library("foreign")
library("ggfortify")
## Loading required package: ggplot2
library("ggplot2")
ventas<-read.dta("Datos/Ventas Semanales de Disco de Video Digital.dta")
head(ventas)
## t y
## 1 1 45.9
## 2 2 45.4
## 3 3 42.8
## 4 4 34.4
## 5 5 31.9
## 6 6 36.6
ventas_ts <- ts(ventas[,2])
plot.ts(ventas_ts, xlab="Tiempo",ylab="Ventas")
autoplot(ventas_ts)
autoplot(ventas_ts, ts.colour = 'red',
ts.linetype = 'dashed')
autoplot(acf(ventas_ts, plot = FALSE))
autoplot(pacf(ventas_ts, plot = FALSE))
library(CADFtest)
## Loading required package: dynlm
## Warning: package 'dynlm' was built under R version 3.5.2
## Loading required package: zoo
##
## Attaching package: 'zoo'
## The following objects are masked from 'package:base':
##
## as.Date, as.Date.numeric
## Loading required package: sandwich
## Loading required package: tseries
## Loading required package: urca
CADFtest(ventas_ts, max.lag.y=0, type="none")
##
## ADF test
##
## data: ventas_ts
## ADF(0) = 0.77644, p-value = 0.8801
## alternative hypothesis: true delta is less than 0
## sample estimates:
## delta
## 0.002839715
autoplot(diff(ventas_ts))
autoplot(acf(diff(ventas_ts)))
autoplot(pacf(diff(ventas_ts)))
arima1<-arima(ventas_ts,c(2,1,0))
arima1
##
## Call:
## arima(x = ventas_ts, order = c(2, 1, 0))
##
## Coefficients:
## ar1 ar2
## 0.5425 -0.2393
## s.e. 0.0766 0.0775
##
## sigma^2 estimated as 6.058: log likelihood = -371.3, aic = 748.6
library("lmtest")
coeftest(arima1)
##
## z test of coefficients:
##
## Estimate Std. Error z value Pr(>|z|)
## ar1 0.542516 0.076603 7.0822 1.419e-12 ***
## ar2 -0.239316 0.077529 -3.0868 0.002023 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
\[ Z_t = 0.5425Z_{t-1}-0.2393Z_{t-2}\]
arima2<-arima(ventas_ts,c(0,1,1))
arima2
##
## Call:
## arima(x = ventas_ts, order = c(0, 1, 1))
##
## Coefficients:
## ma1
## 0.5811
## s.e. 0.0665
##
## sigma^2 estimated as 5.915: log likelihood = -369.43, aic = 742.86
coeftest(arima2)
##
## z test of coefficients:
##
## Estimate Std. Error z value Pr(>|z|)
## ma1 0.581116 0.066476 8.7417 < 2.2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
\[ Z_t = 0.5811e_{t-1}\]
arima3<-arima(ventas_ts,c(2,1,1))
arima3
##
## Call:
## arima(x = ventas_ts, order = c(2, 1, 1))
##
## Coefficients:
## ar1 ar2 ma1
## 0.0656 -0.0310 0.5213
## s.e. 0.2907 0.1779 0.2837
##
## sigma^2 estimated as 5.913: log likelihood = -369.41, aic = 746.81
coeftest(arima3)
##
## z test of coefficients:
##
## Estimate Std. Error z value Pr(>|z|)
## ar1 0.065607 0.290684 0.2257 0.82144
## ar2 -0.030968 0.177934 -0.1740 0.86183
## ma1 0.521325 0.283692 1.8376 0.06611 .
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
\[ Z_t = 0.0656Z_{t-1}-0.0310_{t-2}+0.5213e_{t-1}\]
ggtsdiag(arima2)
shapiro.test(arima2$residuals)
##
## Shapiro-Wilk normality test
##
## data: arima2$residuals
## W = 0.99056, p-value = 0.3629