Data Analytics in Marketing Project

## Warning: package 'tidyverse' was built under R version 3.5.3
## -- Attaching packages --------------------------------------- tidyverse 1.2.1 --
## v ggplot2 3.2.0     v purrr   0.3.2
## v tibble  2.1.3     v dplyr   0.8.2
## v tidyr   0.8.3     v stringr 1.4.0
## v readr   1.3.1     v forcats 0.4.0
## Warning: package 'ggplot2' was built under R version 3.5.3
## Warning: package 'tibble' was built under R version 3.5.3
## Warning: package 'tidyr' was built under R version 3.5.3
## Warning: package 'readr' was built under R version 3.5.3
## Warning: package 'purrr' was built under R version 3.5.3
## Warning: package 'dplyr' was built under R version 3.5.3
## Warning: package 'stringr' was built under R version 3.5.3
## Warning: package 'forcats' was built under R version 3.5.3
## -- Conflicts ------------------------------------------ tidyverse_conflicts() --
## x dplyr::filter() masks stats::filter()
## x dplyr::lag()    masks stats::lag()
## Warning: package 'psych' was built under R version 3.5.3
## 
## Attaching package: 'psych'
## The following objects are masked from 'package:ggplot2':
## 
##     %+%, alpha
## Warning: package 'rattle' was built under R version 3.5.3
## Rattle: A free graphical interface for data science with R.
## Version 5.2.0 Copyright (c) 2006-2018 Togaware Pty Ltd.
## Type 'rattle()' to shake, rattle, and roll your data.
## 
## Attaching package: 'magrittr'
## The following object is masked from 'package:purrr':
## 
##     set_names
## The following object is masked from 'package:tidyr':
## 
##     extract
## Warning: package 'gplots' was built under R version 3.5.3
## 
## Attaching package: 'gplots'
## The following object is masked from 'package:stats':
## 
##     lowess
## corrplot 0.84 loaded
## -------------------------------------------------------------------------
## You have loaded plyr after dplyr - this is likely to cause problems.
## If you need functions from both plyr and dplyr, please load plyr first, then dplyr:
## library(plyr); library(dplyr)
## -------------------------------------------------------------------------
## 
## Attaching package: 'plyr'
## The following objects are masked from 'package:dplyr':
## 
##     arrange, count, desc, failwith, id, mutate, rename, summarise,
##     summarize
## The following object is masked from 'package:purrr':
## 
##     compact
## 
## Attaching package: 'corrgram'
## The following object is masked from 'package:plyr':
## 
##     baseball
## Warning: package 'MASS' was built under R version 3.5.3
## 
## Attaching package: 'MASS'
## The following object is masked from 'package:dplyr':
## 
##     select

Data Cleaning

The first stage of our project would be to identify ommited and anomality in the data and clean

## [1] 24973     9
## [1] "Brand"            "Condition"        "Fuel"            
## [4] "KMs.Driven"       "Model"            "Price"           
## [7] "Registered.City"  "Transaction.Type" "Year"

We will next determine which are the variables which have empty values

## [1] 0
## [1] 0
## [1] 0
## [1] 2286
## [1] 0
## [1] 0
## [1] 0
## [1] 2284

From the following operations we see there are missing values in KMs Driven and Year but we would like to investigate further if these are the only empty fields or are there others too

## 'data.frame':    24973 obs. of  9 variables:
##  $ Brand           : Factor w/ 24 levels "","Audi","BMW",..: 24 23 23 23 24 24 23 24 23 10 ...
##  $ Condition       : Factor w/ 3 levels "","New","Used": 3 3 3 3 3 3 2 2 3 3 ...
##  $ Fuel            : Factor w/ 6 levels "","CNG","Diesel",..: 3 6 2 6 6 6 2 6 2 6 ...
##  $ KMs.Driven      : int  1 100000 12345 94000 100000 80000 65000 10241 83000 1 ...
##  $ Model           : Factor w/ 304 levels "","120 Y","2 Series",..: 221 49 49 31 98 100 109 100 31 83 ...
##  $ Price           : int  2100000 380000 340000 535000 1430000 1620000 450000 2900000 490000 480000 ...
##  $ Registered.City : Factor w/ 62 levels "","Abbottabad",..: 26 26 26 26 26 26 26 26 26 26 ...
##  $ Transaction.Type: Factor w/ 3 levels "","Cash","Installment/Leasing": 2 2 2 2 2 2 2 2 2 2 ...
##  $ Year            : int  1997 2006 1998 2010 2013 2012 2006 2017 2009 1997 ...

In the following case we can see that many of the Factor variables are starting with "", this means they are empty strings and are orginally missing values, we would need to clean these up as well

## [1] 2137
## [1] 2136
## [1] 2445
## [1] 2286
## [1] 2448
## [1] 4636
## [1] 2445
## [1] 2284

From the information given above, we determine there were many hidden omitted values We would next like to fix the continous variables first by replace the blank space by something relevant

##      n   na     m        x
## 1 3146 2286 66510 127811.2
##    n   na    m        x
## 1 66 2284 2008 2005.902

Now since the contionous variables are fixed, next we would try to manipulate the data to our convinience for our research

##  [1] "Abbottabad"       "Ali Masjid"       "Askoley"         
##  [4] "Attock"           "Badin"            "Bagh"            
##  [7] "Bahawalnagar"     "Bahawalpur"       "Bela"            
## [10] "Bhimber"          "Burewala"         "Chilas"          
## [13] "Chiniot"          "Chitral"          "Dera Ghazi Khan" 
## [16] "Dera Ismail Khan" "Faisalabad"       "Gujranwala"      
## [19] "Gujrat"           "Haripur"          "Hyderabad"       
## [22] "Islamabad"        "Jhelum"           "Kandhura"        
## [25] "Karachi"          "Karak"            "Kasur"           
## [28] "Khairpur"         "Khanewal"         "Khanpur"         
## [31] "Khaplu"           "Khushab"          "Kohat"           
## [34] "Lahore"           "Larkana"          "Lasbela"         
## [37] "Mandi Bahauddin"  "Mardan"           "Mirpur"          
## [40] "Multan"           "Muzaffarabad"     "Muzaffargarh"    
## [43] "Nawabshah"        "Nowshera"         "Okara"           
## [46] "Pakpattan"        "Peshawar"         "Quetta"          
## [49] "Rahimyar Khan"    "Rawalpindi"       "Sahiwal"         
## [52] "Sargodha"         "Sheikhüpura"      "Sialkot"         
## [55] "Sukkar"           "Sukkur"           "Swabi"           
## [58] "Swat"             "Tank"             "Vehari"          
## [61] "Wah"
##  [1] "Abbottabad"       "Ali Masjid"       "Askoley"         
##  [4] "Attock"           "Badin"            "Bagh"            
##  [7] "Bahawalnagar"     "Bahawalpur"       "Bela"            
## [10] "Bhimber"          "Burewala"         "Chilas"          
## [13] "Chiniot"          "Chitral"          "Dera Ghazi Khan" 
## [16] "Dera Ismail Khan" "Faisalabad"       "Gujranwala"      
## [19] "Gujrat"           "Haripur"          "Hyderabad"       
## [22] "Capital"          "Jhelum"           "Kandhura"        
## [25] "Karak"            "Kasur"            "Khairpur"        
## [28] "Khanewal"         "Khanpur"          "Khaplu"          
## [31] "Khushab"          "Kohat"            "Larkana"         
## [34] "Lasbela"          "Mandi Bahauddin"  "Mardan"          
## [37] "Mirpur"           "Multan"           "Muzaffargarh"    
## [40] "Nawabshah"        "Nowshera"         "Okara"           
## [43] "Pakpattan"        "Rahimyar Khan"    "Rawalpindi"      
## [46] "Sahiwal"          "Sargodha"         "Sheikhüpura"     
## [49] "Sialkot"          "Sukkar"           "Sukkur"          
## [52] "Swabi"            "Swat"             "Tank"            
## [55] "Vehari"           "Wah"
# Since capital cities are sorted we would next sort the non-capitals as well
revalue(df$Registered.City, c("Abbottabad" = "Non-Capital")) -> df$Registered.City
revalue(df$Registered.City, c("Ali Masjid" = "Non-Capital")) -> df$Registered.City
revalue(df$Registered.City, c("Askoley" = "Non-Capital")) -> df$Registered.City
revalue(df$Registered.City, c("Attock" = "Non-Capital")) -> df$Registered.City
revalue(df$Registered.City, c("Badin" = "Non-Capital")) -> df$Registered.City
revalue(df$Registered.City, c("Bagh" = "Non-Capital")) -> df$Registered.City
revalue(df$Registered.City, c("Bahawalnagar" = "Non-Capital")) -> df$Registered.City
revalue(df$Registered.City, c("Bahawalpur" = "Non-Capital")) -> df$Registered.City
revalue(df$Registered.City, c("Bela" = "Non-Capital")) -> df$Registered.City
revalue(df$Registered.City, c("Bhimber" = "Non-Capital")) -> df$Registered.City
revalue(df$Registered.City, c("Burewala" = "Non-Capital")) -> df$Registered.City
revalue(df$Registered.City, c("Chilas" = "Non-Capital")) -> df$Registered.City
revalue(df$Registered.City, c("Chiniot" = "Non-Capital")) -> df$Registered.City
revalue(df$Registered.City, c("Chitral" = "Non-Capital")) -> df$Registered.City
revalue(df$Registered.City, c("Dera Ghazi Khan" = "Non-Capital")) -> df$Registered.City
revalue(df$Registered.City, c("Dera Ismail Khan" = "Non-Capital")) -> df$Registered.City
revalue(df$Registered.City, c("Faisalabad" = "Non-Capital")) -> df$Registered.City
revalue(df$Registered.City, c("Gujranwala" = "Non-Capital")) -> df$Registered.City
revalue(df$Registered.City, c("Gujrat" = "Non-Capital")) -> df$Registered.City
revalue(df$Registered.City, c("Haripur" = "Non-Capital")) -> df$Registered.City
revalue(df$Registered.City, c("Hyderabad" = "Non-Capital")) -> df$Registered.City
revalue(df$Registered.City, c("Jhelum" = "Non-Capital")) -> df$Registered.City
revalue(df$Registered.City, c("Kandhura" = "Non-Capital")) -> df$Registered.City
revalue(df$Registered.City, c("Karak" = "Non-Capital")) -> df$Registered.City
revalue(df$Registered.City, c("Kasur" = "Non-Capital")) -> df$Registered.City
revalue(df$Registered.City, c("Khairpur" = "Non-Capital")) -> df$Registered.City
revalue(df$Registered.City, c("Khanewal" = "Non-Capital")) -> df$Registered.City
revalue(df$Registered.City, c("Khanpur" = "Non-Capital")) -> df$Registered.City
revalue(df$Registered.City, c("Khaplu" = "Non-Capital")) -> df$Registered.City
revalue(df$Registered.City, c("Khushab" = "Non-Capital")) -> df$Registered.City
revalue(df$Registered.City, c("Kohat" = "Non-Capital")) -> df$Registered.City
revalue(df$Registered.City, c("Larkana" = "Non-Capital")) -> df$Registered.City
revalue(df$Registered.City, c("Lasbela" = "Non-Capital")) -> df$Registered.City
revalue(df$Registered.City, c("Mandi Bahauddin" = "Non-Capital")) -> df$Registered.City
revalue(df$Registered.City, c("Mardan" = "Non-Capital")) -> df$Registered.City
revalue(df$Registered.City, c("Mirpur" = "Non-Capital")) -> df$Registered.City
revalue(df$Registered.City, c("Multan" = "Non-Capital")) -> df$Registered.City
revalue(df$Registered.City, c("Muzaffargarh" = "Non-Capital")) -> df$Registered.City
revalue(df$Registered.City, c("Nawabshah" = "Non-Capital")) -> df$Registered.City
revalue(df$Registered.City, c("Nowshera" = "Non-Capital")) -> df$Registered.City
revalue(df$Registered.City, c("Okara" = "Non-Capital")) -> df$Registered.City
revalue(df$Registered.City, c("Pakpattan" = "Non-Capital")) -> df$Registered.City
revalue(df$Registered.City, c("Rahimyar Khan" = "Non-Capital")) -> df$Registered.City
revalue(df$Registered.City, c("Rawalpindi" = "Non-Capital")) -> df$Registered.City
revalue(df$Registered.City, c("Sahiwal" = "Non-Capital")) -> df$Registered.City
revalue(df$Registered.City, c("Sargodha" = "Non-Capital")) -> df$Registered.City
revalue(df$Registered.City, c("Sheikhüpura" = "Non-Capital")) -> df$Registered.City
revalue(df$Registered.City, c("Sialkot" = "Non-Capital")) -> df$Registered.City
revalue(df$Registered.City, c("Sukkar" = "Non-Capital")) -> df$Registered.City
revalue(df$Registered.City, c("Sukkur" = "Non-Capital")) -> df$Registered.City
revalue(df$Registered.City, c("Swabi" = "Non-Capital")) -> df$Registered.City
revalue(df$Registered.City, c("Swat" = "Non-Capital")) -> df$Registered.City
revalue(df$Registered.City, c("Tank" = "Non-Capital")) -> df$Registered.City
revalue(df$Registered.City, c("Vehari" = "Non-Capital")) -> df$Registered.City
revalue(df$Registered.City, c("Wah" = "Non-Capital")) -> df$Registered.City

Now that Registered city is fixed we would like to manipulate the models of the car as well

revalue(df$Model, c("120 Y" = "Coupe")) -> df$Model
revalue(df$Model, c("2 Series" = "Sedan")) -> df$Model
revalue(df$Model, c("200 D" = "Sedan")) -> df$Model
revalue(df$Model, c("240 Gd" = "SUV")) -> df$Model
revalue(df$Model, c("250 D" = "Hatchback")) -> df$Model
revalue(df$Model, c("3 Series" = "Sedan")) -> df$Model
revalue(df$Model, c("323" = "Sedan")) -> df$Model
revalue(df$Model, c("350Z" = "Coupe")) -> df$Model
revalue(df$Model, c("5 Series" = "Sedan")) -> df$Model
revalue(df$Model, c("6 Series" = "Coupe")) -> df$Model
revalue(df$Model, c("626" = "Sedan")) -> df$Model
revalue(df$Model, c("7 Series" = "Sedan")) -> df$Model
revalue(df$Model, c("808" = "Sedan")) -> df$Model
revalue(df$Model, c("86" = "Coupe")) -> df$Model
revalue(df$Model, c("929" = "Sedan")) -> df$Model
revalue(df$Model, c("A Class" = "Hatchback")) -> df$Model
revalue(df$Model, c("A1" = "Hatchback")) -> df$Model
revalue(df$Model, c("A3" = "Hatchback")) -> df$Model
revalue(df$Model, c("A4" = "Sedan")) -> df$Model
revalue(df$Model, c("A5" = "Sedan")) -> df$Model
revalue(df$Model, c("A6" = "Sedan")) -> df$Model
revalue(df$Model, c("Accent" = "Sedan")) -> df$Model
revalue(df$Model, c("Accord" = "Sedan")) -> df$Model
revalue(df$Model, c("Acty" = "Truck")) -> df$Model
revalue(df$Model, c("Acura" = "Hatchback")) -> df$Model
revalue(df$Model, c("AD Van" = "SUV")) -> df$Model
revalue(df$Model, c("Airwave" = "SUV")) -> df$Model
revalue(df$Model, c("Allion" = "Sedan")) -> df$Model
revalue(df$Model, c("Alphard Hybrid" = "Hatchback")) -> df$Model
revalue(df$Model, c("Alto" = "Hatchback")) -> df$Model
revalue(df$Model, c("Alto Lapin" = "SUV")) -> df$Model
revalue(df$Model, c("APV" = "SUV")) -> df$Model
revalue(df$Model, c("Aqua" = "Hatchback")) -> df$Model
revalue(df$Model, c("Atrai Wagon" = "SUV")) -> df$Model
revalue(df$Model, c("Auris" = "Hatchback")) -> df$Model
revalue(df$Model, c("Avanza" = "Hatchback")) -> df$Model
revalue(df$Model, c("Axela" = "Hatchback")) -> df$Model
revalue(df$Model, c("Aygo" = "Hatchback")) -> df$Model
revalue(df$Model, c("Azwagon" = "SUV")) -> df$Model
revalue(df$Model, c("B B" = "SUV")) -> df$Model
revalue(df$Model, c("B2200" = "Truck")) -> df$Model
revalue(df$Model, c("Baleno" = "Hatchback")) -> df$Model
revalue(df$Model, c("Beat" = "Hatchback")) -> df$Model
revalue(df$Model, c("Bego" = "SUV")) -> df$Model
revalue(df$Model, c("Belta" = "Sedan")) -> df$Model
revalue(df$Model, c("Blue Bird" = "Sedan")) -> df$Model
revalue(df$Model, c("Bluebird Sylphy" = "Sedan")) -> df$Model
revalue(df$Model, c("Bolan" = "SUV")) -> df$Model
revalue(df$Model, c("Boon" = "Hatchback")) -> df$Model
revalue(df$Model, c("BR-V" = "Hatchback")) -> df$Model
revalue(df$Model, c("C-HR" = "Hatchback")) -> df$Model
revalue(df$Model, c("C Class" = "Sedan")) -> df$Model
revalue(df$Model, c("Cami" = "SUV")) -> df$Model
revalue(df$Model, c("Camry" = "Sedan")) -> df$Model
revalue(df$Model, c("Cappuccino" = "Coupe")) -> df$Model
revalue(df$Model, c("Carisma" = "Sedan")) -> df$Model
revalue(df$Model, c("Carol" = "Hatchback")) -> df$Model
revalue(df$Model, c("Carol Eco" = "Hatchback")) -> df$Model
revalue(df$Model, c("Carrier" = "Hatchback")) -> df$Model
revalue(df$Model, c("Carry" = "Truck")) -> df$Model
revalue(df$Model, c("cars-other-23" = "SUV")) -> df$Model
revalue(df$Model, c("cars-other-37" = "SUV")) -> df$Model
revalue(df$Model, c("cars-other-5" = "SUV")) -> df$Model
revalue(df$Model, c("cars-other-7" = "SUV")) -> df$Model
revalue(df$Model, c("cars-suzuki-86" = "Sedan")) -> df$Model
revalue(df$Model, c("Cast" = "Hatchback")) -> df$Model
revalue(df$Model, c("Cayenne" = "Hatchback")) -> df$Model
revalue(df$Model, c("Celica" = "Sedan")) -> df$Model
revalue(df$Model, c("Cervo" = "Hatchback")) -> df$Model
revalue(df$Model, c("Charade" = "Sedan")) -> df$Model
revalue(df$Model, c("Charmant" = "Sedan")) -> df$Model
revalue(df$Model, c("Chitral" = "Sedan")) -> df$Model
revalue(df$Model, c("Ciaz" = "Sedan")) -> df$Model
revalue(df$Model, c("Cielo" = "Sedan")) -> df$Model
revalue(df$Model, c("City Aspire" = "Sedan")) -> df$Model
revalue(df$Model, c("City IDSI" = "Sedan")) -> df$Model
revalue(df$Model, c("City IVTEC" = "Sedan")) -> df$Model
revalue(df$Model, c("City Vario" = "Sedan")) -> df$Model
revalue(df$Model, c("Civic EXi" = "Sedan")) -> df$Model
revalue(df$Model, c("Civic Hybrid" = "Sedan")) -> df$Model
revalue(df$Model, c("Civic Prosmetic" = "Sedan")) -> df$Model
revalue(df$Model, c("Civic VTi" = "Hatchback")) -> df$Model
revalue(df$Model, c("Civic VTi Oriel" = "Sedan")) -> df$Model
revalue(df$Model, c("Civic VTi Oriel Prosmatec" = "Sedan")) -> df$Model
revalue(df$Model, c("Classic" = "Coupe")) -> df$Model
revalue(df$Model, c("Clipper" = "Coupe")) -> df$Model
revalue(df$Model, c("CLK Class" = "Coupe")) -> df$Model
revalue(df$Model, c("Coaster" = "Truck")) -> df$Model
revalue(df$Model, c("Colt" = "Hatchback")) -> df$Model
revalue(df$Model, c("Copen" = "Hatchback")) -> df$Model
revalue(df$Model, c("Corolla 2.0 D" = "Sedan")) -> df$Model
revalue(df$Model, c("Corolla Assista" = "Sedan")) -> df$Model
revalue(df$Model, c("Corolla Axio" = "Sedan")) -> df$Model
revalue(df$Model, c("Corolla Fielder" = "Hatchback")) -> df$Model
revalue(df$Model, c("Corolla GLI" = "Sedan")) -> df$Model
revalue(df$Model, c("Corolla XE" = "Sedan")) -> df$Model
revalue(df$Model, c("Corolla XLI" = "Sedan")) -> df$Model
revalue(df$Model, c("Corona" = "Sedan")) -> df$Model
revalue(df$Model, c("Corrolla Altis" = "Sedan")) -> df$Model
revalue(df$Model, c("CR-V" = "Hatchback")) -> df$Model
revalue(df$Model, c("CR-Z" = "Hatchback")) -> df$Model
revalue(df$Model, c("Cressida" = "Sedan")) -> df$Model
revalue(df$Model, c("Cross Road" = "SUV")) -> df$Model
revalue(df$Model, c("Crown" = "Sedan")) -> df$Model
revalue(df$Model, c("Cruze" = "Sedan")) -> df$Model
revalue(df$Model, c("CT200h" = "Hatchback")) -> df$Model
revalue(df$Model, c("Cultus VX" = "Hatchback")) -> df$Model
revalue(df$Model, c("Cultus VXL" = "Hatchback")) -> df$Model
revalue(df$Model, c("Cultus VXR" = "Hatchback")) -> df$Model
revalue(df$Model, c("Cuore" = "Hatchback")) -> df$Model
revalue(df$Model, c("D Series" = "Truck")) -> df$Model
revalue(df$Model, c("Dayz" = "Hatchback")) -> df$Model
revalue(df$Model, c("Dayz Highway Star" = "Hatchback")) -> df$Model
revalue(df$Model, c("Demio" = "Hatchback")) -> df$Model
revalue(df$Model, c("Duet" = "Hatchback")) -> df$Model
revalue(df$Model, c("E Class" = "Coupe")) -> df$Model
revalue(df$Model, c("Echo" = "Sedan")) -> df$Model
revalue(df$Model, c("EK Custom" = "Hatchback")) -> df$Model
revalue(df$Model, c("EK Space Custom" = "Hatchback")) -> df$Model
revalue(df$Model, c("Ek Sport" = "Hatchback")) -> df$Model
revalue(df$Model, c("Ek Wagon" = "Hatchback")) -> df$Model
revalue(df$Model, c("Elantra" = "Sedan")) -> df$Model
revalue(df$Model, c("Escudo" = "SUV")) -> df$Model
revalue(df$Model, c("Esse" = "Hatchback")) -> df$Model
revalue(df$Model, c("Estima" = "SUV")) -> df$Model
revalue(df$Model, c("Every" = "SUV")) -> df$Model
revalue(df$Model, c("Every Wagon" = "Hatchback")) -> df$Model
revalue(df$Model, c("Excel" = "Coupe")) -> df$Model
revalue(df$Model, c("Exclusive" = "Coupe")) -> df$Model
revalue(df$Model, c("Familia Van" = "SUV")) -> df$Model
revalue(df$Model, c("Figaro" = "Coupe")) -> df$Model
revalue(df$Model, c("Fit" = "Hatchback")) -> df$Model
revalue(df$Model, c("Fj Cruiser" = "SUV")) -> df$Model
revalue(df$Model, c("Flair" = "Hatchback")) -> df$Model
revalue(df$Model, c("Flair Wagon" = "Hatchback")) -> df$Model
revalue(df$Model, c("Fortuner" = "SUV")) -> df$Model
revalue(df$Model, c("Freed" = "Hatchback")) -> df$Model
revalue(df$Model, c("FX" = "Hatchback")) -> df$Model
revalue(df$Model, c("Galant" = "Hatchback")) -> df$Model
revalue(df$Model, c("Gilgit" = "Sedan")) -> df$Model
revalue(df$Model, c("Grace Hybrid" = "Sedan")) -> df$Model
revalue(df$Model, c("Gran" = "Coupe")) -> df$Model
revalue(df$Model, c("Gx Series" = "SUV")) -> df$Model
revalue(df$Model, c("Harrier" = "SUV")) -> df$Model
revalue(df$Model, c("Hiace" = "SUV")) -> df$Model
revalue(df$Model, c("Hijet" = "SUV")) -> df$Model
revalue(df$Model, c("Hilux" = "Truck")) -> df$Model
revalue(df$Model, c("HR-V" = "Hatchback")) -> df$Model
revalue(df$Model, c("Hse 4.6" = "SUV")) -> df$Model
revalue(df$Model, c("Hustler" = "SUV")) -> df$Model
revalue(df$Model, c("I" = "Coupe")) -> df$Model
revalue(df$Model, c("I Mivec" = "Hatchback")) -> df$Model
revalue(df$Model, c("i8" = "Coupe")) -> df$Model
revalue(df$Model, c("Ignis" = "Hatchback")) -> df$Model
revalue(df$Model, c("Infinity" = "Sedan")) -> df$Model
revalue(df$Model, c("Insight" = "Sedan")) -> df$Model
revalue(df$Model, c("iQ" = "Hatchback")) -> df$Model
revalue(df$Model, c("Is Series" = "Coupe")) -> df$Model
revalue(df$Model, c("ISIS" = "SUV")) -> df$Model
revalue(df$Model, c("IST" = "Hatchback")) -> df$Model
revalue(df$Model, c("Jade Hybrid" = "SUV")) -> df$Model
revalue(df$Model, c("Jimny" = "SUV")) -> df$Model
revalue(df$Model, c("Jimny Sierra" = "SUV")) -> df$Model
revalue(df$Model, c("Joy" = "Hatchback")) -> df$Model
revalue(df$Model, c("Juke" = "Hatchback")) -> df$Model
revalue(df$Model, c("Kalam" = "SUV")) -> df$Model
revalue(df$Model, c("Kei" = "SUV")) -> df$Model
revalue(df$Model, c("Khyber" = "Hatchback")) -> df$Model
revalue(df$Model, c("Kix" = "SUV")) -> df$Model
revalue(df$Model, c("Kizashi" = "Sedan")) -> df$Model
revalue(df$Model, c("L200" = "Truck")) -> df$Model
revalue(df$Model, c("L300" = "SUV")) -> df$Model
revalue(df$Model, c("Lancer" = "Sedan")) -> df$Model
revalue(df$Model, c("Lancer Evolution" = "Sedan")) -> df$Model
revalue(df$Model, c("Land Cruiser" = "SUV")) -> df$Model
revalue(df$Model, c("Liana" = "Sedan")) -> df$Model
revalue(df$Model, c("Life" = "Hatchback")) -> df$Model
revalue(df$Model, c("Lite Ace" = "SUV")) -> df$Model
revalue(df$Model, c("Luce" = "Coupe")) -> df$Model
revalue(df$Model, c("Lucida" = "Hatchback")) -> df$Model
revalue(df$Model, c("LX Series" = "SUV")) -> df$Model
revalue(df$Model, c("March" = "Hatchback")) -> df$Model
revalue(df$Model, c("Margalla" = "Sedan")) -> df$Model
revalue(df$Model, c("Mark II" = "Sedan")) -> df$Model
revalue(df$Model, c("Mark X" = "Sedan")) -> df$Model
revalue(df$Model, c("Matiz" = "Hatchback")) -> df$Model
revalue(df$Model, c("Mega Carry Xtra" = "Truck")) -> df$Model
revalue(df$Model, c("Mehran VX" = "Hatchback")) -> df$Model
revalue(df$Model, c("Mehran VXR" = "Hatchback")) -> df$Model
revalue(df$Model, c("Minica" = "Hatchback")) -> df$Model
revalue(df$Model, c("Minicab Bravo" = "SUV")) -> df$Model
revalue(df$Model, c("Mira" = "Hatchback")) -> df$Model
revalue(df$Model, c("Mira Cocoa" = "Hatchback")) -> df$Model
revalue(df$Model, c("Mirage" = "Hatchback")) -> df$Model
revalue(df$Model, c("Moco" = "Hatchback")) -> df$Model
revalue(df$Model, c("Move" = "Hatchback")) -> df$Model
revalue(df$Model, c("MR Wagon" = "Hatchback")) -> df$Model
revalue(df$Model, c("MR2" = "Coupe")) -> df$Model
revalue(df$Model, c("Murrano" = "Hatchback")) -> df$Model
revalue(df$Model, c("N Box" = "Hatchback")) -> df$Model
revalue(df$Model, c("N One" = "Hatchback")) -> df$Model
revalue(df$Model, c("N Wgn" = "Hatchback")) -> df$Model
revalue(df$Model, c("Noah" = "Hatchback")) -> df$Model
revalue(df$Model, c("Note" = "Hatchback")) -> df$Model
revalue(df$Model, c("Optra" = "Sedan")) -> df$Model
revalue(df$Model, c("Other" = "Sedan")) -> df$Model
revalue(df$Model, c("Otti" = "Hatchback")) -> df$Model
revalue(df$Model, c("Pajero" = "SUV")) -> df$Model
revalue(df$Model, c("Pajero Mini" = "Hatchback")) -> df$Model
revalue(df$Model, c("Palette" = "SUV")) -> df$Model
revalue(df$Model, c("Palette Sw" = "SUV")) -> df$Model
revalue(df$Model, c("Passo" = "Hatchback")) -> df$Model
revalue(df$Model, c("Patrol" = "SUV")) -> df$Model
revalue(df$Model, c("Pickup" = "Truck")) -> df$Model
revalue(df$Model, c("Pino" = "Hatchback")) -> df$Model
revalue(df$Model, c("Pixis Epoch" = "Hatchback")) -> df$Model
revalue(df$Model, c("Platz" = "Sedan")) -> df$Model
revalue(df$Model, c("Porte" = "Hatchback")) -> df$Model
revalue(df$Model, c("Potohar" = "SUV")) -> df$Model
revalue(df$Model, c("Prado" = "SUV")) -> df$Model
revalue(df$Model, c("Premio" = "Sedan")) -> df$Model
revalue(df$Model, c("President" = "SUV")) -> df$Model
revalue(df$Model, c("Previa" = "SUV")) -> df$Model
revalue(df$Model, c("Pride" = "Sedan")) -> df$Model
revalue(df$Model, c("Prius" = "Sedan")) -> df$Model
revalue(df$Model, c("Prius Alpha" = "Hatchback")) -> df$Model
revalue(df$Model, c("Probox" = "SUV")) -> df$Model
revalue(df$Model, c("Pulsar" = "Hatchback")) -> df$Model
revalue(df$Model, c("Q7" = "SUV")) -> df$Model
revalue(df$Model, c("Qashqai" = "Hatchback")) -> df$Model
revalue(df$Model, c("Racer" = "Hatchback")) -> df$Model
revalue(df$Model, c("Ractis" = "Hatchback")) -> df$Model
revalue(df$Model, c("Raum" = "Hatchback")) -> df$Model
revalue(df$Model, c("Rav4" = "Hatchback")) -> df$Model
revalue(df$Model, c("Ravi" = "Truck")) -> df$Model
revalue(df$Model, c("Rocky" = "SUV")) -> df$Model
revalue(df$Model, c("Roox" = "Hatchback")) -> df$Model
revalue(df$Model, c("Rush" = "SUV")) -> df$Model
revalue(df$Model, c("Rvr" = "Hatchback")) -> df$Model
revalue(df$Model, c("RX Series" = "Hatchback")) -> df$Model
revalue(df$Model, c("RX8" = "Coupe")) -> df$Model
revalue(df$Model, c("S Class" = "Sedan")) -> df$Model
revalue(df$Model, c("S660" = "Coupe")) -> df$Model
revalue(df$Model, c("Safari" = "SUV")) -> df$Model
revalue(df$Model, c("Santro" = "Hatchback")) -> df$Model
revalue(df$Model, c("Scrum" = "Truck")) -> df$Model
revalue(df$Model, c("Scrum Wagon" = "Hatchback")) -> df$Model
revalue(df$Model, c("Sera" = "Coupe")) -> df$Model
revalue(df$Model, c("Shehzore" = "Truck")) -> df$Model
revalue(df$Model, c("Shogun" = "SUV")) -> df$Model
revalue(df$Model, c("Sienta" = "Hatchback")) -> df$Model
revalue(df$Model, c("Silverado" = "Truck")) -> df$Model
revalue(df$Model, c("Sirion" = "Hatchback")) -> df$Model
revalue(df$Model, c("Sirius" = "Hatchback")) -> df$Model
revalue(df$Model, c("Smart" = "Hatchback")) -> df$Model
revalue(df$Model, c("Solio" = "Hatchback")) -> df$Model
revalue(df$Model, c("Sonata" = "Sedan")) -> df$Model
revalue(df$Model, c("Sonica" = "Hatchback")) -> df$Model
revalue(df$Model, c("Spacia" = "Hatchback")) -> df$Model
revalue(df$Model, c("Spark" = "Hatchback")) -> df$Model
revalue(df$Model, c("Spectra" = "Sedan")) -> df$Model
revalue(df$Model, c("Spike" = "Hatchback")) -> df$Model
revalue(df$Model, c("Sport" = "Coupe")) -> df$Model
revalue(df$Model, c("Sportage" = "Hatchback")) -> df$Model
revalue(df$Model, c("Sprinter" = "Hatchback")) -> df$Model
revalue(df$Model, c("Starlet" = "Hatchback")) -> df$Model
revalue(df$Model, c("Stream" = "Hatchback")) -> df$Model
revalue(df$Model, c("Succeed" = "SUV")) -> df$Model
revalue(df$Model, c("Sunny" = "Sedan")) -> df$Model
revalue(df$Model, c("Supra" = "Coupe")) -> df$Model
revalue(df$Model, c("Surf" = "SUV")) -> df$Model
revalue(df$Model, c("Swift" = "Hatchback")) -> df$Model
revalue(df$Model, c("Sx4" = "Hatchback")) -> df$Model
revalue(df$Model, c("Sylphy" = "Sedan")) -> df$Model
revalue(df$Model, c("Tanto" = "Hatchback")) -> df$Model
revalue(df$Model, c("Terios Kid" = "Hatchback")) -> df$Model
revalue(df$Model, c("Thats" = "Hatchback")) -> df$Model
revalue(df$Model, c("Tiida" = "Hatchback")) -> df$Model
revalue(df$Model, c("Toppo" = "Hatchback")) -> df$Model
revalue(df$Model, c("Town Ace" = "Hatchback")) -> df$Model
revalue(df$Model, c("Toyo Ace" = "Truck")) -> df$Model
revalue(df$Model, c("Tundra" = "Truck")) -> df$Model
revalue(df$Model, c("V2" = "Hatchback")) -> df$Model
revalue(df$Model, c("Vamos" = "Hatchback")) -> df$Model
revalue(df$Model, c("Van" = "Hatchback")) -> df$Model
revalue(df$Model, c("Vanette" = "Hatchback")) -> df$Model
revalue(df$Model, c("Verossa" = "Sedan")) -> df$Model
revalue(df$Model, c("Vezel" = "Hatchback")) -> df$Model
revalue(df$Model, c("Vitara" = "Hatchback")) -> df$Model
revalue(df$Model, c("Vitz" = "Hatchback")) -> df$Model
revalue(df$Model, c("Vogue" = "SUV")) -> df$Model
revalue(df$Model, c("Wagon R" = "Hatchback")) -> df$Model
revalue(df$Model, c("Wagon R Stingray" = "Hatchback")) -> df$Model
revalue(df$Model, c("Wake" = "Hatchback")) -> df$Model
revalue(df$Model, c("Wingroad" = "Hatchback")) -> df$Model
revalue(df$Model, c("Wish" = "Hatchback")) -> df$Model
revalue(df$Model, c("X-PV" = "Hatchback")) -> df$Model
revalue(df$Model, c("X Trail" = "Hatchback")) -> df$Model
revalue(df$Model, c("X1" = "Hatchback")) -> df$Model
revalue(df$Model, c("X5 Series" = "Hatchback")) -> df$Model
revalue(df$Model, c("Yaris" = "Hatchback")) -> df$Model
revalue(df$Model, c("Zest" = "Sedan")) -> df$Model
revalue(df$Model, c("Zest Spark" = "Hatchback")) -> df$Model

Now we look at the distribution of the cars according to the brand

## Warning: Factor `Brand` contains implicit NA, consider using
## `forcats::fct_explicit_na`
## # A tibble: 24 x 3
##    Brand               Cars PercentCars
##    <fct>              <int>       <dbl>
##  1 Audi                  18      0.0721
##  2 BMW                   31      0.124 
##  3 Changan                9      0.0360
##  4 Chevrolet             47      0.188 
##  5 Classic & Antiques    13      0.0521
##  6 Daewoo                72      0.288 
##  7 Daihatsu            2476      9.91  
##  8 FAW                   80      0.320 
##  9 Honda               3324     13.3   
## 10 Hyundai              268      1.07  
## # ... with 14 more rows

We cannot determine the model or brand of the cars which are being sold so we would keep it like that for now

## Warning: Factor `Condition` contains implicit NA, consider using
## `forcats::fct_explicit_na`
## # A tibble: 3 x 3
##   Condition  Cars PercentCars
##   <fct>     <int>       <dbl>
## 1 New        4365       17.5 
## 2 Used      18472       74.0 
## 3 <NA>       2136        8.55

Since we don’t know in what condition the cars were in so we would leave it for now as well

## Warning: Factor `Transaction.Type` contains implicit NA, consider using
## `forcats::fct_explicit_na`
## # A tibble: 3 x 3
##   Transaction.Type     Cars PercentCars
##   <fct>               <int>       <dbl>
## 1 Cash                21513       86.1 
## 2 Installment/Leasing  1015        4.06
## 3 <NA>                 2445        9.79

Here we can make an assumption that the cars which were sold were for Cash rather than Installments, due to lack of paperwork. So we apply it to the dataset.

Next since we are not able to do anything with the empty observations we would remove them

## [1] 0
## [1] 20334     9

Next we will remove outliers from Year and Price

#Descriptive Statistics

##                   vars     n      mean        sd median   trimmed
## Brand*               1 19092     17.94      6.32     22     18.70
## Condition*           2 19092      1.84      0.37      2      1.93
## Fuel*                3 19092      3.58      1.87      5      3.73
## KMs.Driven           4 19092 137100.95 632337.21  71000  67732.67
## Model*               5 19092      3.21      0.97      4      3.27
## Price                6 19092 719432.71 461309.88 600000 669353.02
## Registered.City*     7 19092      1.97      0.18      2      2.00
## Transaction.Type*    8 19092      1.05      0.22      1      1.00
## Year                 9 19092   2005.57      8.81   2007   2006.47
##                         mad   min      max   range  skew kurtosis      se
## Brand*                 1.48     1       23      22 -0.87    -1.07    0.05
## Condition*             0.00     1        2       1 -1.86     1.46    0.00
## Fuel*                  0.00     1        5       4 -0.60    -1.59    0.01
## KMs.Driven         60649.46     1 10000000 9999999 13.67   200.85 4576.39
## Model*                 0.00     1        5       4 -0.48    -1.46    0.01
## Price             437367.00 50000  2145000 2095000  0.87     0.12 3338.62
## Registered.City*       0.00     1        2       1 -5.14    24.45    0.00
## Transaction.Type*      0.00     1        2       1  4.14    15.15    0.00
## Year                   7.41  1983     2020      37 -0.83    -0.10    0.06

Counts of cars by Brand

## # A tibble: 23 x 3
##    Brand               Cars PercentCars
##    <fct>              <int>       <dbl>
##  1 Audi                   8     0.0419 
##  2 BMW                   14     0.0733 
##  3 Changan                7     0.0367 
##  4 Chevrolet             47     0.246  
##  5 Classic & Antiques     1     0.00524
##  6 Daewoo                68     0.356  
##  7 Daihatsu            2037    10.7    
##  8 FAW                   70     0.367  
##  9 Honda               2766    14.5    
## 10 Hyundai              255     1.34   
## # ... with 13 more rows

Counts of cars by Condition

## # A tibble: 2 x 3
##   Condition  Cars PercentCars
##   <fct>     <int>       <dbl>
## 1 New        3043        15.9
## 2 Used      16049        84.1

Counts of cars by Fuel

## # A tibble: 5 x 3
##   Fuel    Cars PercentCars
##   <fct>  <int>       <dbl>
## 1 CNG     6288     32.9   
## 2 Diesel   251      1.31  
## 3 Hybrid   578      3.03  
## 4 LPG       15      0.0786
## 5 Petrol 11960     62.6

Counts of cars by Model

## # A tibble: 5 x 3
##   Model      Cars PercentCars
##   <fct>     <int>       <dbl>
## 1 Coupe       287       1.50 
## 2 Sedan      6440      33.7  
## 3 SUV        1531       8.02 
## 4 Hatchback 10699      56.0  
## 5 Truck       135       0.707

Counts of cars by Registered City

## # A tibble: 2 x 3
##   Registered.City  Cars PercentCars
##   <fct>           <int>       <dbl>
## 1 Non-Capital       649        3.40
## 2 Capital         18443       96.6

Counts of cars by Transaction Type

## # A tibble: 2 x 3
##   Transaction.Type     Cars PercentCars
##   <fct>               <int>       <dbl>
## 1 Cash                18142       95.0 
## 2 Installment/Leasing   950        4.98

Summary of whole data broken down by Brand

## # A tibble: 23 x 5
##    Brand              AvgPrice SdPrice AvgYear SdYear
##    <fct>                 <dbl>   <dbl>   <dbl>  <dbl>
##  1 Audi                860625  528437.   2010.   8.9 
##  2 BMW                1030000  593866.   1998.   8.66
##  3 Changan             382857. 108277.   2007.   1.8 
##  4 Chevrolet           395723. 212917.   2007.   3.69
##  5 Classic & Antiques  850000      NA    2007   NA   
##  6 Daewoo              296088. 314554.   1996.   5.41
##  7 Daihatsu            621990. 369999.   2004.  11.2 
##  8 FAW                 582400  369193.   2016.   3.91
##  9 Honda               927890. 477297.   2006.   7.81
## 10 Hyundai             407235. 138847.   2003.   5.18
## # ... with 13 more rows

Summary of whole data broken down by Condition

## # A tibble: 2 x 5
##   Condition AvgPrice SdPrice AvgYear SdYear
##   <fct>        <dbl>   <dbl>   <dbl>  <dbl>
## 1 New        912940. 509318.   2011    7.44
## 2 Used       682742. 442200.   2005.   8.67

Summary of whole data broken down by Fuel

## # A tibble: 5 x 5
##   Fuel   AvgPrice SdPrice AvgYear SdYear
##   <fct>     <dbl>   <dbl>   <dbl>  <dbl>
## 1 CNG     414938. 231834.   2000.   8.66
## 2 Diesel  968964. 532718.   1999.  10.2 
## 3 Hybrid  909262. 658613.   2006.   8.45
## 4 LPG     454267. 485706.   1997.  11.2 
## 5 Petrol  865443. 459476.   2008.   7.44

Summary of whole data broken down by Model

## # A tibble: 5 x 5
##   Model     AvgPrice SdPrice AvgYear SdYear
##   <fct>        <dbl>   <dbl>   <dbl>  <dbl>
## 1 Coupe      538888. 408609.   2002.  10.7 
## 2 Sedan      880246. 546761.   2004.   9.58
## 3 SUV        683794. 378265.   2006.   9.62
## 4 Hatchback  631816. 384980.   2007.   7.88
## 5 Truck      779807. 432624.   2006.  10.2

Summary of whole data broken down by Registered City

## # A tibble: 2 x 5
##   Registered.City AvgPrice SdPrice AvgYear SdYear
##   <fct>              <dbl>   <dbl>   <dbl>  <dbl>
## 1 Non-Capital      593484. 402712.   2005.   9.08
## 2 Capital          723865. 462622.   2006.   8.8

Summary of whole data broken down by Transaction Type

## # A tibble: 2 x 5
##   Transaction.Type    AvgPrice SdPrice AvgYear SdYear
##   <fct>                  <dbl>   <dbl>   <dbl>  <dbl>
## 1 Cash                 737206. 461343.   2005.   8.72
## 2 Installment/Leasing  380026. 301797.   2014.   5.38

Data types of the column data

## 'data.frame':    19092 obs. of  9 variables:
##  $ Brand           : Factor w/ 23 levels "Audi","BMW","Changan",..: 23 22 22 22 23 23 22 22 9 22 ...
##  $ Condition       : Factor w/ 2 levels "New","Used": 2 2 2 2 2 2 1 2 2 2 ...
##  $ Fuel            : Factor w/ 5 levels "CNG","Diesel",..: 2 5 1 5 5 5 1 1 5 1 ...
##  $ KMs.Driven      : int  1 100000 12345 94000 100000 80000 65000 83000 1 123 ...
##  $ Model           : Factor w/ 5 levels "Coupe","Sedan",..: 3 3 3 4 2 2 4 4 4 4 ...
##  $ Price           : int  2100000 380000 340000 535000 1430000 1620000 450000 490000 480000 230000 ...
##  $ Registered.City : Factor w/ 2 levels "Non-Capital",..: 2 2 2 2 2 2 2 2 2 2 ...
##  $ Transaction.Type: Factor w/ 2 levels "Cash","Installment/Leasing": 1 1 1 1 1 1 1 1 1 1 ...
##  $ Year            : int  1997 2006 1998 2010 2013 2012 2006 2009 1997 1994 ...
##  - attr(*, "na.action")= 'omit' Named int  1060 2839 3047 3565 3566 3567 3570 3571 3572 3573 ...
##   ..- attr(*, "names")= chr  "1060" "2839" "3047" "3565" ...
##                   vars     n      mean        sd median   trimmed
## Brand*               1 19092     17.94      6.32     22     18.70
## Condition*           2 19092      1.84      0.37      2      1.93
## Fuel*                3 19092      3.58      1.87      5      3.73
## KMs.Driven           4 19092 137100.95 632337.21  71000  67732.67
## Model*               5 19092      3.21      0.97      4      3.27
## Price                6 19092 719432.71 461309.88 600000 669353.02
## Registered.City*     7 19092      1.97      0.18      2      2.00
## Transaction.Type*    8 19092      1.05      0.22      1      1.00
## Year                 9 19092   2005.57      8.81   2007   2006.47
##                         mad   min      max   range  skew kurtosis      se
## Brand*                 1.48     1       23      22 -0.87    -1.07    0.05
## Condition*             0.00     1        2       1 -1.86     1.46    0.00
## Fuel*                  0.00     1        5       4 -0.60    -1.59    0.01
## KMs.Driven         60649.46     1 10000000 9999999 13.67   200.85 4576.39
## Model*                 0.00     1        5       4 -0.48    -1.46    0.01
## Price             437367.00 50000  2145000 2095000  0.87     0.12 3338.62
## Registered.City*       0.00     1        2       1 -5.14    24.45    0.00
## Transaction.Type*      0.00     1        2       1  4.14    15.15    0.00
## Year                   7.41  1983     2020      37 -0.83    -0.10    0.06

Vistualizing Discreet Variable

Bar Charts of Different types of Models

## Bar Charts of Different types of Condition

## Bar Charts of Different types of Fuel

## Bar Charts of Different types of Models

## Bar Charts of Different types of Registered City

## Bar Charts of Different types of Transaction Type

Visualizing continous variable

Scatter Plot between Selling Price and KMs Driven

## `geom_smooth()` using method = 'gam' and formula 'y ~ s(x, bs = "cs")'

## Scatter Plot between Selling Price and KMs Driven coloured by Car Condition

## `geom_smooth()` using method = 'gam' and formula 'y ~ s(x, bs = "cs")'

## Scatter Plot between Selling Price and KMs Driven coloured by Fuel Type

## `geom_smooth()` using method = 'gam' and formula 'y ~ s(x, bs = "cs")'

## Scatter Plot between Selling Price and KMs Driven coloured by Car Models

## `geom_smooth()` using method = 'gam' and formula 'y ~ s(x, bs = "cs")'

Scatter Plot between Selling Price and Year

## `geom_smooth()` using method = 'gam' and formula 'y ~ s(x, bs = "cs")'

## Scatter Plot between Selling Price and Year coloured by Car Condition

## `geom_smooth()` using method = 'gam' and formula 'y ~ s(x, bs = "cs")'

## Scatter Plot between Selling Price and Year coloured by Fuel Type

## `geom_smooth()` using method = 'gam' and formula 'y ~ s(x, bs = "cs")'

## Scatter Plot between Selling Price and Year coloured by Car Models

## `geom_smooth()` using method = 'gam' and formula 'y ~ s(x, bs = "cs")'

Correlation Matrix

##            KMs.Driven Price   Year
## KMs.Driven      1.000 -0.07 -0.116
## Price          -0.070  1.00  0.590
## Year           -0.116  0.59  1.000

Visualizing Correlation Matrix

## 
## Call:
## lm(formula = Model, data = df)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -1451115  -150567   -17597   121112  1741934 
## 
## Coefficients:
##                                       Estimate Std. Error  t value
## (Intercept)                         -5.885e+07  4.933e+05 -119.307
## BrandBMW                             3.009e+05  1.078e+05    2.792
## BrandChangan                        -5.563e+05  1.259e+05   -4.419
## BrandChevrolet                      -4.375e+05  9.306e+04   -4.702
## BrandClassic & Antiques             -1.867e+05  2.577e+05   -0.724
## BrandDaewoo                         -2.301e+05  9.099e+04   -2.529
## BrandDaihatsu                       -2.311e+05  8.618e+04   -2.681
## BrandFAW                            -3.570e+05  9.075e+04   -3.933
## BrandHonda                          -1.117e+04  8.610e+04   -0.130
## BrandHyundai                        -3.434e+05  8.737e+04   -3.930
## BrandKIA                            -3.529e+05  8.883e+04   -3.973
## BrandLand Rover                     -3.503e+05  2.578e+05   -1.359
## BrandLexus                           1.061e+05  1.130e+05    0.939
## BrandMazda                          -1.375e+05  9.059e+04   -1.518
## BrandMercedes                        4.132e+05  9.300e+04    4.443
## BrandMitsubishi                     -1.382e+05  8.688e+04   -1.591
## BrandNissan                         -1.360e+05  8.661e+04   -1.570
## BrandOther Brands                   -3.422e+05  8.891e+04   -3.849
## BrandPorsche                         6.288e+05  2.578e+05    2.439
## BrandRange Rover                    -1.269e+05  1.645e+05   -0.771
## BrandSubaru                         -2.850e+05  1.025e+05   -2.781
## BrandSuzuki                         -3.283e+05  8.608e+04   -3.814
## BrandToyota                          1.623e+05  8.605e+04    1.886
## ConditionUsed                       -5.529e+04  5.039e+03  -10.973
## FuelDiesel                           3.116e+05  1.646e+04   18.937
## FuelHybrid                           1.873e+05  1.076e+04   17.411
## FuelLPG                              1.219e+05  6.286e+04    1.940
## FuelPetrol                           1.150e+05  4.426e+03   25.992
## KMs.Driven                          -4.333e-03  2.805e-03   -1.545
## ModelSedan                           1.726e+05  1.574e+04   10.967
## ModelSUV                             1.668e+05  1.692e+04    9.859
## ModelHatchback                       9.226e+04  1.584e+04    5.823
## ModelTruck                           9.194e+04  2.631e+04    3.494
## Registered.CityCapital               4.876e+04  9.768e+03    4.992
## Transaction.TypeInstallment/Leasing -6.963e+05  8.445e+03  -82.450
## Year                                 2.970e+04  2.422e+02  122.653
##                                     Pr(>|t|)    
## (Intercept)                          < 2e-16 ***
## BrandBMW                            0.005240 ** 
## BrandChangan                        9.95e-06 ***
## BrandChevrolet                      2.60e-06 ***
## BrandClassic & Antiques             0.468773    
## BrandDaewoo                         0.011461 *  
## BrandDaihatsu                       0.007341 ** 
## BrandFAW                            8.40e-05 ***
## BrandHonda                          0.896765    
## BrandHyundai                        8.52e-05 ***
## BrandKIA                            7.12e-05 ***
## BrandLand Rover                     0.174158    
## BrandLexus                          0.347702    
## BrandMazda                          0.128991    
## BrandMercedes                       8.91e-06 ***
## BrandMitsubishi                     0.111583    
## BrandNissan                         0.116513    
## BrandOther Brands                   0.000119 ***
## BrandPorsche                        0.014734 *  
## BrandRange Rover                    0.440653    
## BrandSubaru                         0.005418 ** 
## BrandSuzuki                         0.000137 ***
## BrandToyota                         0.059309 .  
## ConditionUsed                        < 2e-16 ***
## FuelDiesel                           < 2e-16 ***
## FuelHybrid                           < 2e-16 ***
## FuelLPG                             0.052449 .  
## FuelPetrol                           < 2e-16 ***
## KMs.Driven                          0.122401    
## ModelSedan                           < 2e-16 ***
## ModelSUV                             < 2e-16 ***
## ModelHatchback                      5.87e-09 ***
## ModelTruck                          0.000476 ***
## Registered.CityCapital              6.04e-07 ***
## Transaction.TypeInstallment/Leasing  < 2e-16 ***
## Year                                 < 2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 242900 on 19056 degrees of freedom
## Multiple R-squared:  0.7232, Adjusted R-squared:  0.7227 
## F-statistic:  1422 on 35 and 19056 DF,  p-value: < 2.2e-16

Question 1: Explore interactions among independent variables

## 
## Call:
## lm(formula = Model1, data = df)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -1647660  -118762    -8471    99396  1791897 
## 
## Coefficients: (6 not defined because of singularities)
##                                                  Estimate Std. Error
## (Intercept)                                    -1.731e+07  2.647e+07
## BrandBMW                                       -9.788e+06  2.986e+07
## BrandChangan                                   -6.801e+07  1.043e+08
## BrandChevrolet                                 -8.381e+07  3.200e+07
## BrandClassic & Antiques                        -1.736e+05  2.376e+05
## BrandDaewoo                                    -2.731e+07  2.817e+07
## BrandDaihatsu                                   6.108e+06  2.625e+07
## BrandFAW                                       -1.542e+06  2.986e+07
## BrandHonda                                     -2.575e+07  2.625e+07
## BrandHyundai                                    2.054e+06  2.682e+07
## BrandKIA                                       -1.548e+07  2.773e+07
## BrandLand Rover                                -3.861e+05  2.396e+05
## BrandLexus                                      1.302e+08  3.554e+07
## BrandMazda                                      8.490e+06  2.686e+07
## BrandMercedes                                  -4.448e+07  2.727e+07
## BrandMitsubishi                                 1.520e+07  2.633e+07
## BrandNissan                                     3.026e+06  2.629e+07
## BrandOther Brands                               3.037e+07  2.652e+07
## BrandPorsche                                    4.023e+05  2.529e+05
## BrandRange Rover                               -1.625e+09  6.845e+08
## BrandSubaru                                     2.509e+08  1.010e+08
## BrandSuzuki                                     6.725e+06  2.625e+07
## BrandToyota                                    -1.515e+07  2.625e+07
## KMs.Driven                                     -5.827e-01  1.265e+00
## ConditionUsed                                   3.205e+06  1.206e+06
## FuelDiesel                                      7.394e+06  3.047e+06
## FuelHybrid                                     -3.972e+07  2.331e+06
## FuelLPG                                        -1.986e+07  1.131e+07
## FuelPetrol                                     -2.424e+07  9.074e+05
## ModelSedan                                     -2.562e+07  2.804e+06
## ModelSUV                                        5.991e+06  3.024e+06
## ModelHatchback                                 -1.932e+07  2.845e+06
## ModelTruck                                      1.782e+07  4.747e+06
## Registered.CityCapital                         -1.293e+07  1.987e+06
## Transaction.TypeInstallment/Leasing             5.252e+07  2.854e+06
## Year                                            8.980e+03  1.314e+04
## BrandBMW:KMs.Driven                             2.543e+00  1.539e+00
## BrandChangan:KMs.Driven                         4.900e-01  1.265e+00
## BrandChevrolet:KMs.Driven                       4.006e-01  1.290e+00
## BrandClassic & Antiques:KMs.Driven                     NA         NA
## BrandDaewoo:KMs.Driven                          5.412e-01  1.265e+00
## BrandDaihatsu:KMs.Driven                        5.014e-01  1.264e+00
## BrandFAW:KMs.Driven                            -2.582e-01  1.343e+00
## BrandHonda:KMs.Driven                           5.015e-01  1.264e+00
## BrandHyundai:KMs.Driven                         5.133e-01  1.265e+00
## BrandKIA:KMs.Driven                             5.411e-01  1.265e+00
## BrandLand Rover:KMs.Driven                             NA         NA
## BrandLexus:KMs.Driven                          -5.942e-01  1.304e+00
## BrandMazda:KMs.Driven                           3.596e-01  1.284e+00
## BrandMercedes:KMs.Driven                        3.128e-01  1.408e+00
## BrandMitsubishi:KMs.Driven                      5.342e-01  1.265e+00
## BrandNissan:KMs.Driven                          4.917e-01  1.264e+00
## BrandOther Brands:KMs.Driven                    4.945e-01  1.265e+00
## BrandPorsche:KMs.Driven                                NA         NA
## BrandRange Rover:KMs.Driven                     2.043e+02  8.355e+01
## BrandSubaru:KMs.Driven                         -5.480e+00  3.017e+00
## BrandSuzuki:KMs.Driven                          4.979e-01  1.264e+00
## BrandToyota:KMs.Driven                          5.028e-01  1.264e+00
## KMs.Driven:ConditionUsed                        1.863e-02  1.332e-02
## KMs.Driven:FuelDiesel                          -8.861e-02  3.551e-02
## KMs.Driven:FuelHybrid                          -6.922e-05  1.415e-02
## KMs.Driven:FuelLPG                             -3.813e-01  8.503e-01
## KMs.Driven:FuelPetrol                          -1.434e-02  6.661e-03
## KMs.Driven:ModelSedan                           2.738e-02  2.072e-02
## KMs.Driven:ModelSUV                             3.633e-02  2.168e-02
## KMs.Driven:ModelHatchback                       3.452e-02  2.026e-02
## KMs.Driven:ModelTruck                           5.198e-03  3.026e-02
## KMs.Driven:Registered.CityCapital               3.294e-02  2.172e-02
## KMs.Driven:Transaction.TypeInstallment/Leasing  2.587e-01  7.889e-02
## BrandBMW:Year                                   5.009e+03  1.485e+04
## BrandChangan:Year                               3.364e+04  5.196e+04
## BrandChevrolet:Year                             4.153e+04  1.590e+04
## BrandClassic & Antiques:Year                           NA         NA
## BrandDaewoo:Year                                1.354e+04  1.400e+04
## BrandDaihatsu:Year                             -3.172e+03  1.303e+04
## BrandFAW:Year                                   5.879e+02  1.482e+04
## BrandHonda:Year                                 1.282e+04  1.303e+04
## BrandHyundai:Year                              -1.213e+03  1.332e+04
## BrandKIA:Year                                   7.542e+03  1.377e+04
## BrandLand Rover:Year                                   NA         NA
## BrandLexus:Year                                -6.468e+04  1.767e+04
## BrandMazda:Year                                -4.297e+03  1.334e+04
## BrandMercedes:Year                              2.245e+04  1.354e+04
## BrandMitsubishi:Year                           -7.687e+03  1.307e+04
## BrandNissan:Year                               -1.590e+03  1.305e+04
## BrandOther Brands:Year                         -1.534e+04  1.316e+04
## BrandPorsche:Year                                      NA         NA
## BrandRange Rover:Year                           8.054e+05  3.393e+05
## BrandSubaru:Year                               -1.246e+05  5.009e+04
## BrandSuzuki:Year                               -3.529e+03  1.303e+04
## BrandToyota:Year                                7.599e+03  1.303e+04
## ConditionUsed:Year                             -1.620e+03  6.001e+02
## FuelDiesel:Year                                -3.546e+03  1.524e+03
## FuelHybrid:Year                                 1.990e+04  1.162e+03
## FuelLPG:Year                                    9.958e+03  5.653e+03
## FuelPetrol:Year                                 1.216e+04  4.529e+02
## ModelSedan:Year                                 1.286e+04  1.400e+03
## ModelSUV:Year                                  -2.899e+03  1.510e+03
## ModelHatchback:Year                             9.683e+03  1.420e+03
## ModelTruck:Year                                -8.829e+03  2.367e+03
## Registered.CityCapital:Year                     6.468e+03  9.909e+02
## Transaction.TypeInstallment/Leasing:Year       -2.644e+04  1.417e+03
##                                                t value Pr(>|t|)    
## (Intercept)                                     -0.654 0.513214    
## BrandBMW                                        -0.328 0.743059    
## BrandChangan                                    -0.652 0.514291    
## BrandChevrolet                                  -2.619 0.008822 ** 
## BrandClassic & Antiques                         -0.731 0.464937    
## BrandDaewoo                                     -0.969 0.332411    
## BrandDaihatsu                                    0.233 0.816019    
## BrandFAW                                        -0.052 0.958821    
## BrandHonda                                      -0.981 0.326652    
## BrandHyundai                                     0.077 0.938956    
## BrandKIA                                        -0.558 0.576595    
## BrandLand Rover                                 -1.611 0.107113    
## BrandLexus                                       3.662 0.000250 ***
## BrandMazda                                       0.316 0.751953    
## BrandMercedes                                   -1.631 0.102854    
## BrandMitsubishi                                  0.577 0.563673    
## BrandNissan                                      0.115 0.908357    
## BrandOther Brands                                1.145 0.252152    
## BrandPorsche                                     1.591 0.111649    
## BrandRange Rover                                -2.375 0.017582 *  
## BrandSubaru                                      2.484 0.013011 *  
## BrandSuzuki                                      0.256 0.797813    
## BrandToyota                                     -0.577 0.563833    
## KMs.Driven                                      -0.461 0.644989    
## ConditionUsed                                    2.657 0.007893 ** 
## FuelDiesel                                       2.427 0.015246 *  
## FuelHybrid                                     -17.039  < 2e-16 ***
## FuelLPG                                         -1.756 0.079074 .  
## FuelPetrol                                     -26.708  < 2e-16 ***
## ModelSedan                                      -9.137  < 2e-16 ***
## ModelSUV                                         1.981 0.047564 *  
## ModelHatchback                                  -6.793 1.13e-11 ***
## ModelTruck                                       3.755 0.000174 ***
## Registered.CityCapital                          -6.507 7.87e-11 ***
## Transaction.TypeInstallment/Leasing             18.401  < 2e-16 ***
## Year                                             0.683 0.494458    
## BrandBMW:KMs.Driven                              1.652 0.098470 .  
## BrandChangan:KMs.Driven                          0.387 0.698404    
## BrandChevrolet:KMs.Driven                        0.311 0.756111    
## BrandClassic & Antiques:KMs.Driven                  NA       NA    
## BrandDaewoo:KMs.Driven                           0.428 0.668738    
## BrandDaihatsu:KMs.Driven                         0.397 0.691726    
## BrandFAW:KMs.Driven                             -0.192 0.847534    
## BrandHonda:KMs.Driven                            0.397 0.691640    
## BrandHyundai:KMs.Driven                          0.406 0.684821    
## BrandKIA:KMs.Driven                              0.428 0.668737    
## BrandLand Rover:KMs.Driven                          NA       NA    
## BrandLexus:KMs.Driven                           -0.456 0.648580    
## BrandMazda:KMs.Driven                            0.280 0.779532    
## BrandMercedes:KMs.Driven                         0.222 0.824167    
## BrandMitsubishi:KMs.Driven                       0.422 0.672792    
## BrandNissan:KMs.Driven                           0.389 0.697391    
## BrandOther Brands:KMs.Driven                     0.391 0.695766    
## BrandPorsche:KMs.Driven                             NA       NA    
## BrandRange Rover:KMs.Driven                      2.445 0.014478 *  
## BrandSubaru:KMs.Driven                          -1.816 0.069321 .  
## BrandSuzuki:KMs.Driven                           0.394 0.693754    
## BrandToyota:KMs.Driven                           0.398 0.690899    
## KMs.Driven:ConditionUsed                         1.398 0.162103    
## KMs.Driven:FuelDiesel                           -2.496 0.012582 *  
## KMs.Driven:FuelHybrid                           -0.005 0.996098    
## KMs.Driven:FuelLPG                              -0.448 0.653877    
## KMs.Driven:FuelPetrol                           -2.154 0.031289 *  
## KMs.Driven:ModelSedan                            1.321 0.186404    
## KMs.Driven:ModelSUV                              1.675 0.093899 .  
## KMs.Driven:ModelHatchback                        1.704 0.088348 .  
## KMs.Driven:ModelTruck                            0.172 0.863615    
## KMs.Driven:Registered.CityCapital                1.516 0.129439    
## KMs.Driven:Transaction.TypeInstallment/Leasing   3.280 0.001040 ** 
## BrandBMW:Year                                    0.337 0.735914    
## BrandChangan:Year                                0.647 0.517388    
## BrandChevrolet:Year                              2.612 0.009015 ** 
## BrandClassic & Antiques:Year                        NA       NA    
## BrandDaewoo:Year                                 0.967 0.333482    
## BrandDaihatsu:Year                              -0.243 0.807666    
## BrandFAW:Year                                    0.040 0.968360    
## BrandHonda:Year                                  0.984 0.325323    
## BrandHyundai:Year                               -0.091 0.927454    
## BrandKIA:Year                                    0.548 0.584031    
## BrandLand Rover:Year                                NA       NA    
## BrandLexus:Year                                 -3.661 0.000252 ***
## BrandMazda:Year                                 -0.322 0.747319    
## BrandMercedes:Year                               1.658 0.097417 .  
## BrandMitsubishi:Year                            -0.588 0.556462    
## BrandNissan:Year                                -0.122 0.903017    
## BrandOther Brands:Year                          -1.165 0.244069    
## BrandPorsche:Year                                   NA       NA    
## BrandRange Rover:Year                            2.374 0.017604 *  
## BrandSubaru:Year                                -2.488 0.012854 *  
## BrandSuzuki:Year                                -0.271 0.786539    
## BrandToyota:Year                                 0.583 0.559745    
## ConditionUsed:Year                              -2.700 0.006939 ** 
## FuelDiesel:Year                                 -2.327 0.019959 *  
## FuelHybrid:Year                                 17.124  < 2e-16 ***
## FuelLPG:Year                                     1.761 0.078171 .  
## FuelPetrol:Year                                 26.840  < 2e-16 ***
## ModelSedan:Year                                  9.186  < 2e-16 ***
## ModelSUV:Year                                   -1.920 0.054857 .  
## ModelHatchback:Year                              6.818 9.54e-12 ***
## ModelTruck:Year                                 -3.730 0.000192 ***
## Registered.CityCapital:Year                      6.528 6.85e-11 ***
## Transaction.TypeInstallment/Leasing:Year       -18.658  < 2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 221200 on 18996 degrees of freedom
## Multiple R-squared:  0.7711, Adjusted R-squared:   0.77 
## F-statistic: 673.8 on 95 and 18996 DF,  p-value: < 2.2e-16

Explore interactions among independent variables

## 
## Call:
## lm(formula = Model2, data = df)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -1054825  -238590   -49736   178067  1750108 
## 
## Coefficients:
##                   Estimate Std. Error t value Pr(>|t|)    
## (Intercept)     -6.138e+07  6.277e+05 -97.790   <2e-16 ***
## KMs.Driven       8.592e-01  9.635e-01   0.892    0.373    
## Year             3.097e+04  3.130e+02  98.939   <2e-16 ***
## KMs.Driven:Year -4.309e-04  4.829e-04  -0.892    0.372    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 372400 on 19088 degrees of freedom
## Multiple R-squared:  0.3484, Adjusted R-squared:  0.3483 
## F-statistic:  3403 on 3 and 19088 DF,  p-value: < 2.2e-16

#Question 3: Explore the possibility of having quadratic terms in the model

## 
## Call:
## lm(formula = Model3, data = df)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -1162926  -210297   -61358   182524  1740173 
## 
## Coefficients:
##                   Estimate Std. Error t value Pr(>|t|)    
## (Intercept)      1.966e+09  1.266e+08  15.530  < 2e-16 ***
## Year            -1.994e+06  1.265e+05 -15.770  < 2e-16 ***
## KMs.Driven       7.332e-02  1.573e-02   4.663 3.14e-06 ***
## I(KMs.Driven^2) -8.274e-09  1.691e-09  -4.892 1.01e-06 ***
## I(Year^2)        5.059e+02  3.159e+01  16.016  < 2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 369800 on 19087 degrees of freedom
## Multiple R-squared:  0.3575, Adjusted R-squared:  0.3573 
## F-statistic:  2655 on 4 and 19087 DF,  p-value: < 2.2e-16

Combining all of the information

## 
## Call:
## lm(formula = Model4, data = df)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -1754950   -98987    -3800    91953  1797933 
## 
## Coefficients: (6 not defined because of singularities)
##                                                  Estimate Std. Error
## (Intercept)                                     3.205e+09  1.010e+08
## BrandBMW                                       -3.391e+07  2.904e+07
## BrandChangan                                   -5.473e+07  1.014e+08
## BrandChevrolet                                 -8.923e+07  3.111e+07
## BrandClassic & Antiques                        -1.210e+05  2.310e+05
## BrandDaewoo                                    -4.225e+07  2.739e+07
## BrandDaihatsu                                  -1.636e+07  2.553e+07
## BrandFAW                                       -1.241e+07  2.904e+07
## BrandHonda                                     -3.991e+07  2.552e+07
## BrandHyundai                                   -9.218e+06  2.608e+07
## BrandKIA                                       -2.392e+07  2.696e+07
## BrandLand Rover                                -3.537e+05  2.329e+05
## BrandLexus                                      1.298e+08  3.455e+07
## BrandMazda                                     -1.160e+07  2.612e+07
## BrandMercedes                                  -7.196e+07  2.652e+07
## BrandMitsubishi                                -3.023e+06  2.560e+07
## BrandNissan                                    -1.672e+07  2.557e+07
## BrandOther Brands                               1.083e+07  2.579e+07
## BrandPorsche                                    4.023e+05  2.459e+05
## BrandRange Rover                               -1.610e+09  6.654e+08
## BrandSubaru                                     3.201e+08  9.822e+07
## BrandSuzuki                                    -1.057e+07  2.553e+07
## BrandToyota                                    -2.717e+07  2.552e+07
## ConditionUsed                                  -4.129e+06  1.193e+06
## FuelDiesel                                      1.163e+07  2.965e+06
## FuelHybrid                                     -3.096e+07  2.281e+06
## FuelLPG                                        -2.037e+07  1.099e+07
## FuelPetrol                                     -1.165e+07  9.604e+05
## KMs.Driven                                     -9.443e-01  1.230e+00
## ModelSedan                                     -2.177e+07  2.728e+06
## ModelSUV                                        1.256e+07  2.947e+06
## ModelHatchback                                 -1.072e+07  2.778e+06
## ModelTruck                                      2.228e+07  4.617e+06
## Registered.CityCapital                         -1.238e+07  1.932e+06
## Transaction.TypeInstallment/Leasing             6.511e+07  2.803e+06
## Year                                           -3.206e+06  9.826e+04
## I(Year^2)                                       8.021e+02  2.431e+01
## I(KMs.Driven^2)                                 1.676e-09  1.042e-09
## BrandBMW:KMs.Driven                             3.255e+00  1.497e+00
## BrandChangan:KMs.Driven                         8.480e-01  1.230e+00
## BrandChevrolet:KMs.Driven                       7.710e-01  1.254e+00
## BrandClassic & Antiques:KMs.Driven                     NA         NA
## BrandDaewoo:KMs.Driven                          9.059e-01  1.230e+00
## BrandDaihatsu:KMs.Driven                        8.622e-01  1.229e+00
## BrandFAW:KMs.Driven                             8.081e-02  1.306e+00
## BrandHonda:KMs.Driven                           8.613e-01  1.229e+00
## BrandHyundai:KMs.Driven                         8.744e-01  1.229e+00
## BrandKIA:KMs.Driven                             8.979e-01  1.229e+00
## BrandLand Rover:KMs.Driven                             NA         NA
## BrandLexus:KMs.Driven                          -2.421e-01  1.268e+00
## BrandMazda:KMs.Driven                           7.275e-01  1.249e+00
## BrandMercedes:KMs.Driven                        9.997e-01  1.369e+00
## BrandMitsubishi:KMs.Driven                      9.133e-01  1.230e+00
## BrandNissan:KMs.Driven                          8.526e-01  1.229e+00
## BrandOther Brands:KMs.Driven                    8.643e-01  1.229e+00
## BrandPorsche:KMs.Driven                                NA         NA
## BrandRange Rover:KMs.Driven                     2.014e+02  8.123e+01
## BrandSubaru:KMs.Driven                         -7.642e+00  2.934e+00
## BrandSuzuki:KMs.Driven                          8.589e-01  1.229e+00
## BrandToyota:KMs.Driven                          8.613e-01  1.229e+00
## ConditionUsed:KMs.Driven                        1.278e-02  1.302e-02
## FuelDiesel:KMs.Driven                          -9.044e-02  3.485e-02
## FuelHybrid:KMs.Driven                           6.504e-03  1.376e-02
## FuelLPG:KMs.Driven                             -3.417e-01  8.267e-01
## FuelPetrol:KMs.Driven                          -1.011e-02  6.486e-03
## KMs.Driven:ModelSedan                           2.327e-02  2.024e-02
## KMs.Driven:ModelSUV                             3.002e-02  2.122e-02
## KMs.Driven:ModelHatchback                       2.805e-02  1.977e-02
## KMs.Driven:ModelTruck                          -2.738e-03  2.955e-02
## KMs.Driven:Registered.CityCapital               2.900e-02  2.113e-02
## KMs.Driven:Transaction.TypeInstallment/Leasing  2.629e-01  7.711e-02
## BrandBMW:Year                                   1.702e+04  1.444e+04
## BrandChangan:Year                               2.701e+04  5.051e+04
## BrandChevrolet:Year                             4.424e+04  1.546e+04
## BrandClassic & Antiques:Year                           NA         NA
## BrandDaewoo:Year                                2.098e+04  1.361e+04
## BrandDaihatsu:Year                              8.004e+03  1.267e+04
## BrandFAW:Year                                   5.990e+03  1.441e+04
## BrandHonda:Year                                 1.987e+04  1.267e+04
## BrandHyundai:Year                               4.409e+03  1.295e+04
## BrandKIA:Year                                   1.175e+04  1.339e+04
## BrandLand Rover:Year                                   NA         NA
## BrandLexus:Year                                -6.451e+04  1.717e+04
## BrandMazda:Year                                 5.697e+03  1.297e+04
## BrandMercedes:Year                              3.615e+04  1.318e+04
## BrandMitsubishi:Year                            1.382e+03  1.271e+04
## BrandNissan:Year                                8.233e+03  1.269e+04
## BrandOther Brands:Year                         -5.622e+03  1.280e+04
## BrandPorsche:Year                                      NA         NA
## BrandRange Rover:Year                           7.980e+05  3.298e+05
## BrandSubaru:Year                               -1.589e+05  4.871e+04
## BrandSuzuki:Year                                5.076e+03  1.267e+04
## BrandToyota:Year                                1.358e+04  1.267e+04
## ConditionUsed:Year                              2.042e+03  5.938e+02
## FuelDiesel:Year                                -5.669e+03  1.483e+03
## FuelHybrid:Year                                 1.552e+04  1.137e+03
## FuelLPG:Year                                    1.020e+04  5.496e+03
## FuelPetrol:Year                                 5.865e+03  4.794e+02
## ModelSedan:Year                                 1.096e+04  1.363e+03
## ModelSUV:Year                                  -6.162e+03  1.471e+03
## ModelHatchback:Year                             5.410e+03  1.387e+03
## ModelTruck:Year                                -1.104e+04  2.302e+03
## Registered.CityCapital:Year                     6.198e+03  9.634e+02
## Transaction.TypeInstallment/Leasing:Year       -3.271e+04  1.392e+03
##                                                t value Pr(>|t|)    
## (Intercept)                                     31.739  < 2e-16 ***
## BrandBMW                                        -1.168 0.242919    
## BrandChangan                                    -0.540 0.589355    
## BrandChevrolet                                  -2.868 0.004131 ** 
## BrandClassic & Antiques                         -0.524 0.600340    
## BrandDaewoo                                     -1.542 0.122992    
## BrandDaihatsu                                   -0.641 0.521725    
## BrandFAW                                        -0.427 0.669024    
## BrandHonda                                      -1.564 0.117920    
## BrandHyundai                                    -0.353 0.723735    
## BrandKIA                                        -0.887 0.374900    
## BrandLand Rover                                 -1.519 0.128880    
## BrandLexus                                       3.758 0.000172 ***
## BrandMazda                                      -0.444 0.657142    
## BrandMercedes                                   -2.713 0.006671 ** 
## BrandMitsubishi                                 -0.118 0.905998    
## BrandNissan                                     -0.654 0.513137    
## BrandOther Brands                                0.420 0.674441    
## BrandPorsche                                     1.636 0.101804    
## BrandRange Rover                                -2.420 0.015531 *  
## BrandSubaru                                      3.259 0.001122 ** 
## BrandSuzuki                                     -0.414 0.678777    
## BrandToyota                                     -1.065 0.287051    
## ConditionUsed                                   -3.460 0.000542 ***
## FuelDiesel                                       3.921 8.85e-05 ***
## FuelHybrid                                     -13.570  < 2e-16 ***
## FuelLPG                                         -1.852 0.063991 .  
## FuelPetrol                                     -12.132  < 2e-16 ***
## KMs.Driven                                      -0.768 0.442535    
## ModelSedan                                      -7.979 1.56e-15 ***
## ModelSUV                                         4.261 2.04e-05 ***
## ModelHatchback                                  -3.860 0.000114 ***
## ModelTruck                                       4.826 1.41e-06 ***
## Registered.CityCapital                          -6.410 1.49e-10 ***
## Transaction.TypeInstallment/Leasing             23.231  < 2e-16 ***
## Year                                           -32.629  < 2e-16 ***
## I(Year^2)                                       33.000  < 2e-16 ***
## I(KMs.Driven^2)                                  1.609 0.107675    
## BrandBMW:KMs.Driven                              2.175 0.029652 *  
## BrandChangan:KMs.Driven                          0.690 0.490393    
## BrandChevrolet:KMs.Driven                        0.615 0.538634    
## BrandClassic & Antiques:KMs.Driven                  NA       NA    
## BrandDaewoo:KMs.Driven                           0.737 0.461311    
## BrandDaihatsu:KMs.Driven                         0.701 0.483072    
## BrandFAW:KMs.Driven                              0.062 0.950648    
## BrandHonda:KMs.Driven                            0.701 0.483555    
## BrandHyundai:KMs.Driven                          0.711 0.476967    
## BrandKIA:KMs.Driven                              0.730 0.465212    
## BrandLand Rover:KMs.Driven                          NA       NA    
## BrandLexus:KMs.Driven                           -0.191 0.848544    
## BrandMazda:KMs.Driven                            0.583 0.560191    
## BrandMercedes:KMs.Driven                         0.730 0.465213    
## BrandMitsubishi:KMs.Driven                       0.743 0.457665    
## BrandNissan:KMs.Driven                           0.694 0.487994    
## BrandOther Brands:KMs.Driven                     0.703 0.482070    
## BrandPorsche:KMs.Driven                             NA       NA    
## BrandRange Rover:KMs.Driven                      2.479 0.013167 *  
## BrandSubaru:KMs.Driven                          -2.605 0.009199 ** 
## BrandSuzuki:KMs.Driven                           0.699 0.484768    
## BrandToyota:KMs.Driven                           0.701 0.483555    
## ConditionUsed:KMs.Driven                         0.982 0.326113    
## FuelDiesel:KMs.Driven                           -2.595 0.009460 ** 
## FuelHybrid:KMs.Driven                            0.473 0.636508    
## FuelLPG:KMs.Driven                              -0.413 0.679330    
## FuelPetrol:KMs.Driven                           -1.559 0.119041    
## KMs.Driven:ModelSedan                            1.149 0.250405    
## KMs.Driven:ModelSUV                              1.415 0.157170    
## KMs.Driven:ModelHatchback                        1.419 0.156035    
## KMs.Driven:ModelTruck                           -0.093 0.926167    
## KMs.Driven:Registered.CityCapital                1.373 0.169883    
## KMs.Driven:Transaction.TypeInstallment/Leasing   3.409 0.000653 ***
## BrandBMW:Year                                    1.178 0.238688    
## BrandChangan:Year                                0.535 0.592894    
## BrandChevrolet:Year                              2.862 0.004217 ** 
## BrandClassic & Antiques:Year                        NA       NA    
## BrandDaewoo:Year                                 1.541 0.123398    
## BrandDaihatsu:Year                               0.632 0.527681    
## BrandFAW:Year                                    0.416 0.677641    
## BrandHonda:Year                                  1.568 0.116903    
## BrandHyundai:Year                                0.340 0.733495    
## BrandKIA:Year                                    0.878 0.380092    
## BrandLand Rover:Year                                NA       NA    
## BrandLexus:Year                                 -3.756 0.000173 ***
## BrandMazda:Year                                  0.439 0.660488    
## BrandMercedes:Year                               2.744 0.006074 ** 
## BrandMitsubishi:Year                             0.109 0.913411    
## BrandNissan:Year                                 0.649 0.516531    
## BrandOther Brands:Year                          -0.439 0.660547    
## BrandPorsche:Year                                   NA       NA    
## BrandRange Rover:Year                            2.419 0.015553 *  
## BrandSubaru:Year                                -3.263 0.001106 ** 
## BrandSuzuki:Year                                 0.401 0.688706    
## BrandToyota:Year                                 1.072 0.283814    
## ConditionUsed:Year                               3.439 0.000586 ***
## FuelDiesel:Year                                 -3.824 0.000132 ***
## FuelHybrid:Year                                 13.643  < 2e-16 ***
## FuelLPG:Year                                     1.855 0.063616 .  
## FuelPetrol:Year                                 12.234  < 2e-16 ***
## ModelSedan:Year                                  8.043 9.30e-16 ***
## ModelSUV:Year                                   -4.189 2.81e-05 ***
## ModelHatchback:Year                              3.901 9.62e-05 ***
## ModelTruck:Year                                 -4.797 1.62e-06 ***
## Registered.CityCapital:Year                      6.434 1.28e-10 ***
## Transaction.TypeInstallment/Leasing:Year       -23.507  < 2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 215100 on 18994 degrees of freedom
## Multiple R-squared:  0.7837, Adjusted R-squared:  0.7826 
## F-statistic: 709.5 on 97 and 18994 DF,  p-value: < 2.2e-16

## Start:  AIC=468951.8
## Price ~ Brand + Condition + Fuel + KMs.Driven + Model + Registered.City + 
##     Transaction.Type + Year + I(Year^2) + I(KMs.Driven^2) + Brand * 
##     KMs.Driven + Condition * KMs.Driven + Fuel * KMs.Driven + 
##     Model * KMs.Driven + Registered.City * KMs.Driven + Transaction.Type * 
##     KMs.Driven + Brand * Year + Condition * Year + Fuel * Year + 
##     Model * Year + Registered.City * Year + Transaction.Type * 
##     Year
## 
##                               Df  Sum of Sq        RSS    AIC
## - KMs.Driven:Model             4 1.8949e+11 8.7892e+14 468948
## - Condition:KMs.Driven         1 4.4613e+10 8.7877e+14 468951
## - KMs.Driven:Registered.City   1 8.7166e+10 8.7882e+14 468952
## <none>                                      8.7873e+14 468952
## - I(KMs.Driven^2)              1 1.1974e+11 8.7885e+14 468952
## - Fuel:KMs.Driven              4 4.3651e+11 8.7916e+14 468953
## - KMs.Driven:Transaction.Type  1 5.3771e+11 8.7927e+14 468961
## - Condition:Year               1 5.4703e+11 8.7928e+14 468962
## - Brand:KMs.Driven            19 2.3688e+12 8.8110e+14 468965
## - Registered.City:Year         1 1.9150e+12 8.8064e+14 468991
## - Fuel:Year                    4 1.4625e+13 8.9335e+14 469259
## - Transaction.Type:Year        1 2.5564e+13 9.0429e+14 469497
## - Model:Year                   4 2.8202e+13 9.0693e+14 469547
## - Brand:Year                  19 3.4000e+13 9.1273e+14 469639
## - I(Year^2)                    1 5.0382e+13 9.2911e+14 470014
## 
## Step:  AIC=468947.9
## Price ~ Brand + Condition + Fuel + KMs.Driven + Model + Registered.City + 
##     Transaction.Type + Year + I(Year^2) + I(KMs.Driven^2) + Brand:KMs.Driven + 
##     Condition:KMs.Driven + Fuel:KMs.Driven + KMs.Driven:Registered.City + 
##     KMs.Driven:Transaction.Type + Brand:Year + Condition:Year + 
##     Fuel:Year + Model:Year + Registered.City:Year + Transaction.Type:Year
## 
##                               Df  Sum of Sq        RSS    AIC
## - Condition:KMs.Driven         1 3.2974e+10 8.7895e+14 468947
## - KMs.Driven:Registered.City   1 8.0576e+10 8.7900e+14 468948
## <none>                                      8.7892e+14 468948
## - Fuel:KMs.Driven              4 3.7716e+11 8.7929e+14 468948
## - I(KMs.Driven^2)              1 1.3522e+11 8.7905e+14 468949
## - KMs.Driven:Transaction.Type  1 5.3522e+11 8.7945e+14 468958
## - Condition:Year               1 5.4150e+11 8.7946e+14 468958
## - Brand:KMs.Driven            19 2.3270e+12 8.8124e+14 468960
## - Registered.City:Year         1 1.9240e+12 8.8084e+14 468988
## - Fuel:Year                    4 1.4677e+13 8.9359e+14 469256
## - Transaction.Type:Year        1 2.5582e+13 9.0450e+14 469494
## - Model:Year                   4 2.8288e+13 9.0721e+14 469545
## - Brand:Year                  19 3.3966e+13 9.1288e+14 469634
## - I(Year^2)                    1 5.0402e+13 9.2932e+14 470011
## 
## Step:  AIC=468946.6
## Price ~ Brand + Condition + Fuel + KMs.Driven + Model + Registered.City + 
##     Transaction.Type + Year + I(Year^2) + I(KMs.Driven^2) + Brand:KMs.Driven + 
##     Fuel:KMs.Driven + KMs.Driven:Registered.City + KMs.Driven:Transaction.Type + 
##     Brand:Year + Condition:Year + Fuel:Year + Model:Year + Registered.City:Year + 
##     Transaction.Type:Year
## 
##                               Df  Sum of Sq        RSS    AIC
## - KMs.Driven:Registered.City   1 8.0490e+10 8.7903e+14 468946
## <none>                                      8.7895e+14 468947
## - Fuel:KMs.Driven              4 3.7520e+11 8.7933e+14 468947
## - I(KMs.Driven^2)              1 1.4771e+11 8.7910e+14 468948
## - Condition:Year               1 5.1772e+11 8.7947e+14 468956
## - KMs.Driven:Transaction.Type  1 5.3669e+11 8.7949e+14 468956
## - Brand:KMs.Driven            19 2.3430e+12 8.8129e+14 468959
## - Registered.City:Year         1 1.9213e+12 8.8087e+14 468986
## - Fuel:Year                    4 1.4681e+13 8.9363e+14 469255
## - Transaction.Type:Year        1 2.5554e+13 9.0451e+14 469492
## - Model:Year                   4 2.8353e+13 9.0730e+14 469545
## - Brand:Year                  19 3.3951e+13 9.1290e+14 469632
## - I(Year^2)                    1 5.0410e+13 9.2936e+14 470009
## 
## Step:  AIC=468946.4
## Price ~ Brand + Condition + Fuel + KMs.Driven + Model + Registered.City + 
##     Transaction.Type + Year + I(Year^2) + I(KMs.Driven^2) + Brand:KMs.Driven + 
##     Fuel:KMs.Driven + KMs.Driven:Transaction.Type + Brand:Year + 
##     Condition:Year + Fuel:Year + Model:Year + Registered.City:Year + 
##     Transaction.Type:Year
## 
##                               Df  Sum of Sq        RSS    AIC
## <none>                                      8.7903e+14 468946
## - Fuel:KMs.Driven              4 3.7461e+11 8.7941e+14 468947
## - I(KMs.Driven^2)              1 1.4369e+11 8.7917e+14 468947
## - KMs.Driven:Transaction.Type  1 5.0040e+11 8.7953e+14 468955
## - Condition:Year               1 5.1690e+11 8.7955e+14 468956
## - Brand:KMs.Driven            19 2.3748e+12 8.8141e+14 468960
## - Registered.City:Year         1 1.8661e+12 8.8090e+14 468985
## - Fuel:Year                    4 1.4686e+13 8.9372e+14 469255
## - Transaction.Type:Year        1 2.5630e+13 9.0466e+14 469493
## - Model:Year                   4 2.8365e+13 9.0740e+14 469545
## - Brand:Year                  19 3.3977e+13 9.1301e+14 469632
## - I(Year^2)                    1 5.0442e+13 9.2947e+14 470010
## 
## Call:
## lm(formula = Model5, data = df)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -1754950   -98987    -3800    91953  1797933 
## 
## Coefficients: (6 not defined because of singularities)
##                                                  Estimate Std. Error
## (Intercept)                                     3.205e+09  1.010e+08
## BrandBMW                                       -3.391e+07  2.904e+07
## BrandChangan                                   -5.473e+07  1.014e+08
## BrandChevrolet                                 -8.923e+07  3.111e+07
## BrandClassic & Antiques                        -1.210e+05  2.310e+05
## BrandDaewoo                                    -4.225e+07  2.739e+07
## BrandDaihatsu                                  -1.636e+07  2.553e+07
## BrandFAW                                       -1.241e+07  2.904e+07
## BrandHonda                                     -3.991e+07  2.552e+07
## BrandHyundai                                   -9.218e+06  2.608e+07
## BrandKIA                                       -2.392e+07  2.696e+07
## BrandLand Rover                                -3.537e+05  2.329e+05
## BrandLexus                                      1.298e+08  3.455e+07
## BrandMazda                                     -1.160e+07  2.612e+07
## BrandMercedes                                  -7.196e+07  2.652e+07
## BrandMitsubishi                                -3.023e+06  2.560e+07
## BrandNissan                                    -1.672e+07  2.557e+07
## BrandOther Brands                               1.083e+07  2.579e+07
## BrandPorsche                                    4.023e+05  2.459e+05
## BrandRange Rover                               -1.610e+09  6.654e+08
## BrandSubaru                                     3.201e+08  9.822e+07
## BrandSuzuki                                    -1.057e+07  2.553e+07
## BrandToyota                                    -2.717e+07  2.552e+07
## ConditionUsed                                  -4.129e+06  1.193e+06
## FuelDiesel                                      1.163e+07  2.965e+06
## FuelHybrid                                     -3.096e+07  2.281e+06
## FuelLPG                                        -2.037e+07  1.099e+07
## FuelPetrol                                     -1.165e+07  9.604e+05
## KMs.Driven                                     -9.443e-01  1.230e+00
## ModelSedan                                     -2.177e+07  2.728e+06
## ModelSUV                                        1.256e+07  2.947e+06
## ModelHatchback                                 -1.072e+07  2.778e+06
## ModelTruck                                      2.228e+07  4.617e+06
## Registered.CityCapital                         -1.238e+07  1.932e+06
## Transaction.TypeInstallment/Leasing             6.511e+07  2.803e+06
## Year                                           -3.206e+06  9.826e+04
## I(Year^2)                                       8.021e+02  2.431e+01
## I(KMs.Driven^2)                                 1.676e-09  1.042e-09
## BrandBMW:KMs.Driven                             3.255e+00  1.497e+00
## BrandChangan:KMs.Driven                         8.480e-01  1.230e+00
## BrandChevrolet:KMs.Driven                       7.710e-01  1.254e+00
## BrandClassic & Antiques:KMs.Driven                     NA         NA
## BrandDaewoo:KMs.Driven                          9.059e-01  1.230e+00
## BrandDaihatsu:KMs.Driven                        8.622e-01  1.229e+00
## BrandFAW:KMs.Driven                             8.081e-02  1.306e+00
## BrandHonda:KMs.Driven                           8.613e-01  1.229e+00
## BrandHyundai:KMs.Driven                         8.744e-01  1.229e+00
## BrandKIA:KMs.Driven                             8.979e-01  1.229e+00
## BrandLand Rover:KMs.Driven                             NA         NA
## BrandLexus:KMs.Driven                          -2.421e-01  1.268e+00
## BrandMazda:KMs.Driven                           7.275e-01  1.249e+00
## BrandMercedes:KMs.Driven                        9.997e-01  1.369e+00
## BrandMitsubishi:KMs.Driven                      9.133e-01  1.230e+00
## BrandNissan:KMs.Driven                          8.526e-01  1.229e+00
## BrandOther Brands:KMs.Driven                    8.643e-01  1.229e+00
## BrandPorsche:KMs.Driven                                NA         NA
## BrandRange Rover:KMs.Driven                     2.014e+02  8.123e+01
## BrandSubaru:KMs.Driven                         -7.642e+00  2.934e+00
## BrandSuzuki:KMs.Driven                          8.589e-01  1.229e+00
## BrandToyota:KMs.Driven                          8.613e-01  1.229e+00
## ConditionUsed:KMs.Driven                        1.278e-02  1.302e-02
## FuelDiesel:KMs.Driven                          -9.044e-02  3.485e-02
## FuelHybrid:KMs.Driven                           6.504e-03  1.376e-02
## FuelLPG:KMs.Driven                             -3.417e-01  8.267e-01
## FuelPetrol:KMs.Driven                          -1.011e-02  6.486e-03
## KMs.Driven:ModelSedan                           2.327e-02  2.024e-02
## KMs.Driven:ModelSUV                             3.002e-02  2.122e-02
## KMs.Driven:ModelHatchback                       2.805e-02  1.977e-02
## KMs.Driven:ModelTruck                          -2.738e-03  2.955e-02
## KMs.Driven:Registered.CityCapital               2.900e-02  2.113e-02
## KMs.Driven:Transaction.TypeInstallment/Leasing  2.629e-01  7.711e-02
## BrandBMW:Year                                   1.702e+04  1.444e+04
## BrandChangan:Year                               2.701e+04  5.051e+04
## BrandChevrolet:Year                             4.424e+04  1.546e+04
## BrandClassic & Antiques:Year                           NA         NA
## BrandDaewoo:Year                                2.098e+04  1.361e+04
## BrandDaihatsu:Year                              8.004e+03  1.267e+04
## BrandFAW:Year                                   5.990e+03  1.441e+04
## BrandHonda:Year                                 1.987e+04  1.267e+04
## BrandHyundai:Year                               4.409e+03  1.295e+04
## BrandKIA:Year                                   1.175e+04  1.339e+04
## BrandLand Rover:Year                                   NA         NA
## BrandLexus:Year                                -6.451e+04  1.717e+04
## BrandMazda:Year                                 5.697e+03  1.297e+04
## BrandMercedes:Year                              3.615e+04  1.318e+04
## BrandMitsubishi:Year                            1.382e+03  1.271e+04
## BrandNissan:Year                                8.233e+03  1.269e+04
## BrandOther Brands:Year                         -5.622e+03  1.280e+04
## BrandPorsche:Year                                      NA         NA
## BrandRange Rover:Year                           7.980e+05  3.298e+05
## BrandSubaru:Year                               -1.589e+05  4.871e+04
## BrandSuzuki:Year                                5.076e+03  1.267e+04
## BrandToyota:Year                                1.358e+04  1.267e+04
## ConditionUsed:Year                              2.042e+03  5.938e+02
## FuelDiesel:Year                                -5.669e+03  1.483e+03
## FuelHybrid:Year                                 1.552e+04  1.137e+03
## FuelLPG:Year                                    1.020e+04  5.496e+03
## FuelPetrol:Year                                 5.865e+03  4.794e+02
## ModelSedan:Year                                 1.096e+04  1.363e+03
## ModelSUV:Year                                  -6.162e+03  1.471e+03
## ModelHatchback:Year                             5.410e+03  1.387e+03
## ModelTruck:Year                                -1.104e+04  2.302e+03
## Registered.CityCapital:Year                     6.198e+03  9.634e+02
## Transaction.TypeInstallment/Leasing:Year       -3.271e+04  1.392e+03
##                                                t value Pr(>|t|)    
## (Intercept)                                     31.739  < 2e-16 ***
## BrandBMW                                        -1.168 0.242919    
## BrandChangan                                    -0.540 0.589355    
## BrandChevrolet                                  -2.868 0.004131 ** 
## BrandClassic & Antiques                         -0.524 0.600340    
## BrandDaewoo                                     -1.542 0.122992    
## BrandDaihatsu                                   -0.641 0.521725    
## BrandFAW                                        -0.427 0.669024    
## BrandHonda                                      -1.564 0.117920    
## BrandHyundai                                    -0.353 0.723735    
## BrandKIA                                        -0.887 0.374900    
## BrandLand Rover                                 -1.519 0.128880    
## BrandLexus                                       3.758 0.000172 ***
## BrandMazda                                      -0.444 0.657142    
## BrandMercedes                                   -2.713 0.006671 ** 
## BrandMitsubishi                                 -0.118 0.905998    
## BrandNissan                                     -0.654 0.513137    
## BrandOther Brands                                0.420 0.674441    
## BrandPorsche                                     1.636 0.101804    
## BrandRange Rover                                -2.420 0.015531 *  
## BrandSubaru                                      3.259 0.001122 ** 
## BrandSuzuki                                     -0.414 0.678777    
## BrandToyota                                     -1.065 0.287051    
## ConditionUsed                                   -3.460 0.000542 ***
## FuelDiesel                                       3.921 8.85e-05 ***
## FuelHybrid                                     -13.570  < 2e-16 ***
## FuelLPG                                         -1.852 0.063991 .  
## FuelPetrol                                     -12.132  < 2e-16 ***
## KMs.Driven                                      -0.768 0.442535    
## ModelSedan                                      -7.979 1.56e-15 ***
## ModelSUV                                         4.261 2.04e-05 ***
## ModelHatchback                                  -3.860 0.000114 ***
## ModelTruck                                       4.826 1.41e-06 ***
## Registered.CityCapital                          -6.410 1.49e-10 ***
## Transaction.TypeInstallment/Leasing             23.231  < 2e-16 ***
## Year                                           -32.629  < 2e-16 ***
## I(Year^2)                                       33.000  < 2e-16 ***
## I(KMs.Driven^2)                                  1.609 0.107675    
## BrandBMW:KMs.Driven                              2.175 0.029652 *  
## BrandChangan:KMs.Driven                          0.690 0.490393    
## BrandChevrolet:KMs.Driven                        0.615 0.538634    
## BrandClassic & Antiques:KMs.Driven                  NA       NA    
## BrandDaewoo:KMs.Driven                           0.737 0.461311    
## BrandDaihatsu:KMs.Driven                         0.701 0.483072    
## BrandFAW:KMs.Driven                              0.062 0.950648    
## BrandHonda:KMs.Driven                            0.701 0.483555    
## BrandHyundai:KMs.Driven                          0.711 0.476967    
## BrandKIA:KMs.Driven                              0.730 0.465212    
## BrandLand Rover:KMs.Driven                          NA       NA    
## BrandLexus:KMs.Driven                           -0.191 0.848544    
## BrandMazda:KMs.Driven                            0.583 0.560191    
## BrandMercedes:KMs.Driven                         0.730 0.465213    
## BrandMitsubishi:KMs.Driven                       0.743 0.457665    
## BrandNissan:KMs.Driven                           0.694 0.487994    
## BrandOther Brands:KMs.Driven                     0.703 0.482070    
## BrandPorsche:KMs.Driven                             NA       NA    
## BrandRange Rover:KMs.Driven                      2.479 0.013167 *  
## BrandSubaru:KMs.Driven                          -2.605 0.009199 ** 
## BrandSuzuki:KMs.Driven                           0.699 0.484768    
## BrandToyota:KMs.Driven                           0.701 0.483555    
## ConditionUsed:KMs.Driven                         0.982 0.326113    
## FuelDiesel:KMs.Driven                           -2.595 0.009460 ** 
## FuelHybrid:KMs.Driven                            0.473 0.636508    
## FuelLPG:KMs.Driven                              -0.413 0.679330    
## FuelPetrol:KMs.Driven                           -1.559 0.119041    
## KMs.Driven:ModelSedan                            1.149 0.250405    
## KMs.Driven:ModelSUV                              1.415 0.157170    
## KMs.Driven:ModelHatchback                        1.419 0.156035    
## KMs.Driven:ModelTruck                           -0.093 0.926167    
## KMs.Driven:Registered.CityCapital                1.373 0.169883    
## KMs.Driven:Transaction.TypeInstallment/Leasing   3.409 0.000653 ***
## BrandBMW:Year                                    1.178 0.238688    
## BrandChangan:Year                                0.535 0.592894    
## BrandChevrolet:Year                              2.862 0.004217 ** 
## BrandClassic & Antiques:Year                        NA       NA    
## BrandDaewoo:Year                                 1.541 0.123398    
## BrandDaihatsu:Year                               0.632 0.527681    
## BrandFAW:Year                                    0.416 0.677641    
## BrandHonda:Year                                  1.568 0.116903    
## BrandHyundai:Year                                0.340 0.733495    
## BrandKIA:Year                                    0.878 0.380092    
## BrandLand Rover:Year                                NA       NA    
## BrandLexus:Year                                 -3.756 0.000173 ***
## BrandMazda:Year                                  0.439 0.660488    
## BrandMercedes:Year                               2.744 0.006074 ** 
## BrandMitsubishi:Year                             0.109 0.913411    
## BrandNissan:Year                                 0.649 0.516531    
## BrandOther Brands:Year                          -0.439 0.660547    
## BrandPorsche:Year                                   NA       NA    
## BrandRange Rover:Year                            2.419 0.015553 *  
## BrandSubaru:Year                                -3.263 0.001106 ** 
## BrandSuzuki:Year                                 0.401 0.688706    
## BrandToyota:Year                                 1.072 0.283814    
## ConditionUsed:Year                               3.439 0.000586 ***
## FuelDiesel:Year                                 -3.824 0.000132 ***
## FuelHybrid:Year                                 13.643  < 2e-16 ***
## FuelLPG:Year                                     1.855 0.063616 .  
## FuelPetrol:Year                                 12.234  < 2e-16 ***
## ModelSedan:Year                                  8.043 9.30e-16 ***
## ModelSUV:Year                                   -4.189 2.81e-05 ***
## ModelHatchback:Year                              3.901 9.62e-05 ***
## ModelTruck:Year                                 -4.797 1.62e-06 ***
## Registered.CityCapital:Year                      6.434 1.28e-10 ***
## Transaction.TypeInstallment/Leasing:Year       -23.507  < 2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 215100 on 18994 degrees of freedom
## Multiple R-squared:  0.7837, Adjusted R-squared:  0.7826 
## F-statistic: 709.5 on 97 and 18994 DF,  p-value: < 2.2e-16
## 
## Call:
## lm(formula = Price ~ Brand + Condition + Fuel + KMs.Driven + 
##     Model + Registered.City + Transaction.Type + Year + I(Year^2) + 
##     I(KMs.Driven^2) + Brand:KMs.Driven + Fuel:KMs.Driven + KMs.Driven:Transaction.Type + 
##     Brand:Year + Condition:Year + Fuel:Year + Model:Year + Registered.City:Year + 
##     Transaction.Type:Year, data = df)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -1752898   -99114    -3796    91814  1798060 
## 
## Coefficients: (6 not defined because of singularities)
##                                                  Estimate Std. Error
## (Intercept)                                     3.205e+09  1.010e+08
## BrandBMW                                       -3.377e+07  2.904e+07
## BrandChangan                                   -5.457e+07  1.014e+08
## BrandChevrolet                                 -8.894e+07  3.111e+07
## BrandClassic & Antiques                        -1.211e+05  2.310e+05
## BrandDaewoo                                    -4.234e+07  2.739e+07
## BrandDaihatsu                                  -1.628e+07  2.553e+07
## BrandFAW                                       -1.230e+07  2.904e+07
## BrandHonda                                     -3.981e+07  2.552e+07
## BrandHyundai                                   -9.269e+06  2.608e+07
## BrandKIA                                       -2.381e+07  2.696e+07
## BrandLand Rover                                -3.539e+05  2.329e+05
## BrandLexus                                      1.303e+08  3.455e+07
## BrandMazda                                     -1.142e+07  2.612e+07
## BrandMercedes                                  -7.172e+07  2.652e+07
## BrandMitsubishi                                -2.960e+06  2.560e+07
## BrandNissan                                    -1.664e+07  2.557e+07
## BrandOther Brands                               1.093e+07  2.579e+07
## BrandPorsche                                    4.021e+05  2.459e+05
## BrandRange Rover                               -1.611e+09  6.655e+08
## BrandSubaru                                     3.197e+08  9.822e+07
## BrandSuzuki                                    -1.054e+07  2.553e+07
## BrandToyota                                    -2.702e+07  2.552e+07
## ConditionUsed                                  -3.984e+06  1.185e+06
## FuelDiesel                                      1.168e+07  2.964e+06
## FuelHybrid                                     -3.101e+07  2.281e+06
## FuelLPG                                        -2.041e+07  1.099e+07
## FuelPetrol                                     -1.167e+07  9.602e+05
## KMs.Driven                                     -8.787e-01  1.229e+00
## ModelSedan                                     -2.139e+07  2.710e+06
## ModelSUV                                        1.305e+07  2.928e+06
## ModelHatchback                                 -1.026e+07  2.759e+06
## ModelTruck                                      2.172e+07  4.548e+06
## Registered.CityCapital                         -1.217e+07  1.924e+06
## Transaction.TypeInstallment/Leasing             6.516e+07  2.801e+06
## Year                                           -3.207e+06  9.825e+04
## I(Year^2)                                       8.025e+02  2.430e+01
## I(KMs.Driven^2)                                 1.814e-09  1.029e-09
## BrandBMW:KMs.Driven                             3.254e+00  1.497e+00
## BrandChangan:KMs.Driven                         8.417e-01  1.230e+00
## BrandChevrolet:KMs.Driven                       7.641e-01  1.254e+00
## BrandClassic & Antiques:KMs.Driven                     NA         NA
## BrandDaewoo:KMs.Driven                          9.090e-01  1.230e+00
## BrandDaihatsu:KMs.Driven                        8.585e-01  1.229e+00
## BrandFAW:KMs.Driven                             7.082e-02  1.306e+00
## BrandHonda:KMs.Driven                           8.579e-01  1.229e+00
## BrandHyundai:KMs.Driven                         8.668e-01  1.229e+00
## BrandKIA:KMs.Driven                             8.847e-01  1.229e+00
## BrandLand Rover:KMs.Driven                             NA         NA
## BrandLexus:KMs.Driven                          -2.647e-01  1.267e+00
## BrandMazda:KMs.Driven                           7.205e-01  1.249e+00
## BrandMercedes:KMs.Driven                        9.961e-01  1.369e+00
## BrandMitsubishi:KMs.Driven                      9.125e-01  1.230e+00
## BrandNissan:KMs.Driven                          8.507e-01  1.229e+00
## BrandOther Brands:KMs.Driven                    8.623e-01  1.230e+00
## BrandPorsche:KMs.Driven                                NA         NA
## BrandRange Rover:KMs.Driven                     2.014e+02  8.123e+01
## BrandSubaru:KMs.Driven                         -7.633e+00  2.934e+00
## BrandSuzuki:KMs.Driven                          8.589e-01  1.229e+00
## BrandToyota:KMs.Driven                          8.545e-01  1.229e+00
## FuelDiesel:KMs.Driven                          -8.823e-02  3.479e-02
## FuelHybrid:KMs.Driven                           1.028e-02  1.343e-02
## FuelLPG:KMs.Driven                             -3.426e-01  8.267e-01
## FuelPetrol:KMs.Driven                          -5.708e-03  6.038e-03
## KMs.Driven:Transaction.TypeInstallment/Leasing  2.521e-01  7.666e-02
## BrandBMW:Year                                   1.695e+04  1.444e+04
## BrandChangan:Year                               2.693e+04  5.051e+04
## BrandChevrolet:Year                             4.410e+04  1.546e+04
## BrandClassic & Antiques:Year                           NA         NA
## BrandDaewoo:Year                                2.102e+04  1.361e+04
## BrandDaihatsu:Year                              7.964e+03  1.267e+04
## BrandFAW:Year                                   5.936e+03  1.441e+04
## BrandHonda:Year                                 1.982e+04  1.267e+04
## BrandHyundai:Year                               4.435e+03  1.295e+04
## BrandKIA:Year                                   1.170e+04  1.339e+04
## BrandLand Rover:Year                                   NA         NA
## BrandLexus:Year                                -6.476e+04  1.717e+04
## BrandMazda:Year                                 5.610e+03  1.297e+04
## BrandMercedes:Year                              3.603e+04  1.318e+04
## BrandMitsubishi:Year                            1.351e+03  1.271e+04
## BrandNissan:Year                                8.192e+03  1.269e+04
## BrandOther Brands:Year                         -5.670e+03  1.280e+04
## BrandPorsche:Year                                      NA         NA
## BrandRange Rover:Year                           7.981e+05  3.298e+05
## BrandSubaru:Year                               -1.587e+05  4.871e+04
## BrandSuzuki:Year                                5.060e+03  1.267e+04
## BrandToyota:Year                                1.350e+04  1.267e+04
## ConditionUsed:Year                              1.971e+03  5.896e+02
## FuelDiesel:Year                                -5.696e+03  1.482e+03
## FuelHybrid:Year                                 1.554e+04  1.137e+03
## FuelLPG:Year                                    1.022e+04  5.496e+03
## FuelPetrol:Year                                 5.874e+03  4.793e+02
## ModelSedan:Year                                 1.077e+04  1.353e+03
## ModelSUV:Year                                  -6.406e+03  1.462e+03
## ModelHatchback:Year                             5.183e+03  1.378e+03
## ModelTruck:Year                                -1.077e+04  2.268e+03
## Registered.CityCapital:Year                     6.093e+03  9.594e+02
## Transaction.TypeInstallment/Leasing:Year       -3.274e+04  1.391e+03
##                                                t value Pr(>|t|)    
## (Intercept)                                     31.749  < 2e-16 ***
## BrandBMW                                        -1.163 0.244936    
## BrandChangan                                    -0.538 0.590422    
## BrandChevrolet                                  -2.859 0.004256 ** 
## BrandClassic & Antiques                         -0.524 0.600247    
## BrandDaewoo                                     -1.546 0.122212    
## BrandDaihatsu                                   -0.638 0.523785    
## BrandFAW                                        -0.424 0.671772    
## BrandHonda                                      -1.560 0.118834    
## BrandHyundai                                    -0.355 0.722272    
## BrandKIA                                        -0.883 0.377164    
## BrandLand Rover                                 -1.519 0.128742    
## BrandLexus                                       3.773 0.000162 ***
## BrandMazda                                      -0.437 0.661962    
## BrandMercedes                                   -2.704 0.006854 ** 
## BrandMitsubishi                                 -0.116 0.907955    
## BrandNissan                                     -0.651 0.515240    
## BrandOther Brands                                0.424 0.671735    
## BrandPorsche                                     1.635 0.101961    
## BrandRange Rover                                -2.420 0.015516 *  
## BrandSubaru                                      3.255 0.001137 ** 
## BrandSuzuki                                     -0.413 0.679693    
## BrandToyota                                     -1.059 0.289774    
## ConditionUsed                                   -3.363 0.000772 ***
## FuelDiesel                                       3.940 8.16e-05 ***
## FuelHybrid                                     -13.595  < 2e-16 ***
## FuelLPG                                         -1.857 0.063364 .  
## FuelPetrol                                     -12.153  < 2e-16 ***
## KMs.Driven                                      -0.715 0.474741    
## ModelSedan                                      -7.894 3.09e-15 ***
## ModelSUV                                         4.456 8.39e-06 ***
## ModelHatchback                                  -3.719 0.000201 ***
## ModelTruck                                       4.776 1.80e-06 ***
## Registered.CityCapital                          -6.326 2.57e-10 ***
## Transaction.TypeInstallment/Leasing             23.261  < 2e-16 ***
## Year                                           -32.643  < 2e-16 ***
## I(Year^2)                                       33.020  < 2e-16 ***
## I(KMs.Driven^2)                                  1.762 0.078031 .  
## BrandBMW:KMs.Driven                              2.174 0.029698 *  
## BrandChangan:KMs.Driven                          0.685 0.493634    
## BrandChevrolet:KMs.Driven                        0.609 0.542282    
## BrandClassic & Antiques:KMs.Driven                  NA       NA    
## BrandDaewoo:KMs.Driven                           0.739 0.459768    
## BrandDaihatsu:KMs.Driven                         0.698 0.484968    
## BrandFAW:KMs.Driven                              0.054 0.956743    
## BrandHonda:KMs.Driven                            0.698 0.485279    
## BrandHyundai:KMs.Driven                          0.705 0.480784    
## BrandKIA:KMs.Driven                              0.720 0.471757    
## BrandLand Rover:KMs.Driven                          NA       NA    
## BrandLexus:KMs.Driven                           -0.209 0.834548    
## BrandMazda:KMs.Driven                            0.577 0.563957    
## BrandMercedes:KMs.Driven                         0.728 0.466820    
## BrandMitsubishi:KMs.Driven                       0.742 0.458098    
## BrandNissan:KMs.Driven                           0.692 0.488950    
## BrandOther Brands:KMs.Driven                     0.701 0.483120    
## BrandPorsche:KMs.Driven                             NA       NA    
## BrandRange Rover:KMs.Driven                      2.480 0.013155 *  
## BrandSubaru:KMs.Driven                          -2.602 0.009276 ** 
## BrandSuzuki:KMs.Driven                           0.699 0.484755    
## BrandToyota:KMs.Driven                           0.695 0.486995    
## FuelDiesel:KMs.Driven                           -2.536 0.011211 *  
## FuelHybrid:KMs.Driven                            0.766 0.443844    
## FuelLPG:KMs.Driven                              -0.414 0.678593    
## FuelPetrol:KMs.Driven                           -0.945 0.344547    
## KMs.Driven:Transaction.TypeInstallment/Leasing   3.289 0.001008 ** 
## BrandBMW:Year                                    1.173 0.240681    
## BrandChangan:Year                                0.533 0.593962    
## BrandChevrolet:Year                              2.852 0.004344 ** 
## BrandClassic & Antiques:Year                        NA       NA    
## BrandDaewoo:Year                                 1.544 0.122610    
## BrandDaihatsu:Year                               0.628 0.529753    
## BrandFAW:Year                                    0.412 0.680398    
## BrandHonda:Year                                  1.564 0.117812    
## BrandHyundai:Year                                0.342 0.731988    
## BrandKIA:Year                                    0.874 0.382336    
## BrandLand Rover:Year                                NA       NA    
## BrandLexus:Year                                 -3.771 0.000163 ***
## BrandMazda:Year                                  0.433 0.665309    
## BrandMercedes:Year                               2.735 0.006243 ** 
## BrandMitsubishi:Year                             0.106 0.915378    
## BrandNissan:Year                                 0.645 0.518644    
## BrandOther Brands:Year                          -0.443 0.657865    
## BrandPorsche:Year                                   NA       NA    
## BrandRange Rover:Year                            2.420 0.015537 *  
## BrandSubaru:Year                                -3.259 0.001121 ** 
## BrandSuzuki:Year                                 0.399 0.689632    
## BrandToyota:Year                                 1.066 0.286514    
## ConditionUsed:Year                               3.343 0.000832 ***
## FuelDiesel:Year                                 -3.843 0.000122 ***
## FuelHybrid:Year                                 13.668  < 2e-16 ***
## FuelLPG:Year                                     1.859 0.062992 .  
## FuelPetrol:Year                                 12.255  < 2e-16 ***
## ModelSedan:Year                                  7.958 1.85e-15 ***
## ModelSUV:Year                                   -4.381 1.19e-05 ***
## ModelHatchback:Year                              3.761 0.000170 ***
## ModelTruck:Year                                 -4.747 2.08e-06 ***
## Registered.CityCapital:Year                      6.351 2.19e-10 ***
## Transaction.TypeInstallment/Leasing:Year       -23.537  < 2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 215100 on 19000 degrees of freedom
## Multiple R-squared:  0.7836, Adjusted R-squared:  0.7826 
## F-statistic: 756.2 on 91 and 19000 DF,  p-value: < 2.2e-16
## 
## Call:
## lm(formula = Model5, data = df, weights = wts)
## 
## Weighted Residuals:
##     Min      1Q  Median      3Q     Max 
## -6.6101 -0.7495 -0.0537  0.6903 22.8586 
## 
## Coefficients: (6 not defined because of singularities)
##                                                  Estimate Std. Error
## (Intercept)                                     2.901e+09  8.151e+07
## BrandBMW                                        4.842e+06  3.159e+07
## BrandChangan                                   -2.703e+07  7.471e+07
## BrandChevrolet                                  7.800e+05  2.926e+07
## BrandClassic & Antiques                        -1.381e+05  2.430e+05
## BrandDaewoo                                    -2.823e+07  2.876e+07
## BrandDaihatsu                                   1.185e+07  2.721e+07
## BrandFAW                                        2.369e+07  2.821e+07
## BrandHonda                                     -1.118e+07  2.720e+07
## BrandHyundai                                    1.889e+07  2.737e+07
## BrandKIA                                       -3.310e+06  2.771e+07
## BrandLand Rover                                -5.579e+05  1.567e+05
## BrandLexus                                      1.198e+08  3.978e+07
## BrandMazda                                      1.266e+07  2.748e+07
## BrandMercedes                                  -3.234e+07  2.861e+07
## BrandMitsubishi                                 1.953e+07  2.725e+07
## BrandNissan                                     1.039e+07  2.723e+07
## BrandOther Brands                               2.581e+07  2.729e+07
## BrandPorsche                                    3.021e+05  2.440e+05
## BrandRange Rover                               -1.244e+09  6.301e+08
## BrandSubaru                                     2.402e+08  9.255e+07
## BrandSuzuki                                     1.745e+07  2.721e+07
## BrandToyota                                     1.155e+06  2.720e+07
## ConditionUsed                                  -3.289e+06  8.330e+05
## FuelDiesel                                      8.752e+06  2.929e+06
## FuelHybrid                                     -1.529e+07  1.555e+06
## FuelLPG                                        -7.880e+06  8.341e+06
## FuelPetrol                                     -7.747e+06  6.106e+05
## KMs.Driven                                     -6.820e-01  1.256e+00
## ModelSedan                                     -1.022e+07  2.218e+06
## ModelSUV                                        1.106e+07  2.360e+06
## ModelHatchback                                 -4.885e+06  2.207e+06
## ModelTruck                                      1.032e+07  3.721e+06
## Registered.CityCapital                         -9.826e+06  1.285e+06
## Transaction.TypeInstallment/Leasing             6.331e+07  1.692e+06
## Year                                           -2.922e+06  7.777e+04
## I(Year^2)                                       7.359e+02  1.909e+01
## I(KMs.Driven^2)                                 1.251e-10  6.357e-10
## BrandBMW:KMs.Driven                             2.716e+00  1.662e+00
## BrandChangan:KMs.Driven                         6.297e-01  1.256e+00
## BrandChevrolet:KMs.Driven                       4.352e-01  1.268e+00
## BrandClassic & Antiques:KMs.Driven                     NA         NA
## BrandDaewoo:KMs.Driven                          6.648e-01  1.256e+00
## BrandDaihatsu:KMs.Driven                        6.452e-01  1.256e+00
## BrandFAW:KMs.Driven                             4.844e-01  1.301e+00
## BrandHonda:KMs.Driven                           6.456e-01  1.256e+00
## BrandHyundai:KMs.Driven                         6.670e-01  1.256e+00
## BrandKIA:KMs.Driven                             6.740e-01  1.256e+00
## BrandLand Rover:KMs.Driven                             NA         NA
## BrandLexus:KMs.Driven                          -5.759e-01  1.269e+00
## BrandMazda:KMs.Driven                           6.206e-01  1.262e+00
## BrandMercedes:KMs.Driven                        2.038e-01  1.433e+00
## BrandMitsubishi:KMs.Driven                      6.919e-01  1.256e+00
## BrandNissan:KMs.Driven                          6.355e-01  1.256e+00
## BrandOther Brands:KMs.Driven                    6.446e-01  1.256e+00
## BrandPorsche:KMs.Driven                                NA         NA
## BrandRange Rover:KMs.Driven                     1.608e+02  7.703e+01
## BrandSubaru:KMs.Driven                         -5.225e+00  2.804e+00
## BrandSuzuki:KMs.Driven                          6.399e-01  1.256e+00
## BrandToyota:KMs.Driven                          6.487e-01  1.256e+00
## ConditionUsed:KMs.Driven                        2.008e-03  7.822e-03
## FuelDiesel:KMs.Driven                          -8.075e-02  2.947e-02
## FuelHybrid:KMs.Driven                           1.109e-03  9.310e-03
## FuelLPG:KMs.Driven                             -4.604e-01  4.181e-01
## FuelPetrol:KMs.Driven                          -5.852e-03  3.538e-03
## KMs.Driven:ModelSedan                           2.279e-02  1.284e-02
## KMs.Driven:ModelSUV                             2.999e-02  1.370e-02
## KMs.Driven:ModelHatchback                       2.892e-02  1.255e-02
## KMs.Driven:ModelTruck                           1.417e-02  1.651e-02
## KMs.Driven:Registered.CityCapital               9.798e-03  6.611e-03
## KMs.Driven:Transaction.TypeInstallment/Leasing  2.891e-01  5.422e-02
## BrandBMW:Year                                  -2.344e+03  1.573e+04
## BrandChangan:Year                               1.320e+04  3.722e+04
## BrandChevrolet:Year                            -5.518e+02  1.454e+04
## BrandClassic & Antiques:Year                           NA         NA
## BrandDaewoo:Year                                1.403e+04  1.430e+04
## BrandDaihatsu:Year                             -6.061e+03  1.351e+04
## BrandFAW:Year                                  -1.200e+04  1.401e+04
## BrandHonda:Year                                 5.536e+03  1.351e+04
## BrandHyundai:Year                              -9.604e+03  1.360e+04
## BrandKIA:Year                                   1.476e+03  1.377e+04
## BrandLand Rover:Year                                   NA         NA
## BrandLexus:Year                                -5.957e+04  1.978e+04
## BrandMazda:Year                                -6.423e+03  1.365e+04
## BrandMercedes:Year                              1.639e+04  1.423e+04
## BrandMitsubishi:Year                           -9.863e+03  1.354e+04
## BrandNissan:Year                               -5.299e+03  1.352e+04
## BrandOther Brands:Year                         -1.306e+04  1.356e+04
## BrandPorsche:Year                                      NA         NA
## BrandRange Rover:Year                           6.165e+05  3.123e+05
## BrandSubaru:Year                               -1.193e+05  4.589e+04
## BrandSuzuki:Year                               -8.887e+03  1.352e+04
## BrandToyota:Year                               -5.539e+02  1.351e+04
## ConditionUsed:Year                              1.629e+03  4.151e+02
## FuelDiesel:Year                                -4.235e+03  1.466e+03
## FuelHybrid:Year                                 7.684e+03  7.786e+02
## FuelLPG:Year                                    3.965e+03  4.186e+03
## FuelPetrol:Year                                 3.910e+03  3.053e+02
## ModelSedan:Year                                 5.157e+03  1.109e+03
## ModelSUV:Year                                  -5.458e+03  1.180e+03
## ModelHatchback:Year                             2.459e+03  1.104e+03
## ModelTruck:Year                                -5.092e+03  1.855e+03
## Registered.CityCapital:Year                     4.919e+03  6.414e+02
## Transaction.TypeInstallment/Leasing:Year       -3.176e+04  8.407e+02
##                                                t value Pr(>|t|)    
## (Intercept)                                     35.585  < 2e-16 ***
## BrandBMW                                         0.153 0.878170    
## BrandChangan                                    -0.362 0.717478    
## BrandChevrolet                                   0.027 0.978733    
## BrandClassic & Antiques                         -0.568 0.569812    
## BrandDaewoo                                     -0.982 0.326307    
## BrandDaihatsu                                    0.435 0.663280    
## BrandFAW                                         0.840 0.400971    
## BrandHonda                                      -0.411 0.681075    
## BrandHyundai                                     0.690 0.490206    
## BrandKIA                                        -0.119 0.904908    
## BrandLand Rover                                 -3.560 0.000371 ***
## BrandLexus                                       3.011 0.002608 ** 
## BrandMazda                                       0.461 0.644937    
## BrandMercedes                                   -1.130 0.258336    
## BrandMitsubishi                                  0.716 0.473712    
## BrandNissan                                      0.382 0.702695    
## BrandOther Brands                                0.946 0.344200    
## BrandPorsche                                     1.238 0.215643    
## BrandRange Rover                                -1.975 0.048286 *  
## BrandSubaru                                      2.595 0.009473 ** 
## BrandSuzuki                                      0.641 0.521304    
## BrandToyota                                      0.042 0.966131    
## ConditionUsed                                   -3.949 7.88e-05 ***
## FuelDiesel                                       2.988 0.002816 ** 
## FuelHybrid                                      -9.830  < 2e-16 ***
## FuelLPG                                         -0.945 0.344823    
## FuelPetrol                                     -12.688  < 2e-16 ***
## KMs.Driven                                      -0.543 0.587103    
## ModelSedan                                      -4.608 4.08e-06 ***
## ModelSUV                                         4.687 2.79e-06 ***
## ModelHatchback                                  -2.213 0.026903 *  
## ModelTruck                                       2.773 0.005568 ** 
## Registered.CityCapital                          -7.647 2.16e-14 ***
## Transaction.TypeInstallment/Leasing             37.429  < 2e-16 ***
## Year                                           -37.570  < 2e-16 ***
## I(Year^2)                                       38.550  < 2e-16 ***
## I(KMs.Driven^2)                                  0.197 0.843926    
## BrandBMW:KMs.Driven                              1.634 0.102270    
## BrandChangan:KMs.Driven                          0.501 0.616077    
## BrandChevrolet:KMs.Driven                        0.343 0.731364    
## BrandClassic & Antiques:KMs.Driven                  NA       NA    
## BrandDaewoo:KMs.Driven                           0.529 0.596580    
## BrandDaihatsu:KMs.Driven                         0.514 0.607427    
## BrandFAW:KMs.Driven                              0.372 0.709565    
## BrandHonda:KMs.Driven                            0.514 0.607154    
## BrandHyundai:KMs.Driven                          0.531 0.595332    
## BrandKIA:KMs.Driven                              0.537 0.591474    
## BrandLand Rover:KMs.Driven                          NA       NA    
## BrandLexus:KMs.Driven                           -0.454 0.650050    
## BrandMazda:KMs.Driven                            0.492 0.622988    
## BrandMercedes:KMs.Driven                         0.142 0.886911    
## BrandMitsubishi:KMs.Driven                       0.551 0.581729    
## BrandNissan:KMs.Driven                           0.506 0.612824    
## BrandOther Brands:KMs.Driven                     0.513 0.607775    
## BrandPorsche:KMs.Driven                             NA       NA    
## BrandRange Rover:KMs.Driven                      2.088 0.036847 *  
## BrandSubaru:KMs.Driven                          -1.863 0.062441 .  
## BrandSuzuki:KMs.Driven                           0.510 0.610371    
## BrandToyota:KMs.Driven                           0.517 0.605477    
## ConditionUsed:KMs.Driven                         0.257 0.797433    
## FuelDiesel:KMs.Driven                           -2.740 0.006154 ** 
## FuelHybrid:KMs.Driven                            0.119 0.905180    
## FuelLPG:KMs.Driven                              -1.101 0.270792    
## FuelPetrol:KMs.Driven                           -1.654 0.098163 .  
## KMs.Driven:ModelSedan                            1.775 0.075873 .  
## KMs.Driven:ModelSUV                              2.188 0.028662 *  
## KMs.Driven:ModelHatchback                        2.305 0.021186 *  
## KMs.Driven:ModelTruck                            0.858 0.390908    
## KMs.Driven:Registered.CityCapital                1.482 0.138309    
## KMs.Driven:Transaction.TypeInstallment/Leasing   5.331 9.85e-08 ***
## BrandBMW:Year                                   -0.149 0.881537    
## BrandChangan:Year                                0.355 0.722858    
## BrandChevrolet:Year                             -0.038 0.969732    
## BrandClassic & Antiques:Year                        NA       NA    
## BrandDaewoo:Year                                 0.981 0.326465    
## BrandDaihatsu:Year                              -0.448 0.653800    
## BrandFAW:Year                                   -0.856 0.391801    
## BrandHonda:Year                                  0.410 0.681970    
## BrandHyundai:Year                               -0.706 0.480007    
## BrandKIA:Year                                    0.107 0.914610    
## BrandLand Rover:Year                                NA       NA    
## BrandLexus:Year                                 -3.013 0.002594 ** 
## BrandMazda:Year                                 -0.471 0.637996    
## BrandMercedes:Year                               1.152 0.249352    
## BrandMitsubishi:Year                            -0.728 0.466323    
## BrandNissan:Year                                -0.392 0.695200    
## BrandOther Brands:Year                          -0.964 0.335211    
## BrandPorsche:Year                                   NA       NA    
## BrandRange Rover:Year                            1.974 0.048382 *  
## BrandSubaru:Year                                -2.600 0.009324 ** 
## BrandSuzuki:Year                                -0.658 0.510806    
## BrandToyota:Year                                -0.041 0.967309    
## ConditionUsed:Year                               3.923 8.78e-05 ***
## FuelDiesel:Year                                 -2.889 0.003872 ** 
## FuelHybrid:Year                                  9.869  < 2e-16 ***
## FuelLPG:Year                                     0.947 0.343617    
## FuelPetrol:Year                                 12.806  < 2e-16 ***
## ModelSedan:Year                                  4.648 3.37e-06 ***
## ModelSUV:Year                                   -4.627 3.73e-06 ***
## ModelHatchback:Year                              2.228 0.025898 *  
## ModelTruck:Year                                 -2.745 0.006057 ** 
## Registered.CityCapital:Year                      7.670 1.81e-14 ***
## Transaction.TypeInstallment/Leasing:Year       -37.775  < 2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.458 on 18994 degrees of freedom
## Multiple R-squared:  0.7718, Adjusted R-squared:  0.7706 
## F-statistic: 662.2 on 97 and 18994 DF,  p-value: < 2.2e-16

## Warning: not plotting observations with leverage one:
##   3236, 3492, 4776, 16574, 16764

## Warning: not plotting observations with leverage one:
##   3236, 3492, 4776, 16574, 16764

01/12/2019`