9551477
## T5-T4 0.875 -0.24050604 1.990506042 0.1626657
# Gráfico Teste de Tukey
plot(TukeyHSD(mod1))
#### As estimativas são a divergencia entre cada efeito de tratamento e altura, ou seja o nivel de referência.