com="G:/R studio/LinearRegressionModel datasets/Computer_Data.csv"
com=read.csv(com)
summary(com)
##        X            price          speed              hd        
##  Min.   :   1   Min.   : 949   Min.   : 25.00   Min.   :  80.0  
##  1st Qu.:1566   1st Qu.:1794   1st Qu.: 33.00   1st Qu.: 214.0  
##  Median :3130   Median :2144   Median : 50.00   Median : 340.0  
##  Mean   :3130   Mean   :2220   Mean   : 52.01   Mean   : 416.6  
##  3rd Qu.:4694   3rd Qu.:2595   3rd Qu.: 66.00   3rd Qu.: 528.0  
##  Max.   :6259   Max.   :5399   Max.   :100.00   Max.   :2100.0  
##       ram             screen        cd       multi      premium   
##  Min.   : 2.000   Min.   :14.00   no :3351   no :5386   no : 612  
##  1st Qu.: 4.000   1st Qu.:14.00   yes:2908   yes: 873   yes:5647  
##  Median : 8.000   Median :14.00                                   
##  Mean   : 8.287   Mean   :14.61                                   
##  3rd Qu.: 8.000   3rd Qu.:15.00                                   
##  Max.   :32.000   Max.   :17.00                                   
##       ads            trend      
##  Min.   : 39.0   Min.   : 1.00  
##  1st Qu.:162.5   1st Qu.:10.00  
##  Median :246.0   Median :16.00  
##  Mean   :221.3   Mean   :15.93  
##  3rd Qu.:275.0   3rd Qu.:21.50  
##  Max.   :339.0   Max.   :35.00
comp=com[,-c(1,11)]
comp
attach(comp)

final<- cbind(comp,cd,multi,premium)
computer=final[,-c(6,7,8)]
#plot
windows()
plot(computer)

#linear Regression
m1=lm(price ~ log(speed)+log(hd)+log(ram)+log(screen)+log(ads)+as.numeric(cd)+as.numeric(multi)+as.numeric(premium),data=computer)
summary(m1)
## 
## Call:
## lm(formula = price ~ log(speed) + log(hd) + log(ram) + log(screen) + 
##     log(ads) + as.numeric(cd) + as.numeric(multi) + as.numeric(premium), 
##     data = computer)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -1103.30  -245.42   -33.04   208.52  2423.46 
## 
## Coefficients:
##                     Estimate Std. Error t value Pr(>|t|)    
## (Intercept)         -3814.57     246.41 -15.481   <2e-16 ***
## log(speed)            347.33      13.52  25.689   <2e-16 ***
## log(hd)              -161.35      14.93 -10.810   <2e-16 ***
## log(ram)              734.40      13.35  55.025   <2e-16 ***
## log(screen)          1394.22      86.71  16.080   <2e-16 ***
## log(ads)              252.23      11.56  21.812   <2e-16 ***
## as.numeric(cd)       -136.34      13.01 -10.482   <2e-16 ***
## as.numeric(multi)      13.24      15.97   0.829    0.407    
## as.numeric(premium)  -348.13      17.18 -20.268   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 387.9 on 6250 degrees of freedom
## Multiple R-squared:  0.5544, Adjusted R-squared:  0.5539 
## F-statistic: 972.2 on 8 and 6250 DF,  p-value: < 2.2e-16
#significant
pv=as.data.frame(predict(m1,computer))
pv
final=cbind(computer,pv)
final