The movie Moneyball focuses on the “quest for the secret of success in baseball”. It follows a low-budget team, the Oakland Athletics, who believed that underused statistics, such as a player’s ability to get on base, better predict the ability to score runs than typical statistics like home runs, RBIs (runs batted in), and batting average. Obtaining players who excelled in these underused statistics turned out to be much more affordable for the team.

We’ll be looking at data from all 30 Major League Baseball teams and examining the linear relationship between runs scored in a season and a number of other player statistics.

Data

Let’s load up the data for the 2011 season.

In addition to runs scored, there are seven traditionally used variables in the data set: at-bats, hits, home runs, batting average, strikeouts, stolen bases, and wins. There are also three newer variables: on-base percentage, slugging percentage, and on-base plus slugging.

  1. What type of plot would be good to display the relationship between runs and one of the other numerical variables? Plot this relationship using the variable at_bats as the predictor. Does the relationship look linear? If you knew a team’s at_bats, would you be comfortable using a linear model to predict the number of runs?

The relationship looks somewhat linear, but scattered. A linear model might not be very useful to predict number of runs

If the relationship looks linear, we can quantify the strength of the relationship with the correlation coefficient.

## [1] 0.610627

Sum of squared residuals

  1. Looking at the previous plot, describe the relationship between these two variables.

Somewhat linear, Upward trend and not very strong

Just as we used the mean and standard deviation to summarize a single variable, we can summarize the relationship between these two variables by finding the line that best follows their association. Use the following interactive function to select the line that does the best job of going through the cloud of points.

## Click two points to make a line.
                                
## Call:
## lm(formula = y ~ x, data = pts)
## 
## Coefficients:
## (Intercept)            x  
##  -2789.2429       0.6305  
## 
## Sum of Squares:  123721.9

After running this command, you’ll be prompted to click two points on the plot to define a line. Once you’ve done that, the line you specified will be shown in black and the residuals in blue. Note that there are 30 residuals, one for each of the 30 observations. Recall that the residuals are the difference between the observed values and the values predicted by the line:

\[ e_i = y_i - \hat{y}_i \]

The most common way to do linear regression is to select the line that minimizes the sum of squared residuals. To visualize the squared residuals, you can rerun the plot command and add the argument showSquares = TRUE.

## Click two points to make a line.
                                
## Call:
## lm(formula = y ~ x, data = pts)
## 
## Coefficients:
## (Intercept)            x  
##  -2789.2429       0.6305  
## 
## Sum of Squares:  123721.9

Note that the output from the plot_ss function provides you with the slope and intercept of your line as well as the sum of squares.

  1. Using plot_ss, choose a line that does a good job of minimizing the sum of squares. Run the function several times. What was the smallest sum of squares that you got? How does it compare to your neighbors?

After 10 tries, the smallest was: Sum of Squares = 133190.4

The linear model

It is rather cumbersome to try to get the correct least squares line, i.e. the line that minimizes the sum of squared residuals, through trial and error. Instead we can use the lm function in R to fit the linear model (a.k.a. regression line).

The first argument in the function lm is a formula that takes the form y ~ x. Here it can be read that we want to make a linear model of runs as a function of at_bats. The second argument specifies that R should look in the mlb11 data frame to find the runs and at_bats variables.

The output of lm is an object that contains all of the information we need about the linear model that was just fit. We can access this information using the summary function.

## 
## Call:
## lm(formula = runs ~ at_bats, data = mlb11)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -125.58  -47.05  -16.59   54.40  176.87 
## 
## Coefficients:
##               Estimate Std. Error t value Pr(>|t|)    
## (Intercept) -2789.2429   853.6957  -3.267 0.002871 ** 
## at_bats         0.6305     0.1545   4.080 0.000339 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 66.47 on 28 degrees of freedom
## Multiple R-squared:  0.3729, Adjusted R-squared:  0.3505 
## F-statistic: 16.65 on 1 and 28 DF,  p-value: 0.0003388

Let’s consider this output piece by piece. First, the formula used to describe the model is shown at the top. After the formula you find the five-number summary of the residuals. The “Coefficients” table shown next is key; its first column displays the linear model’s y-intercept and the coefficient of at_bats. With this table, we can write down the least squares regression line for the linear model:

\[ \hat{y} = -2789.2429 + 0.6305 * atbats \]

One last piece of information we will discuss from the summary output is the Multiple R-squared, or more simply, \(R^2\). The \(R^2\) value represents the proportion of variability in the response variable that is explained by the explanatory variable. For this model, 37.3% of the variability in runs is explained by at-bats.

  1. Fit a new model that uses homeruns to predict runs. Using the estimates from the R output, write the equation of the regression line. What does the slope tell us in the context of the relationship between success of a team and its home runs?
## 
## Call:
## lm(formula = runs ~ homeruns, data = mlb11)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -91.615 -33.410   3.231  24.292 104.631 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept) 415.2389    41.6779   9.963 1.04e-10 ***
## homeruns      1.8345     0.2677   6.854 1.90e-07 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 51.29 on 28 degrees of freedom
## Multiple R-squared:  0.6266, Adjusted R-squared:  0.6132 
## F-statistic: 46.98 on 1 and 28 DF,  p-value: 1.9e-07

\[ \hat{y} = -415.2389 + 1.8345 * homeruns \]

The slope tells us that the number of runs increases by a factor of almost 2 (1.83) as the number of homeruns are scored. In other words, every home run hit, accounts for an additional run on top of the one it is worth

Prediction and prediction errors

Let’s create a scatterplot with the least squares line laid on top.

The function abline plots a line based on its slope and intercept. Here, we used a shortcut by providing the model m1, which contains both parameter estimates. This line can be used to predict \(y\) at any value of \(x\). When predictions are made for values of \(x\) that are beyond the range of the observed data, it is referred to as extrapolation and is not usually recommended. However, predictions made within the range of the data are more reliable. They’re also used to compute the residuals.

  1. If a team manager saw the least squares regression line and not the actual data, how many runs would he or she predict for a team with 5,578 at-bats? Is this an overestimate or an underestimate, and by how much? In other words, what is the residual for this prediction?

\[ \hat{y} = 727.6861 \]

It is an overestimate, since the residual is negative: -14.6861

Model diagnostics

To assess whether the linear model is reliable, we need to check for (1) linearity, (2) nearly normal residuals, and (3) constant variability.

Linearity: We already checked if the relationship between runs and at-bats is linear using a scatterplot. We should also verify this condition with a plot of the residuals vs. at-bats.

  1. Is there any apparent pattern in the residuals plot? What does this indicate about the linearity of the relationship between runs and at-bats?

No obvious patterns, residuals appear scattered randomly around the dashed line, therefore, there is a linear relatioship between runs and at-bats

Nearly normal residuals: To check this condition, we can look at a histogram

or a normal probability plot of the residuals.

  1. Based on the histogram and the normal probability plot, does the nearly normal residuals condition appear to be met?

Yes, histogram shows an unimodal distribution with slight skewness to the right. No considerable outliers. Normal probability plot shows residuals following along the line

Constant variability:

  1. Based on the plot in (1), does the constant variability condition appear to be met?

Yes, variability looks constant around the least squares line. No obvious expansion or shrink of points

Further Exercises

## 
## Call:
## lm(formula = runs ~ hits, data = mlb11)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -103.718  -27.179   -5.233   19.322  140.693 
## 
## Coefficients:
##              Estimate Std. Error t value Pr(>|t|)    
## (Intercept) -375.5600   151.1806  -2.484   0.0192 *  
## hits           0.7589     0.1071   7.085 1.04e-07 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 50.23 on 28 degrees of freedom
## Multiple R-squared:  0.6419, Adjusted R-squared:  0.6292 
## F-statistic:  50.2 on 1 and 28 DF,  p-value: 1.043e-07

Yes, there seems to be a linear relationship, upward trend and strong

  • How does this relationship compare to the relationship between runs and at_bats? Use the R\(^2\) values from the two model summaries to compare. Does your variable seem to predict runs better than at_bats? How can you tell?
## 
## Call:
## lm(formula = runs ~ at_bats, data = mlb11)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -125.58  -47.05  -16.59   54.40  176.87 
## 
## Coefficients:
##               Estimate Std. Error t value Pr(>|t|)    
## (Intercept) -2789.2429   853.6957  -3.267 0.002871 ** 
## at_bats         0.6305     0.1545   4.080 0.000339 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 66.47 on 28 degrees of freedom
## Multiple R-squared:  0.3729, Adjusted R-squared:  0.3505 
## F-statistic: 16.65 on 1 and 28 DF,  p-value: 0.0003388
## 
## Call:
## lm(formula = runs ~ hits, data = mlb11)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -103.718  -27.179   -5.233   19.322  140.693 
## 
## Coefficients:
##              Estimate Std. Error t value Pr(>|t|)    
## (Intercept) -375.5600   151.1806  -2.484   0.0192 *  
## hits           0.7589     0.1071   7.085 1.04e-07 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 50.23 on 28 degrees of freedom
## Multiple R-squared:  0.6419, Adjusted R-squared:  0.6292 
## F-statistic:  50.2 on 1 and 28 DF,  p-value: 1.043e-07

R\(^2\)_at-bats = 0.3729, R\(^2\)_hits = 0.6419. The amount of variation explained by the linear model based on hits is almost double the one based on at-bats, which makes it a better model for prediction

  • Now that you can summarize the linear relationship between two variables, investigate the relationships between runs and each of the other five traditional variables. Which variable best predicts runs?
##             X1          X2
## 4      bat_avg 0.656077135
## 2         hits 0.641938767
## 3     homeruns 0.626563570
## 1      at_bats 0.372865390
## 7         wins 0.360971179
## 5   strikeouts 0.169357932
## 6 stolen_bases 0.002913993

The variable that best predicts runs is bat_avg with an R\(^2\) = 0.656077135

## 
## Call:
## lm(formula = runs ~ bat_avg, data = mlb11)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -94.676 -26.303  -5.496  28.482 131.113 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)   -642.8      183.1  -3.511  0.00153 ** 
## bat_avg       5242.2      717.3   7.308 5.88e-08 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 49.23 on 28 degrees of freedom
## Multiple R-squared:  0.6561, Adjusted R-squared:  0.6438 
## F-statistic: 53.41 on 1 and 28 DF,  p-value: 5.877e-08
  • Now examine the three newer variables. These are the statistics used by the author of Moneyball to predict a teams success. In general, are they more or less effective at predicting runs that the old variables? Using the limited (or not so limited) information you know about these baseball statistics, does your result make sense?
##           X1        X2
## 3    new_obs 0.9349271
## 2   new_slug 0.8968704
## 1 new_onbase 0.8491053

In general, the three newer variables (the statistics used in Moneyball) are considerably more effective at predicting runs than the old variables

The variable that best predicts runs of all the variables is new_obs with an R\(^2\) = 0.9349271

  • Check the model diagnostics for the regression model with the variable decided as the best predictor for runs.

## 
## Call:
## lm(formula = runs ~ new_obs, data = mlb11)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -43.456 -13.690   1.165  13.935  41.156 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  -686.61      68.93  -9.962 1.05e-10 ***
## new_obs      1919.36      95.70  20.057  < 2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 21.41 on 28 degrees of freedom
## Multiple R-squared:  0.9349, Adjusted R-squared:  0.9326 
## F-statistic: 402.3 on 1 and 28 DF,  p-value: < 2.2e-16