Discussion 15 - Chapter 12

Pick any exercise in Chapter 12 of the calculus textbook.
Post the solution or your attempt.
Discuss any issues you might have had.

Chapter 12.3, Exercises 27,28,29,30

In Exercises 27 – 30, form a function \(z = f(x;y)\) such that \(f_x\) and \(f_y\) match those given.

27. \(f_x = \sin (y) + 1 ; f_y = x \cos (y)\)

For a solution to exist, we must have \(f_{xy}=f_{yx}\) .

Checking this: \(f_{xy} = \cos(y) =f_{yx}\) .
OK, we can proceed.

\(f_x = \sin (y) + 1\), so

\[\begin{aligned} z = f(x;y) &= \int{[f_x] dx} \\ &= \int[\sin (y) + 1]dx \\ &= x\sin (y) + x + h(y)+ C \end{aligned}\]

where \(h\) is any function of \(y\) (but not \(x\)).

\(f_y = x \cos (y)\)

\[\begin{aligned} z = f(x;y) &= \int [f_y] dy \\ &= \int [x \cos (y)] dy \\ &= x\sin (y) + g(x) + C \end{aligned}\]

where \(g\) is any function of \(x\) (but not \(y\)).

So, we need to have:

\[x\sin (y) + x + h(y)+ C = x\sin (y) + g(x) + C\]

which works when \(g(x)=x\) and \(h(y)=0\) .

Therefore, the solution is \(z = f(x;y) = \boxed{x\sin (y) + x + C}\) .


28. \(f_x = x + y ; f_y = x + y\)

For a solution to exist, we must have \(f_{xy}=f_{yx}\) .

Checking this: \(f_{xy} = 1 =f_{yx}\) .
OK, we can proceed.

\(f_x = x + y\), so

\[\begin{aligned} z = f(x;y) &= \int{[f_x] dx} \\ &= \int[ x + y]dx \\ &= \frac{x^2}{2} + xy + h(y)+ C \end{aligned}\]

where \(h\) is any function of \(y\) (but not \(x\)).

\(f_y = x \cos (y)\)

\[\begin{aligned} z = f(x;y) &= \int [f_y] dy \\ &= \int[ x + y]dy \\ &= xy + \frac{y^2}{2} + g(x)+ C \end{aligned}\]

where \(g\) is any function of \(x\) (but not \(y\)).

So, we need to have:

\[\frac{x^2}{2} + xy + h(y)+ C = xy + \frac{y^2}{2} + g(x)+ C\]

which works when \(g(x)=\frac{x^2}{2}\) and \(h(y)=\frac{y^2}{2}\) .

Therefore, the solution is \[\begin{aligned} z=f(x;y) &=\frac{x^2}{2} + xy + \frac{y^2}{2} + C \\ &= \boxed{\frac{1}{2} (x+y)^2 + C} \end{aligned}\] .


29. \(f_x = 6xy - 4y^2 ; f_y = 3x^2 - 8xy + 2\)

For a solution to exist, we must have \(f_{xy}=f_{yx}\) .

Checking this: \(f_{xy} = 6x-8y =f_{yx}\) .
OK, we can proceed.

\(f_x = 6xy - 4y^2\), so

\[\begin{aligned} z = f(x;y) &= \int{[f_x] dx} \\ &= \int[6xy - 4y^2]dx \\ &= 3x^2y -4xy^2 + h(y)+ C \end{aligned}\]

where \(h\) is any function of \(y\) (but not \(x\)).

\(f_y = 3x^2 - 8xy + 2\)

\[\begin{aligned} z = f(x;y) &= \int [f_y] dy \\ &= \int[ 3x^2 - 8xy + 2]dy \\ &= 3x^2y -4xy^2 +2y + g(x)+ C \end{aligned}\]

where \(g\) is any function of \(x\) (but not \(y\)).

So, we need to have:

\[3x^2y -4xy^2 + h(y)+ C = 3x^2y -4xy^2 +2y + g(x)+ C\]

which works when \(g(x)=0\) and \(h(y)=2y\) .

The solution is \(z=f(x; y) = \boxed{3x^2y - 4xy^2 + 2y + C}\) .


30. \(f_x = \frac{2x}{x^2 + y^2} ; f_y = \frac{2y}{x^2 + y^2}\)

For a solution to exist, we must have \(f_{xy}=f_{yx}\) .

Checking this: \(f_{xy} = \frac{-2x2y}{(x^2+y^2)^2} =f_{yx}\) .
OK, we can proceed.

\(f_x = \frac{2x}{x^2 + y^2}\), so

\[\begin{aligned} z = f(x;y) &= \int{[f_x] dx} \\ &= \int\left[ \frac{2x}{x^2 + y^2}\right]dx \\ &= \ln\left(x^2 + y^2\right) + h(y)+ C \end{aligned}\]

where \(h\) is any function of \(y\) (but not \(x\)).

\(f_y = x \cos (y)\)

\[\begin{aligned} z = f(x;y) &= \int [f_y] dy \\ &= \int\left[ \frac{2y}{x^2 + y^2}\right]dy \\ &= \ln\left(x^2 + y^2\right) + g(x)+ C \end{aligned}\]

where \(g\) is any function of \(x\) (but not \(y\)).

So, we need to have:

\[\ln\left(x^2 + y^2\right)+ h(y)+ C = \ln\left(x^2 + y^2\right) + g(x)+ C\]

which works when \(g(x)=0=h(y)\) .

Therefore, the solution is \(z=f(x;y)=\boxed{\ln\left(x^2 + y^2\right) + C}\) .


What were the most valuable elements you took away from this course?

It was a very useful review of material which I had first learned a very long time ago.