score1 <- c(5,2,6,1,3,4,5,1,4,3,6,2,6,2,1,3,4,5,5,1,2,3,6,4,4,3,2,5,1,6,5,6,3,2,4,1)
score2 <- c(4,8,3,10,6,5,6,10,7,8,5,9,2,9,10,7,6,4,4,9,8,5,3,5,8,9,9,7,10,6,6,6,8,9,7,10)
person <- as.factor(c(rep(1,6),rep(2,6),rep(3,6),rep(4,6),rep(5,6), rep(6,6)))
wine <- as.factor(c(rep(1:6),rep(1:6),rep(1:6),rep(1:6),rep(1:6),rep(1:6)))
price <- c("low","high","high","low","low","low",
           "low","high","high","low","low","low",
           "low","high","high","low","low","low",
           "low","high","high","low","low","low",
           "low","high","high","low","low","low",
           "low","high","high","low","low","low")

table <- data.frame(wine,score2,person,price)
table
##    wine score2 person price
## 1     1      4      1   low
## 2     2      8      1  high
## 3     3      3      1  high
## 4     4     10      1   low
## 5     5      6      1   low
## 6     6      5      1   low
## 7     1      6      2   low
## 8     2     10      2  high
## 9     3      7      2  high
## 10    4      8      2   low
## 11    5      5      2   low
## 12    6      9      2   low
## 13    1      2      3   low
## 14    2      9      3  high
## 15    3     10      3  high
## 16    4      7      3   low
## 17    5      6      3   low
## 18    6      4      3   low
## 19    1      4      4   low
## 20    2      9      4  high
## 21    3      8      4  high
## 22    4      5      4   low
## 23    5      3      4   low
## 24    6      5      4   low
## 25    1      8      5   low
## 26    2      9      5  high
## 27    3      9      5  high
## 28    4      7      5   low
## 29    5     10      5   low
## 30    6      6      5   low
## 31    1      6      6   low
## 32    2      6      6  high
## 33    3      8      6  high
## 34    4      9      6   low
## 35    5      7      6   low
## 36    6     10      6   low
#Using the Ranks
aov1 <- aov(score1~price+person+wine, data=table)
summary(aov1)
##             Df Sum Sq Mean Sq F value Pr(>F)  
## price        1  10.13  10.125   3.177 0.0868 .
## person       5   0.00   0.000   0.000 1.0000  
## wine         4  15.21   3.802   1.193 0.3382  
## Residuals   25  79.67   3.187                 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
plot(aov1)

#Using the Scores out of 10
aov2 <- aov(score2~price+person+wine, data=table)
summary(aov2)
##             Df Sum Sq Mean Sq F value Pr(>F)  
## price        1  22.22  22.222   5.476 0.0276 *
## person       5  31.22   6.244   1.539 0.2138  
## wine         4  24.67   6.167   1.520 0.2268  
## Residuals   25 101.44   4.058                 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#Transformation
library(car)
## Loading required package: carData
scatterplot(table$price, table$score2)

## [1] "3"
library(car)
summary(powerTransform(score2~price+person+wine, data=table))
## bcPower Transformation to Normality 
##    Est Power Rounded Pwr Wald Lwr Bnd Wald Upr Bnd
## Y1    1.0224           1       0.2137       1.8311
## 
## Likelihood ratio test that transformation parameter is equal to 0
##  (log transformation)
##                            LRT df      pval
## LR test, lambda = (0) 7.313947  1 0.0068421
## 
## Likelihood ratio test that no transformation is needed
##                               LRT df    pval
## LR test, lambda = (1) 0.002955863  1 0.95664
aov2 <- aov(score2**2~price+person+wine, data=table)
summary(aov2)
##             Df Sum Sq Mean Sq F value Pr(>F)  
## price        1   4080    4080   5.300 0.0299 *
## person       5   4585     917   1.191 0.3418  
## wine         4   3748     937   1.217 0.3285  
## Residuals   25  19244     770                 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
plot(aov2)