library(stats) 
library( psych ) 
## Warning: package 'psych' was built under R version 3.6.1
library(readxl) 
## Warning: package 'readxl' was built under R version 3.6.1
library(MASS) 
## Warning: package 'MASS' was built under R version 3.6.1
library(ISLR)
## Warning: package 'ISLR' was built under R version 3.6.1
library(ggplot2)
## Warning: package 'ggplot2' was built under R version 3.6.1
## 
## Attaching package: 'ggplot2'
## The following objects are masked from 'package:psych':
## 
##     %+%, alpha
base=read_xlsx("examr.xlsx")
describe(base)
##   vars  n mean   sd median trimmed  mad   min  max range  skew kurtosis   se
## y    1 48 0.21 0.41   0.00    0.15 0.00  0.00 1.00  1.00  1.39    -0.06 0.06
## z    2 48 0.51 0.96   0.54    0.57 0.92 -2.17 2.22  4.39 -0.63     0.01 0.14
modelo_logistico <- glm(y  ~ z,  data = base, family = "binomial") 
summary(modelo_logistico) 
## 
## Call:
## glm(formula = y ~ z, family = "binomial", data = base)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -1.4838  -0.5707  -0.3912  -0.2412   1.8094  
## 
## Coefficients:
##             Estimate Std. Error z value Pr(>|z|)   
## (Intercept)  -1.0285     0.4104  -2.506  0.01220 * 
## z            -1.3492     0.4776  -2.825  0.00473 **
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 49.127  on 47  degrees of freedom
## Residual deviance: 38.208  on 46  degrees of freedom
## AIC: 42.208
## 
## Number of Fisher Scoring iterations: 5
solicitud=data.frame(z=1.5)  

predict(modelo_logistico, solicitud, "response")
##          1 
## 0.04512001
-1.3492*.04512001 
## [1] -0.06087592
ggplot(data = base, aes(x =z, y = y)) + 
  geom_point(aes(color = as.factor(y)), shape = 1) +  
  geom_smooth(method = "glm", 
              method.args = list(family = "binomial"), 
              color = "gray20", 
              se = FALSE) + 
  theme_bw() + 
  theme(legend.position = "none")