Brief summary

The study identified influencing factors for prediction of implant stability quotient (ISQ). ISQ values were collected from 3 different groups containing 2 brands, SICare and Osstem.

Implants were performed by 2 surgeons:

   Group 1 was Surgeon 1 and SICare
   Group 2 was Surgeon 2 and SICare
   Group 3 was Surgeon 2 and Osstem


ISQ Measurements were collected at the following time intervals:

   T1 measurements are immediately after implementation
   T2 measurements are right before dental restoration
   Time interval averaged ~4 months
t.test(Database_for_groups_1_2_3$MonthDiff, na.rm = T)
## 
##  One Sample t-test
## 
## data:  Database_for_groups_1_2_3$MonthDiff
## t = 25.388, df = 299, p-value < 2.2e-16
## alternative hypothesis: true mean is not equal to 0
## 95 percent confidence interval:
##  3.659197 4.274136
## sample estimates:
## mean of x 
##  3.966667

Results

At T1, need for bone grafting as a predictor significantly influenced ISQ values in all three groups.

At T2, implant diameter significantly influenced ISQ values in all three groups.

Attempt at recreating models for group 1

T1

lm(ISQ1~sex+
     `immediate/delay`+
     `bone graft`+
     diameter+
     `I stage labeled yes`+
     torque, 
   data = Database_for_groups_1_2_3) %>% 
  summary()
## 
## Call:
## lm(formula = ISQ1 ~ sex + `immediate/delay` + `bone graft` + 
##     diameter + `I stage labeled yes` + torque, data = Database_for_groups_1_2_3)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -23.7176  -2.8304   0.4614   3.0190  10.2039 
## 
## Coefficients:
##                       Estimate Std. Error t value Pr(>|t|)    
## (Intercept)           59.20948    4.18053  14.163  < 2e-16 ***
## sex                    1.37279    0.61032   2.249  0.02525 *  
## `immediate/delay`      2.11729    0.64401   3.288  0.00114 ** 
## `bone graft`          -6.62387    1.10174  -6.012 5.53e-09 ***
## diameter               1.99303    0.74964   2.659  0.00828 ** 
## `I stage labeled yes`  2.60435    0.62886   4.141 4.54e-05 ***
## torque                 0.14741    0.02367   6.227 1.68e-09 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 5.013 on 288 degrees of freedom
##   (34 observations deleted due to missingness)
## Multiple R-squared:  0.3316, Adjusted R-squared:  0.3177 
## F-statistic: 23.81 on 6 and 288 DF,  p-value: < 2.2e-16

T2

# lm(ISQ2~diameter+
#      DaysDiff+
#      torque,
#    data = Database_for_groups_1_2_3) %>% summary() #Days
# 
# lm(ISQ2~diameter+
#      WeekDiff+
#      torque,
#    data = Database_for_groups_1_2_3) %>% summary() #Weeks

lm(ISQ2~diameter+
     torque+
     MonthDiff,
   data = Database_for_groups_1_2_3) %>% summary() #Months
## 
## Call:
## lm(formula = ISQ2 ~ diameter + torque + MonthDiff, data = Database_for_groups_1_2_3)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -13.0313  -2.5088   0.4325   2.8484   8.3309 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept) 62.49950    2.73855  22.822   <2e-16 ***
## diameter     3.09071    0.63477   4.869    2e-06 ***
## torque       0.03993    0.01997   2.000   0.0466 *  
## MonthDiff    0.06347    0.10435   0.608   0.5436    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 4.004 on 247 degrees of freedom
##   (78 observations deleted due to missingness)
## Multiple R-squared:  0.1076, Adjusted R-squared:  0.09673 
## F-statistic: 9.924 on 3 and 247 DF,  p-value: 3.353e-06

Unfortunately, not very accurate!

Variable names for reference: (X1) male = 1, female = 2; (X2) age (X3) maxillary = 1, mandible = 2; (X4) immediate = 1, delayed = 2; (X5) bone grafting: no = 1, yes = 2, and (X6) diameter (X7) length (X8) I-stage = 2, II-stage = 1. Dummy variables were used for bone types (X10): type 1 = 100, type 2 = 010, type 3 = 001, and type 4 = 000. (X9) torque (X10) bone type (X11) T1-T2 time interval

95% confidence intervals

T1

( G1_ISQ1 <- read_excel("95% intervals.xlsx", sheet = "G1-ISQ1") )
## # A tibble: 8 x 5
##   `G1-ISQ1`     Est    SE      LB    UB
##   <chr>       <dbl> <dbl>   <dbl> <dbl>
## 1 (Constant) 57.3   4.23  49.0    65.5 
## 2 X9          0.131 0.025  0.082   0.18
## 3 X5         -4.99  1.14  -7.21   -2.77
## 4 X8          2.96  0.657  1.67    4.25
## 5 X3          1.47  0.652  0.193   2.75
## 6 X4          1.84  0.664  0.535   3.14
## 7 X6          1.67  0.754  0.191   3.15
## 8 X1          1.32  0.622  0.0979  2.54
( G2_ISQ1 <- read_excel("95% intervals.xlsx", sheet = "G2-ISQ1") )
## # A tibble: 8 x 5
##   `G2-ISQ1`     Est    SE       LB     UB
##   <chr>       <dbl> <dbl>    <dbl>  <dbl>
## 1 (Constant) 57.4   4.47  48.7     66.2  
## 2 X2          0.143 0.051  0.0430   0.243
## 3 X3          2.5   1.43  -0.305    5.30 
## 4 X9          0.114 0.063 -0.00948  0.237
## 5 X5         -4.01  1.64  -7.22    -0.796
## 6 bone1       7.90  3.09   1.85    13.9  
## 7 bone2       7.55  2.94   1.79    13.3  
## 8 bone3       7.32  3.33   0.795   13.9
( G3_ISQ1 <- read_excel("95% intervals.xlsx", sheet = "G3-ISQ1") )
## # A tibble: 4 x 5
##   `G3-ISQ1`     Est    SE     LB     UB
##   <chr>       <dbl> <dbl>  <dbl>  <dbl>
## 1 (Constant) 62.7   3.56  55.8   69.7  
## 2 X9          0.277 0.069  0.142  0.412
## 3 X8          4.95  1.23   2.53   7.37 
## 4 X5         -4.12  1.25  -6.58  -1.66

T2

( G1_ISQ2 <- read_excel("95% intervals.xlsx", sheet = "G1-ISQ2") )
## # A tibble: 4 x 5
##   `G1-ISQ2`     Est    SE       LB      UB
##   <chr>       <dbl> <dbl>    <dbl>   <dbl>
## 1 (Constant) 57.0   3.04  51.0     63.0   
## 2 X6          4.08  0.698  2.71     5.45  
## 3 X11         0.014 0.005  0.0042   0.0238
## 4 X9          0.048 0.023  0.00292  0.0931
( G2_ISQ2 <- read_excel("95% intervals.xlsx", sheet = "G2-ISQ2") )
## # A tibble: 4 x 5
##   `G2-ISQ2`     Est    SE    LB      UB
##   <chr>       <dbl> <dbl> <dbl>   <dbl>
## 1 (Constant) 73.2   7.28  58.9  87.5   
## 2 X7         -0.606 0.337 -1.27  0.0545
## 3 X6          3.45  1.22   1.06  5.85  
## 4 X5         -2.66  1.11  -4.84 -0.487
( G3_ISQ2 <- read_excel("95% intervals.xlsx", sheet = "G3-ISQ2") )
## # A tibble: 4 x 5
##   `G3-ISQ2`    Est    SE    LB    UB
##   <chr>      <dbl> <dbl> <dbl> <dbl>
## 1 (Constant) 50.6  4.76  41.3  59.9 
## 2 X4          4.63 1.00   2.66  6.59
## 3 X3          2.65 0.752  1.17  4.12
## 4 X6          4.20 1.19   1.86  6.54