Solutions:
From Taylor’s series:
\(P(x)=f(0)+f′(0)(x)+f′′(0)\frac{x^2}{2!} + f(3)(0)\frac{x^3}{3!}+....+f(n)(0)\frac{x^n}{n!}\)
\(f^1(x) = \frac{1}{(1-x)^2}, f^1(0) = 1\)
\(f^2(x) = \frac{2}{(1-x)^3}, f^2(0) = 2\)
\(f^3(x) = \frac{6}{(1-x)^4}, f3(0) = 6\)
\(f^4(x) = \frac{24}{(1-x)^5}, f^4(0) = 24\)
\(f^5(x) = \frac{120}{(1-x)^6}, f^5(0) = 120\)
=> \(\frac{1}{(1 - x)} = 1 + x + \frac{2x^2}{2!} + \frac{6x^3}{3!} + \frac{24x^4}{4!} + \frac{120x^5}{5!} + ...\) \(= 1 + x + x^2 + x^3 + x^4 + x^5 + ...\)
\(f(x) = e^x\)
\(f(x)=e^x, f(0)=e^0 = 1\)
\(f'(x)=ex, f'(0)=e0 = 1\)
\(f''(x)=e^x , f''(0)=e^0 = 1\)
\(f^{(3)}(x)=e^x , f^{(3)}(0)=e^0 = 1\)
\(f^{(4)}(x)=e^x , f(4)(0)=e^0 = 1\)
\(f^{(5)}(x)=e^x , f^{(5)}(0)=e^0 = 1\)
\(f^{(n)}(x)=e^x , f^{(n)}(0)=e^0 = 1\)
\(.\) \(.\) \(.\)
\(f^{(n)}(x)=e^x , f^{(n)}(0)=e^0 = 1\)
=> \(e^x = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \frac{x^4}{4!} + \frac{x^5}{5!} ... + \frac{x^n}{n!}\)
setting \(u=1+x\) => \(\frac{du}{dx}=1 => dx=\frac{1}{u}du\)
\(f′(x)=\frac{1}{u} *1\)
=> \(f′(x)=\frac{1}{1+x}\)
\(f'0(x)=ln(1+x)=0\)
\(f′0(x)=ln(1+x)=1\)
\(f′′0(x)=ln(1+x)=−1\)
\(f^{(3)}0(x)=ln(1+x)=2\)
\(f^{(4)}0(x)=ln(1+x)=−6\)
\(f^{(5)}0(x)=ln(1+x)=24\)
From Taylor’s Series, this can be represented as:
\(x−\frac{x^2}{2}+\frac{x^3}{3}−\frac{x^4}{4} + \frac{x^5}{5} +...+\)