Multiple Regression in Data with Ceiling and/or Floor Effects

Qimin Liu

12/1/2019

How hungry are you

How hungry are you

Definitions

Ceiling/floor effect occur

Current Practices in Empirical Research

Current State in Methodological Discussion: Consequences of Ceiling/floor Effects

(Jennings & Cribbie, 2016; Wang et al., 2008; uttl, 2005)

Potential Statistical Methods in Handling Ceiling/Floor Effects

  1. removing ceiling/floor values
  2. ignore ceiling/floor effects
  3. median regression
  4. permutation regression
  5. censored regression
  6. Bayesian censored regression estimating censored values
  7. Bayesian censored regression with likelihood integration

Maths on Method 1 and 2

Method 3 and 4: Nonparametric Regressions

Method 5 and 6 and 7: Censored Regression

Data Generation and Simulation Design

Results: Type I Error Rates and Power

n beta cp=10%,fp=0%_censored regression (be) cp=10%,fp=0%_censored regression (bi) cp=10%,fp=0%_censored regression (f) cp=10%,fp=0%_censoring cp=10%,fp=0%_median regression cp=10%,fp=0%_permutation regression cp=10%,fp=0%_reference cp=10%,fp=0%_truncation cp=10%,fp=20%_censored regression (be) cp=10%,fp=20%_censored regression (bi) cp=10%,fp=20%_censored regression (f) cp=10%,fp=20%_censoring cp=10%,fp=20%_median regression cp=10%,fp=20%_permutation regression cp=10%,fp=20%_reference cp=10%,fp=20%_truncation cp=15%,fp=15%_censored regression (be) cp=15%,fp=15%_censored regression (bi) cp=15%,fp=15%_censored regression (f) cp=15%,fp=15%_censoring cp=15%,fp=15%_median regression cp=15%,fp=15%_permutation regression cp=15%,fp=15%_reference cp=15%,fp=15%_truncation cp=20%,fp=0%_censored regression (be) cp=20%,fp=0%_censored regression (bi) cp=20%,fp=0%_censored regression (f) cp=20%,fp=0%_censoring cp=20%,fp=0%_median regression cp=20%,fp=0%_permutation regression cp=20%,fp=0%_reference cp=20%,fp=0%_truncation cp=30%,fp=0%_censored regression (be) cp=30%,fp=0%_censored regression (bi) cp=30%,fp=0%_censored regression (f) cp=30%,fp=0%_censoring cp=30%,fp=0%_median regression cp=30%,fp=0%_permutation regression cp=30%,fp=0%_reference cp=30%,fp=0%_truncation
50 1 0.132 0.130 0.168 0.127 0.013 0.130 0.132 0.107 0.099 0.095 0.131 0.091 0.007 0.093 0.111 0.060 0.110 0.107 0.138 0.103 0.014 0.105 0.119 0.063 0.118 0.122 0.154 0.126 0.012 0.125 0.122 0.097 0.111 0.115 0.135 0.110 0.011 0.105 0.131 0.095
50 2 0.670 0.672 0.719 0.668 0.171 0.674 0.689 0.532 0.657 0.663 0.717 0.648 0.159 0.638 0.715 0.255 0.645 0.649 0.707 0.636 0.172 0.630 0.698 0.218 0.638 0.636 0.705 0.614 0.121 0.616 0.670 0.407 0.637 0.633 0.689 0.616 0.092 0.609 0.706 0.328
50 3 0.972 0.969 0.984 0.971 0.576 0.966 0.980 0.895 0.970 0.968 0.977 0.960 0.596 0.962 0.971 0.472 0.968 0.967 0.980 0.965 0.628 0.960 0.978 0.489 0.966 0.968 0.972 0.966 0.569 0.965 0.973 0.791 0.970 0.970 0.981 0.959 0.434 0.956 0.981 0.671
50 4 0.058 0.061 0.088 0.065 0.003 0.068 0.063 0.062 0.044 0.047 0.067 0.050 0.002 0.052 0.042 0.066 0.056 0.060 0.072 0.055 0.005 0.062 0.049 0.066 0.044 0.045 0.063 0.051 0.004 0.050 0.047 0.057 0.046 0.042 0.069 0.051 0.001 0.054 0.050 0.050
200 1 0.396 0.397 0.410 0.382 0.129 0.408 0.405 0.312 0.381 0.389 0.397 0.367 0.166 0.382 0.404 0.154 0.387 0.394 0.402 0.377 0.158 0.387 0.426 0.152 0.387 0.379 0.399 0.372 0.123 0.404 0.402 0.241 0.366 0.373 0.381 0.339 0.099 0.343 0.390 0.187
200 2 0.998 0.998 0.998 0.999 0.955 0.997 0.999 0.994 1.000 1.000 1.000 1.000 0.941 0.997 0.999 0.741 0.999 0.999 0.999 0.996 0.960 0.994 0.999 0.732 0.999 0.999 0.999 0.999 0.948 0.998 0.999 0.954 0.998 0.999 0.999 0.999 0.892 0.993 1.000 0.922
200 3 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.977 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.982 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.999
200 4 0.052 0.052 0.055 0.049 0.013 0.076 0.053 0.058 0.053 0.051 0.054 0.054 0.018 0.064 0.053 0.049 0.056 0.055 0.059 0.052 0.017 0.068 0.048 0.053 0.044 0.046 0.047 0.041 0.010 0.061 0.038 0.042 0.060 0.060 0.066 0.060 0.009 0.073 0.056 0.052

Results: Parameter Estimates

n beta cp=10%,fp=0%_censored regression (be) cp=10%,fp=0%_censored regression (bi) cp=10%,fp=0%_censored regression (f) cp=10%,fp=0%_censoring cp=10%,fp=0%_median regression cp=10%,fp=0%_permutation regression cp=10%,fp=0%_reference cp=10%,fp=0%_truncation cp=10%,fp=20%_censored regression (be) cp=10%,fp=20%_censored regression (bi) cp=10%,fp=20%_censored regression (f) cp=10%,fp=20%_censoring cp=10%,fp=20%_median regression cp=10%,fp=20%_permutation regression cp=10%,fp=20%_reference cp=10%,fp=20%_truncation cp=15%,fp=15%_censored regression (be) cp=15%,fp=15%_censored regression (bi) cp=15%,fp=15%_censored regression (f) cp=15%,fp=15%_censoring cp=15%,fp=15%_median regression cp=15%,fp=15%_permutation regression cp=15%,fp=15%_reference cp=15%,fp=15%_truncation cp=20%,fp=0%_censored regression (be) cp=20%,fp=0%_censored regression (bi) cp=20%,fp=0%_censored regression (f) cp=20%,fp=0%_censoring cp=20%,fp=0%_median regression cp=20%,fp=0%_permutation regression cp=20%,fp=0%_reference cp=20%,fp=0%_truncation cp=30%,fp=0%_censored regression (be) cp=30%,fp=0%_censored regression (bi) cp=30%,fp=0%_censored regression (f) cp=30%,fp=0%_censoring cp=30%,fp=0%_median regression cp=30%,fp=0%_permutation regression cp=30%,fp=0%_reference cp=30%,fp=0%_truncation
50 1 0.1068103 0.1066927 0.1071195 0.0939212 0.0989071 0.0939212 0.1044278 0.0832662 0.1046543 0.1046744 0.0977054 0.0668568 0.0752039 0.0668568 0.0949603 0.0365953 0.1081631 0.1081300 0.1012898 0.0706601 0.0787607 0.0706601 0.1003783 0.0419585 0.1050710 0.1049670 0.1044296 0.0814513 0.0841253 0.0814513 0.0993134 0.0693879 0.1115152 0.1115794 0.1085992 0.0736427 0.0771938 0.0736427 0.1045223 0.0648339
50 2 0.3113484 0.3115849 0.3131665 0.2737384 0.2818455 0.2737384 0.3046058 0.2406427 0.3318030 0.3319958 0.3107099 0.2150668 0.2408360 0.2150668 0.3040710 0.1305011 0.3294676 0.3296982 0.3082058 0.2132292 0.2432040 0.2132292 0.3026674 0.1226158 0.3117976 0.3116716 0.3089038 0.2400819 0.2466260 0.2400819 0.3001841 0.2063769 0.3208592 0.3208474 0.3128206 0.2113522 0.2029581 0.2113522 0.3019216 0.1805107
50 3 0.5120808 0.5120910 0.5142052 0.4503320 0.4657623 0.4503320 0.5007524 0.3939106 0.5542321 0.5543724 0.5182033 0.3567800 0.3989314 0.3567800 0.5081656 0.2070674 0.5387776 0.5388192 0.5040692 0.3495306 0.3959083 0.3495306 0.4966473 0.2039384 0.5249557 0.5249486 0.5195880 0.4020290 0.4147345 0.4020290 0.5029494 0.3413054 0.5340196 0.5338216 0.5197238 0.3523806 0.3449766 0.3523806 0.5036692 0.3004566
50 4 0.0000047 0.0000093 -0.0001122 -0.0003304 -0.0028192 -0.0003304 0.0001943 -0.0004457 0.0028049 0.0028772 0.0024933 0.0012535 0.0040837 0.0012535 0.0011574 -0.0012499 -0.0034736 -0.0034845 -0.0033187 -0.0024066 -0.0006603 -0.0024066 -0.0036326 -0.0022734 -0.0030759 -0.0029878 -0.0031039 -0.0025369 0.0030607 -0.0025369 -0.0015765 -0.0051626 -0.0001311 -0.0000711 -0.0005109 -0.0015974 -0.0014496 -0.0015974 -0.0013459 -0.0042646
200 1 0.0991284 0.0991011 0.0992514 0.0891007 0.0923082 0.0891007 0.0984336 0.0792487 0.1035367 0.1035755 0.1021181 0.0713824 0.0813459 0.0713824 0.1018499 0.0422851 0.1042250 0.1042746 0.1027949 0.0716079 0.0833602 0.0716079 0.1021797 0.0417730 0.1009610 0.1009351 0.1008726 0.0803904 0.0830955 0.0803904 0.1004391 0.0693118 0.0998889 0.0999139 0.0993589 0.0685184 0.0674682 0.0685184 0.0985235 0.0577913
200 2 0.3040981 0.3041042 0.3046572 0.2726347 0.2855593 0.2726347 0.3027038 0.2395067 0.3048201 0.3048325 0.3006714 0.2100201 0.2412767 0.2100201 0.2994671 0.1255456 0.3078873 0.3078700 0.3036176 0.2114184 0.2467635 0.2114184 0.3013494 0.1224405 0.3040142 0.3039241 0.3035960 0.2412699 0.2503357 0.2412699 0.3014108 0.2049972 0.3080390 0.3079963 0.3066138 0.2138026 0.2076169 0.2138026 0.3036726 0.1851017
200 3 0.5029657 0.5029566 0.5039231 0.4509183 0.4739039 0.4509183 0.5014567 0.3968365 0.5054626 0.5055101 0.4986235 0.3486325 0.3994254 0.3486325 0.4957156 0.2080090 0.5078272 0.5078010 0.5007662 0.3492600 0.4072849 0.3492600 0.4983484 0.2029912 0.5055851 0.5055937 0.5050841 0.4012171 0.4153834 0.4012171 0.5016490 0.3422358 0.5070815 0.5070605 0.5049121 0.3518037 0.3437803 0.3518037 0.5003554 0.3029605
200 4 0.0001995 0.0001984 0.0001220 -0.0001105 0.0000027 -0.0001105 0.0007677 -0.0010759 -0.0007076 -0.0006834 -0.0006941 -0.0005993 -0.0007035 -0.0005993 -0.0003969 -0.0000553 0.0018669 0.0018363 0.0018393 0.0014763 0.0016263 0.0014763 0.0022301 0.0020070 0.0015217 0.0015315 0.0015272 0.0019528 0.0012038 0.0019528 0.0014910 0.0027730 0.0017259 0.0017631 0.0016821 0.0011784 0.0003403 0.0011784 0.0008632 0.0006019

Conclusion