Synopsis: We have analyzed date U.S. National Oceanic and Atmospheric Administration’s (NOAA) storm database. To find what are the event types which cause most of the damage to human health and damages our econonmy so that we can tackle and assign our resources to lessen the adverse effect.

Analysis shows that most of the human Fatalities are caused by Tornado followed by Excessive Heat and most of the human Injuries are caused by Tornado followed by TSTM WIND Where as most the damages to economy is caused by Flood followed by HURRICANE/TYPHOON .

Data Processing

library(dplyr)
library(ggplot2)
library(R.utils)

Reading Data

url <- "https://d396qusza40orc.cloudfront.net/repdata%2Fdata%2FStormData.csv.bz2"
download.file(url, "StormData.csv.bz2")
bunzip2("StormData.csv.bz2", "StormData.csv")
data=read.csv("StormData.csv")

Summary of Data

summary(data)
##     STATE__                  BGN_DATE             BGN_TIME     
##  Min.   : 1.0   5/25/2011 0:00:00:  1202   12:00:00 AM: 10163  
##  1st Qu.:19.0   4/27/2011 0:00:00:  1193   06:00:00 PM:  7350  
##  Median :30.0   6/9/2011 0:00:00 :  1030   04:00:00 PM:  7261  
##  Mean   :31.2   5/30/2004 0:00:00:  1016   05:00:00 PM:  6891  
##  3rd Qu.:45.0   4/4/2011 0:00:00 :  1009   12:00:00 PM:  6703  
##  Max.   :95.0   4/2/2006 0:00:00 :   981   03:00:00 PM:  6700  
##                 (Other)          :895866   (Other)    :857229  
##    TIME_ZONE          COUNTY           COUNTYNAME         STATE       
##  CST    :547493   Min.   :  0.0   JEFFERSON :  7840   TX     : 83728  
##  EST    :245558   1st Qu.: 31.0   WASHINGTON:  7603   KS     : 53440  
##  MST    : 68390   Median : 75.0   JACKSON   :  6660   OK     : 46802  
##  PST    : 28302   Mean   :100.6   FRANKLIN  :  6256   MO     : 35648  
##  AST    :  6360   3rd Qu.:131.0   LINCOLN   :  5937   IA     : 31069  
##  HST    :  2563   Max.   :873.0   MADISON   :  5632   NE     : 30271  
##  (Other):  3631                   (Other)   :862369   (Other):621339  
##                EVTYPE         BGN_RANGE           BGN_AZI      
##  HAIL             :288661   Min.   :   0.000          :547332  
##  TSTM WIND        :219940   1st Qu.:   0.000   N      : 86752  
##  THUNDERSTORM WIND: 82563   Median :   0.000   W      : 38446  
##  TORNADO          : 60652   Mean   :   1.484   S      : 37558  
##  FLASH FLOOD      : 54277   3rd Qu.:   1.000   E      : 33178  
##  FLOOD            : 25326   Max.   :3749.000   NW     : 24041  
##  (Other)          :170878                      (Other):134990  
##          BGN_LOCATI                  END_DATE             END_TIME     
##               :287743                    :243411              :238978  
##  COUNTYWIDE   : 19680   4/27/2011 0:00:00:  1214   06:00:00 PM:  9802  
##  Countywide   :   993   5/25/2011 0:00:00:  1196   05:00:00 PM:  8314  
##  SPRINGFIELD  :   843   6/9/2011 0:00:00 :  1021   04:00:00 PM:  8104  
##  SOUTH PORTION:   810   4/4/2011 0:00:00 :  1007   12:00:00 PM:  7483  
##  NORTH PORTION:   784   5/30/2004 0:00:00:   998   11:59:00 PM:  7184  
##  (Other)      :591444   (Other)          :653450   (Other)    :622432  
##    COUNTY_END COUNTYENDN       END_RANGE           END_AZI      
##  Min.   :0    Mode:logical   Min.   :  0.0000          :724837  
##  1st Qu.:0    NA's:902297    1st Qu.:  0.0000   N      : 28082  
##  Median :0                   Median :  0.0000   S      : 22510  
##  Mean   :0                   Mean   :  0.9862   W      : 20119  
##  3rd Qu.:0                   3rd Qu.:  0.0000   E      : 20047  
##  Max.   :0                   Max.   :925.0000   NE     : 14606  
##                                                 (Other): 72096  
##            END_LOCATI         LENGTH              WIDTH         
##                 :499225   Min.   :   0.0000   Min.   :   0.000  
##  COUNTYWIDE     : 19731   1st Qu.:   0.0000   1st Qu.:   0.000  
##  SOUTH PORTION  :   833   Median :   0.0000   Median :   0.000  
##  NORTH PORTION  :   780   Mean   :   0.2301   Mean   :   7.503  
##  CENTRAL PORTION:   617   3rd Qu.:   0.0000   3rd Qu.:   0.000  
##  SPRINGFIELD    :   575   Max.   :2315.0000   Max.   :4400.000  
##  (Other)        :380536                                         
##        F               MAG            FATALITIES          INJURIES        
##  Min.   :0.0      Min.   :    0.0   Min.   :  0.0000   Min.   :   0.0000  
##  1st Qu.:0.0      1st Qu.:    0.0   1st Qu.:  0.0000   1st Qu.:   0.0000  
##  Median :1.0      Median :   50.0   Median :  0.0000   Median :   0.0000  
##  Mean   :0.9      Mean   :   46.9   Mean   :  0.0168   Mean   :   0.1557  
##  3rd Qu.:1.0      3rd Qu.:   75.0   3rd Qu.:  0.0000   3rd Qu.:   0.0000  
##  Max.   :5.0      Max.   :22000.0   Max.   :583.0000   Max.   :1700.0000  
##  NA's   :843563                                                           
##     PROPDMG          PROPDMGEXP        CROPDMG          CROPDMGEXP    
##  Min.   :   0.00          :465934   Min.   :  0.000          :618413  
##  1st Qu.:   0.00   K      :424665   1st Qu.:  0.000   K      :281832  
##  Median :   0.00   M      : 11330   Median :  0.000   M      :  1994  
##  Mean   :  12.06   0      :   216   Mean   :  1.527   k      :    21  
##  3rd Qu.:   0.50   B      :    40   3rd Qu.:  0.000   0      :    19  
##  Max.   :5000.00   5      :    28   Max.   :990.000   B      :     9  
##                    (Other):    84                     (Other):     9  
##       WFO                                       STATEOFFIC    
##         :142069                                      :248769  
##  OUN    : 17393   TEXAS, North                       : 12193  
##  JAN    : 13889   ARKANSAS, Central and North Central: 11738  
##  LWX    : 13174   IOWA, Central                      : 11345  
##  PHI    : 12551   KANSAS, Southwest                  : 11212  
##  TSA    : 12483   GEORGIA, North and Central         : 11120  
##  (Other):690738   (Other)                            :595920  
##                                                                                                                                                                                                     ZONENAMES     
##                                                                                                                                                                                                          :594029  
##                                                                                                                                                                                                          :205988  
##  GREATER RENO / CARSON CITY / M - GREATER RENO / CARSON CITY / M                                                                                                                                         :   639  
##  GREATER LAKE TAHOE AREA - GREATER LAKE TAHOE AREA                                                                                                                                                       :   592  
##  JEFFERSON - JEFFERSON                                                                                                                                                                                   :   303  
##  MADISON - MADISON                                                                                                                                                                                       :   302  
##  (Other)                                                                                                                                                                                                 :100444  
##     LATITUDE      LONGITUDE        LATITUDE_E     LONGITUDE_    
##  Min.   :   0   Min.   :-14451   Min.   :   0   Min.   :-14455  
##  1st Qu.:2802   1st Qu.:  7247   1st Qu.:   0   1st Qu.:     0  
##  Median :3540   Median :  8707   Median :   0   Median :     0  
##  Mean   :2875   Mean   :  6940   Mean   :1452   Mean   :  3509  
##  3rd Qu.:4019   3rd Qu.:  9605   3rd Qu.:3549   3rd Qu.:  8735  
##  Max.   :9706   Max.   : 17124   Max.   :9706   Max.   :106220  
##  NA's   :47                      NA's   :40                     
##                                            REMARKS           REFNUM      
##                                                :287433   Min.   :     1  
##                                                : 24013   1st Qu.:225575  
##  Trees down.\n                                 :  1110   Median :451149  
##  Several trees were blown down.\n              :   569   Mean   :451149  
##  Trees were downed.\n                          :   446   3rd Qu.:676723  
##  Large trees and power lines were blown down.\n:   432   Max.   :902297  
##  (Other)                                       :588294

Processing data for Analysis

newdata=select(data,FATALITIES,INJURIES,EVTYPE,PROPDMG,CROPDMG,PROPDMGEXP,CROPDMGEXP)
healthfat=newdata%>%select(FATALITIES,EVTYPE)%>%group_by(EVTYPE)%>%summarise(totalfat=sum(FATALITIES))%>%arrange(-totalfat)
head(healthfat)
## # A tibble: 6 x 2
##   EVTYPE         totalfat
##   <fct>             <dbl>
## 1 TORNADO            5633
## 2 EXCESSIVE HEAT     1903
## 3 FLASH FLOOD         978
## 4 HEAT                937
## 5 LIGHTNING           816
## 6 TSTM WIND           504
healthinj=newdata%>%select(INJURIES,EVTYPE)%>%group_by(EVTYPE)%>%summarise(totalinj=sum(INJURIES))%>%arrange(-totalinj)
head(healthinj)
## # A tibble: 6 x 2
##   EVTYPE         totalinj
##   <fct>             <dbl>
## 1 TORNADO           91346
## 2 TSTM WIND          6957
## 3 FLOOD              6789
## 4 EXCESSIVE HEAT     6525
## 5 LIGHTNING          5230
## 6 HEAT               2100
economicdata=select(newdata,EVTYPE,PROPDMG,CROPDMG,PROPDMGEXP,CROPDMGEXP)
economicdata=subset(economicdata,economicdata$PROPDMGEXP=="k"|economicdata$PROPDMGEXP=="K"|economicdata$PROPDMGEXP=="m"|economicdata$PROPDMGEXP=="M"|economicdata$PROPDMGEXP=="b"|economicdata$PROPDMGEXP=="B")
economicdata=subset(economicdata,economicdata$CROPDMGEXP=="k"|economicdata$CROPDMGEXP=="K"|economicdata$CROPDMGEXP=="m"|economicdata$CROPDMGEXP=="M"|economicdata$CROPDMGEXP=="b"|economicdata$CROPDMGEXP=="B")
head(economicdata)
##                           EVTYPE PROPDMG CROPDMG PROPDMGEXP CROPDMGEXP
## 187566 HURRICANE OPAL/HIGH WINDS     0.1      10          B          M
## 187571        THUNDERSTORM WINDS     5.0     500          M          K
## 187581            HURRICANE ERIN    25.0       1          M          M
## 187583            HURRICANE OPAL    48.0       4          M          M
## 187584            HURRICANE OPAL    20.0      10          m          m
## 187653        THUNDERSTORM WINDS    50.0      50          K          K

Decrypting numerical value of symbol to calculate damages

economicdata$PROPDMGEXP=gsub("m",1e+06,economicdata$PROPDMGEXP,ignore.case = TRUE)
economicdata$PROPDMGEXP=gsub("k",1000,economicdata$PROPDMGEXP,ignore.case = TRUE)
economicdata$PROPDMGEXP=gsub("b",1e+09,economicdata$PROPDMGEXP,ignore.case = TRUE)
economicdata$CROPDMGEXP=gsub("m",1e+06,economicdata$CROPDMGEXP,ignore.case = TRUE)
economicdata$CROPDMGEXP=gsub("k",1000,economicdata$CROPDMGEXP,ignore.case = TRUE)
economicdata$CROPDMGEXP=gsub("b",1e+09,economicdata$CROPDMGEXP,ignore.case = TRUE)
economicdata$PROPDMGEXP=as.numeric(economicdata$PROPDMGEXP)
economicdata$CROPDMGEXP=as.numeric(economicdata$CROPDMGEXP)
economicdata$totalloss=(economicdata$PROPDMG*economicdata$PROPDMGEXP)+(economicdata$CROPDMG*economicdata$CROPDMGEXP)
economyloss=economicdata%>%group_by(EVTYPE)%>%summarise(totalloss=sum(totalloss))%>%arrange(-totalloss)

Ranking Fatalities and Injuries to human caused by Weather events.

healthfat=healthfat[1:5,]
healthfat
## # A tibble: 5 x 2
##   EVTYPE         totalfat
##   <fct>             <dbl>
## 1 TORNADO            5633
## 2 EXCESSIVE HEAT     1903
## 3 FLASH FLOOD         978
## 4 HEAT                937
## 5 LIGHTNING           816
healthinj=healthinj[1:5,]
healthinj
## # A tibble: 5 x 2
##   EVTYPE         totalinj
##   <fct>             <dbl>
## 1 TORNADO           91346
## 2 TSTM WIND          6957
## 3 FLOOD              6789
## 4 EXCESSIVE HEAT     6525
## 5 LIGHTNING          5230

Ranking Total damages to econmony caused by Weather events.

economyloss=economyloss[1:5,]
economyloss
## # A tibble: 5 x 2
##   EVTYPE               totalloss
##   <fct>                    <dbl>
## 1 FLOOD             138007444500
## 2 HURRICANE/TYPHOON  29348167800
## 3 TORNADO            16520148150
## 4 HURRICANE          12405268000
## 5 RIVER FLOOD        10108369000

Plots Fatalilities Plot

fat_plot=ggplot()+geom_bar(data = healthfat,aes(x=EVTYPE,y=totalfat),stat = "identity",show.legend = FALSE)+xlab("Harmful effect")+ylab("Fatalities")+ggtitle("Top 5 event causing fatalities in US")
fat_plot

Injuries Plot

inj_plot=ggplot()+geom_bar(data = healthinj,aes(x=EVTYPE,y=totalinj),stat = "identity",show.legend = FALSE)+xlab("Harmful effect")+ylab("Injuries")+ggtitle("Top 5 event causing injuries in US")
inj_plot

Damages to Economy plot

eco_plot=ggplot()+geom_bar(data = economyloss,aes(x=EVTYPE,y=totalloss),stat = "identity",show.legend = FALSE)+ xlab("Harmful effect")+ ylab("Total Damage")+ggtitle("Top 5 event causing economic damages in US")
eco_plot

Summary: As we can clearly say with Ranking and Plot, most of the human Fatalities are caused by Tornado followed by Excessive Heat and most of the human Injuries are caused by Tornado followed by TSTM WIND Where as most the damages to economy is caused by Flood followed by HURRICANE/TYPHOON ..