Synopsis

This report assessess the NOAA Storm Database to investigate the consequences of severe weather events on population health and economics across the United States. The cumulative effect is calculated per event type. It is concluded that tornadoes are the most harmful with respect to the population health in the U.S. Tornadoes result both in the most fatalaties and the most injuries. Hurricanes/typhoons have the greatest ecomic consequense, as its combined result of crop damage and property damage is the largest of all severe weather events.

Reproducible Research - Project Report Part 2

This is document is created to complete the course on Coursera: Reproducible Research by John Hopkins University. It is part of the Peer-graded Assignments. This report addresses the second assignment of the course, which is given in week 4.

Overview

The basic goal of this assignment is to explore the NOAA Storm Database and answer some basic questions about severe weather events. The two main questions which are adressed are:

  • Across the United States, which types of events (as indicated in the variable) are most harmful with respect to population health?
  • Across the United States, which types of events have the greatest economic consequences?

The report is structured in the following way:

  • Data processing
  • Results
  • Appendix

Data processing

Data description

Storm Data is an official publication of the National Oceanic and Atmospheric Administration (NOAA) which documents:
+ The occurrence of storms and other significant weather phenomena having sufficient intensity to cause loss of life, injuries, significant property damage, and/or disruption to commerce;
+ Rare, unusual, weather phenomena that generate media attention, such as snow flurries in South Florida or the San Diego coastal area;
+ Other significant meteorological events, such as record maximum or minimum temperatures or precipitation that occur in connection with another event.

Loading data

# Load libraries
library(ggplot2)
library(dplyr)
# library(knitr)
# library(kableExtra)
# Load data
fn <- "repdata_data_StormData.csv.bz2"
conn <- bzfile(fn)
# data_ <- readLines(conn)
data_ <- read.csv(conn)

# Add begin date in right format
tmp_DATE <- as.POSIXct(as.character(data_$BGN_DATE),format="%m/%d/%Y %H:%M:%OS")
data_ <- data_ %>%  mutate(DATE=tmp_DATE) 

Compute consequences on population health

To evaluate the consequences of severe weather events on population health, two relevant parameters are identified: fatalities and injuries. For both parameters the average rate per day is computed per event type. By calculating the rate, it does not matter whether or not a parameter is measured for a long period of time. The rate is calculated as the total of fatalities or injuries divideded by the number of days between the first and last occurence. Only events that where witnessed in multiple years are considered to eliminate high rates due to a extremely small period of occurence.

# List the most severe individual events
head(data_[order(data_$FATALITIES,data_$INJURIES,decreasing = TRUE),
           c("EVTYPE","FATALITIES","INJURIES")],10)
##                EVTYPE FATALITIES INJURIES
## 198704           HEAT        583        0
## 862634        TORNADO        158     1150
## 68670         TORNADO        116      785
## 148852        TORNADO        114      597
## 355128 EXCESSIVE HEAT         99        0
## 67884         TORNADO         90     1228
## 46309         TORNADO         75      270
## 371112 EXCESSIVE HEAT         74      135
## 230927 EXCESSIVE HEAT         67        0
## 78567         TORNADO         57      504
head(data_[order(data_$INJURIES,data_$FATALITIES,decreasing = TRUE),
           c("EVTYPE","FATALITIES","INJURIES")],10)
##                   EVTYPE FATALITIES INJURIES
## 157885           TORNADO         42     1700
## 223449         ICE STORM          1     1568
## 67884            TORNADO         90     1228
## 862634           TORNADO        158     1150
## 116011           TORNADO         36     1150
## 860386           TORNADO         44      800
## 344159             FLOOD          2      800
## 68670            TORNADO        116      785
## 529351 HURRICANE/TYPHOON          7      780
## 344178             FLOOD          0      750
# group by event type
by_EV <- data_  %>% group_by(EVTYPE)

# Fatality rate
data_fatalrate <- summarise(by_EV,totalfatal = sum(FATALITIES), 
                            startdate = min(DATE), enddate = max(DATE), 
                            daterange = difftime(enddate,startdate,units="days"),
                            fatalityrate = totalfatal/as.numeric(daterange)) %>% 
                  filter(daterange>365) %>%
                  arrange(desc(fatalityrate)) %>%
                  head(10)


# Injury rate
data_injurerate <- summarise(by_EV,totalinjured = sum(INJURIES), 
                           startdate = min(DATE), enddate = max(DATE), 
                           daterange = difftime(enddate,startdate,units="days"),
                           injuryrate = totalinjured/as.numeric(daterange)) %>% 
                  filter(daterange>365) %>%
                  arrange(desc(injuryrate)) %>%
                  head(10)

Compute consequences on economics

To evaluate the consequences of severe weather events on economic damage, two relevant parameters are identified: property damage and crop damage. The total damage is computed as the sum of both property and crop damage. For the total damage, the average rate per day is computed per event type. By calculating the rate, it does not matter whether or not a parameter is measured for a long period of time. The rate is calculated as the cumulative total damage of an event type divideded by the number of days between the first and last occurence. Only events that where witnessed in multiple years are considered to eliminate high rates due to a extremely small period of occurence.

To be able to calculate the total damage, the raw data needs to be converted. The unit of the damage variables is stated in its own column as an exponent. Both exponents for property and crop damage are converted to a numerical factor.

# Compute total damage

# list property damage exponents
prpepx <- unique(data_$PROPDMGEXP)
prpepx
##  [1] K M   B m + 0 5 6 ? 4 2 3 h 7 H - 1 8
## Levels:  - ? + 0 1 2 3 4 5 6 7 8 B h H K m M
# list crop damage exponents
crpepx <- unique(data_$CROPDMGEXP)
crpepx
## [1]   M K m B ? 0 k 2
## Levels:  ? 0 2 B k K m M
# convert damage exponent to numeric factor
exp2factor <- function(exp){
    if (exp == "h" | exp == "H"){factor <- 1e2}
    else if (exp == "k" | exp == "K"){factor <- 1e3}
    else if (exp == "m" | exp == "M"){factor <- 1e6}
    else if (exp == "b" | exp == "B"){factor <- 1e9}
    else if (exp %in% c("0","1","2","3","4","5","6","7","8","9")){
      factor <- 10.0^(as.numeric(as.character(exp)))
    } else {factor <- 0.}
    factor
}

# Calculate total damage 
# Total damage = crop damage* crop exp + property damage * property exp
total_damage <- function(data_){
  len <- dim(data_)[1]
  out <- vector(mode = "numeric", length = len)
  for (ix in 1:len){
    # crop damage
    crop_damage <- data_[ix,"CROPDMG"]
    crop_exp <- data_[ix,"CROPDMGEXP"]
    crop_factor <- exp2factor(crop_exp)
    # property damage
    prop_damage <- data_[ix,"PROPDMG"]
    prop_exp <- data_[ix,"PROPDMGEXP"]
    prop_factor <- exp2factor(prop_exp)
    
    out[ix] <- crop_damage*crop_factor + prop_damage*prop_factor
  }
  out
}

# Create dataframe including total damage
data_2 <- mutate(data_,TOTDMG = total_damage(data_))

# List the most severe individual events
head(data_2[order(data_2$TOTDMG,decreasing = TRUE),
            c("EVTYPE","TOTDMG", "PROPDMG", "PROPDMGEXP", 
              "CROPDMG", "CROPDMGEXP")] #,"REMARKS"
     ,10)
##                   EVTYPE       TOTDMG PROPDMG PROPDMGEXP CROPDMG
## 605953             FLOOD 115032500000  115.00          B   32.50
## 577676       STORM SURGE  31300000000   31.30          B    0.00
## 577675 HURRICANE/TYPHOON  16930000000   16.93          B    0.00
## 581535       STORM SURGE  11260000000   11.26          B    0.00
## 198389       RIVER FLOOD  10000000000    5.00          B    5.00
## 569308 HURRICANE/TYPHOON  10000000000   10.00          B    0.00
## 581537 HURRICANE/TYPHOON   7390000000    5.88          B    1.51
## 581533 HURRICANE/TYPHOON   7350000000    7.35          B    0.00
## 529351 HURRICANE/TYPHOON   5705000000    5.42          B  285.00
## 443782    TROPICAL STORM   5150000000    5.15          B    0.00
##        CROPDMGEXP
## 605953          M
## 577676           
## 577675           
## 581535           
## 198389          B
## 569308           
## 581537          B
## 581533           
## 529351          M
## 443782
  # kable_styling(latex_options = c("scale_down"))

The top severe individual event seems to unrealisticly high. The remark of this event states that the total damage in is the order one hunderd MILLION dollars instead of one hunderd BILLION. This flaw is manually corrected in the dataframe.

# manual correction of NAPA flooding
data_2[605953,"TOTDMG"] = data_2[605953,"PROPDMG"]*1e6 +
  data_2[605953,"CROPDMG"]*1e6

Finally the data is stored in a proper format, now the cost rate is determined.

# cost rate
by_EV2 <- data_2 %>% group_by(EVTYPE)
data_damagerate <- summarise(by_EV2,totaldamage = sum(TOTDMG), 
                            startdate = min(DATE), enddate = max(DATE), 
                            daterange = difftime(enddate,startdate,units="days"),
                            damagerate = totaldamage/as.numeric(daterange)) %>% 
                  filter(daterange>365) %>%
                  arrange(desc(damagerate)) %>%
                  head(10)


topcosts <- head(data_damagerate[order(data_damagerate$damagerate,
                                    decreasing = TRUE),"EVTYPE"],5)

Results

Consequences on population health

The result of the data processing are dataframes which contain the event types with the largest effect on population health. For both parameters fatality and injury the total of occurences and daily rate are calculated and shown below.

It can be concluded that tornados are the most harmful with respect to the population health in the U.S. Tornadoes result both in the most fatalaties and the most injuries. However, when the fatality rate is considered, excessive heat is ranked the highest. Eventhough tornadas have a higher total of fatalities, the fatality rate of tornados is lower than for excessive heat. This is because tornados are recorded over a longer period of time.

# Show highest fatality rates
data_fatalrate
## # A tibble: 10 x 6
##    EVTYPE totalfatal startdate           enddate             daterange
##    <fct>       <dbl> <dttm>              <dttm>              <drtn>   
##  1 EXCES~       1903 1994-06-27 00:00:00 2011-09-12 00:00:00  6286.00~
##  2 TORNA~       5633 1950-01-03 00:00:00 2011-11-21 00:00:00 22602.00~
##  3 EXTRE~         96 1994-06-01 00:00:00 1995-11-01 00:00:00   518.04~
##  4 FLASH~        978 1993-01-04 00:00:00 2011-11-29 00:00:00  6903.00~
##  5 HEAT          937 1993-08-03 00:00:00 2011-11-15 00:00:00  6678.04~
##  6 LIGHT~        816 1993-01-03 00:00:00 2011-11-21 00:00:00  6896.00~
##  7 HEAT ~        172 1994-06-14 00:00:00 1998-08-22 00:00:00  1530.00~
##  8 RIP C~        204 1995-08-13 00:00:00 2003-02-15 00:00:00  2743.04~
##  9 FLOOD         470 1993-01-01 00:00:00 2011-11-30 00:00:00  6907.00~
## 10 HURRI~         64 2002-12-08 00:00:00 2005-10-24 00:00:00  1050.95~
## # ... with 1 more variable: fatalityrate <dbl>
# Show highest injury rates
data_injurerate
## # A tibble: 10 x 6
##    EVTYPE totalinjured startdate           enddate             daterange
##    <fct>         <dbl> <dttm>              <dttm>              <drtn>   
##  1 TORNA~        91346 1950-01-03 00:00:00 2011-11-21 00:00:00 22602.00~
##  2 HURRI~         1275 2002-12-08 00:00:00 2005-10-24 00:00:00  1050.95~
##  3 EXCES~         6525 1994-06-27 00:00:00 2011-09-12 00:00:00  6286.00~
##  4 FLOOD          6789 1993-01-01 00:00:00 2011-11-30 00:00:00  6907.00~
##  5 THUND~          908 1993-01-04 00:00:00 1995-12-23 00:00:00  1083.00~
##  6 LIGHT~         5230 1993-01-03 00:00:00 2011-11-21 00:00:00  6896.00~
##  7 TSTM ~         6957 1955-02-01 00:00:00 2006-09-30 00:00:00 18868.95~
##  8 HEAT           2100 1993-08-03 00:00:00 2011-11-15 00:00:00  6678.04~
##  9 EXTRE~          155 1994-06-01 00:00:00 1995-11-01 00:00:00   518.04~
## 10 ICE S~         1975 1993-01-01 00:00:00 2011-11-17 00:00:00  6894.00~
## # ... with 1 more variable: injuryrate <dbl>
# Plot the fatalities of all severe weather events in time
#   of the most severe evtypes, based on fatality rate

# Select top fatalities
topfatal <- head(data_fatalrate[order(data_fatalrate$fatalityrate,
                                    decreasing = TRUE),"EVTYPE"],5)
subset_data <- data_ %>%  filter(!is.na(FATALITIES)) %>% 
                          filter(FATALITIES > 0) %>% 
                          filter(EVTYPE %in% topfatal$EVTYPE) 

# Plot Fatalities 
q <- qplot(x = DATE, y = FATALITIES, 
           col = EVTYPE,
           data = subset_data, 
           geom = 'point')
p <- q + scale_y_log10()
p

Description of figure
The figure shows the fatalities on logscale of all severe weather events in time. The five most severe types of events are selected to plot, based on fatality rate. The event type is distinquished by color.
It shows that tornadoes are recorded for a much longer period than other types of events.

Consequences on economics

The result of the data processing are dataframes which contain the event types with the largest effect on economics. Adding property damage and crop damage the total damage is calculated and shown below.

It can be concluded that hurricanes have the greatest ecomic consequense, as its combined result of crop damage and property damage is the largest of all severe weather events.

# Show highest injury rates
data_damagerate
## # A tibble: 10 x 6
##    EVTYPE totaldamage startdate           enddate             daterange
##    <fct>        <dbl> <dttm>              <dttm>              <drtn>   
##  1 HURRI~     7.19e10 2002-12-08 00:00:00 2005-10-24 00:00:00  1050.95~
##  2 STORM~     4.33e10 1993-03-13 00:00:00 2006-02-01 00:00:00  4708.00~
##  3 FLOOD      3.54e10 1993-01-01 00:00:00 2011-11-30 00:00:00  6907.00~
##  4 RIVER~     1.01e10 1993-03-05 00:00:00 1998-10-13 00:00:00  2047.95~
##  5 FLASH~     1.82e10 1993-01-04 00:00:00 2011-11-29 00:00:00  6903.00~
##  6 TORNA~     5.74e10 1950-01-03 00:00:00 2011-11-21 00:00:00 22602.00~
##  7 DROUG~     1.50e10 1993-08-01 00:00:00 2011-11-21 00:00:00  6686.04~
##  8 HURRI~     1.46e10 1993-01-30 00:00:00 2011-08-27 00:00:00  6782.95~
##  9 STORM~     4.64e 9 2005-10-24 00:00:00 2011-11-25 00:00:00  2223.04~
## 10 THUND~     2.14e 9 1993-01-04 00:00:00 1995-12-23 00:00:00  1083.00~
## # ... with 1 more variable: damagerate <dbl>
# Plot the damage of all severe weather events in time
#   of the most severe evtypes, based on the total damage rate
subset_data <- data_2 %>% filter(!is.na(TOTDMG)) %>% 
                          filter(TOTDMG > 1e6) %>% 
                          filter(EVTYPE %in% topcosts$EVTYPE) 

# Plot damage
q <- qplot(x = DATE, y = TOTDMG, 
           col = EVTYPE,
           data = subset_data, 
           geom = 'point')
p <- q + scale_y_log10()
p

Description of figure
The figure shows the total damage on logscale of all severe weather events in time. The five most severe types of events are selected to plot, based on total damage rate. The event type is distinquished by color.

Appendix

The appendix consists of:
* The structure od the data
* A summary of the data
* A list of all event types

Structure of data

str(data_)
## 'data.frame':    902297 obs. of  38 variables:
##  $ STATE__   : num  1 1 1 1 1 1 1 1 1 1 ...
##  $ BGN_DATE  : Factor w/ 16335 levels "1/1/1966 0:00:00",..: 6523 6523 4242 11116 2224 2224 2260 383 3980 3980 ...
##  $ BGN_TIME  : Factor w/ 3608 levels "00:00:00 AM",..: 272 287 2705 1683 2584 3186 242 1683 3186 3186 ...
##  $ TIME_ZONE : Factor w/ 22 levels "ADT","AKS","AST",..: 7 7 7 7 7 7 7 7 7 7 ...
##  $ COUNTY    : num  97 3 57 89 43 77 9 123 125 57 ...
##  $ COUNTYNAME: Factor w/ 29601 levels "","5NM E OF MACKINAC BRIDGE TO PRESQUE ISLE LT MI",..: 13513 1873 4598 10592 4372 10094 1973 23873 24418 4598 ...
##  $ STATE     : Factor w/ 72 levels "AK","AL","AM",..: 2 2 2 2 2 2 2 2 2 2 ...
##  $ EVTYPE    : Factor w/ 985 levels "   HIGH SURF ADVISORY",..: 834 834 834 834 834 834 834 834 834 834 ...
##  $ BGN_RANGE : num  0 0 0 0 0 0 0 0 0 0 ...
##  $ BGN_AZI   : Factor w/ 35 levels "","  N"," NW",..: 1 1 1 1 1 1 1 1 1 1 ...
##  $ BGN_LOCATI: Factor w/ 54429 levels "","- 1 N Albion",..: 1 1 1 1 1 1 1 1 1 1 ...
##  $ END_DATE  : Factor w/ 6663 levels "","1/1/1993 0:00:00",..: 1 1 1 1 1 1 1 1 1 1 ...
##  $ END_TIME  : Factor w/ 3647 levels ""," 0900CST",..: 1 1 1 1 1 1 1 1 1 1 ...
##  $ COUNTY_END: num  0 0 0 0 0 0 0 0 0 0 ...
##  $ COUNTYENDN: logi  NA NA NA NA NA NA ...
##  $ END_RANGE : num  0 0 0 0 0 0 0 0 0 0 ...
##  $ END_AZI   : Factor w/ 24 levels "","E","ENE","ESE",..: 1 1 1 1 1 1 1 1 1 1 ...
##  $ END_LOCATI: Factor w/ 34506 levels "","- .5 NNW",..: 1 1 1 1 1 1 1 1 1 1 ...
##  $ LENGTH    : num  14 2 0.1 0 0 1.5 1.5 0 3.3 2.3 ...
##  $ WIDTH     : num  100 150 123 100 150 177 33 33 100 100 ...
##  $ F         : int  3 2 2 2 2 2 2 1 3 3 ...
##  $ MAG       : num  0 0 0 0 0 0 0 0 0 0 ...
##  $ FATALITIES: num  0 0 0 0 0 0 0 0 1 0 ...
##  $ INJURIES  : num  15 0 2 2 2 6 1 0 14 0 ...
##  $ PROPDMG   : num  25 2.5 25 2.5 2.5 2.5 2.5 2.5 25 25 ...
##  $ PROPDMGEXP: Factor w/ 19 levels "","-","?","+",..: 17 17 17 17 17 17 17 17 17 17 ...
##  $ CROPDMG   : num  0 0 0 0 0 0 0 0 0 0 ...
##  $ CROPDMGEXP: Factor w/ 9 levels "","?","0","2",..: 1 1 1 1 1 1 1 1 1 1 ...
##  $ WFO       : Factor w/ 542 levels ""," CI","$AC",..: 1 1 1 1 1 1 1 1 1 1 ...
##  $ STATEOFFIC: Factor w/ 250 levels "","ALABAMA, Central",..: 1 1 1 1 1 1 1 1 1 1 ...
##  $ ZONENAMES : Factor w/ 25112 levels "","                                                                                                               "| __truncated__,..: 1 1 1 1 1 1 1 1 1 1 ...
##  $ LATITUDE  : num  3040 3042 3340 3458 3412 ...
##  $ LONGITUDE : num  8812 8755 8742 8626 8642 ...
##  $ LATITUDE_E: num  3051 0 0 0 0 ...
##  $ LONGITUDE_: num  8806 0 0 0 0 ...
##  $ REMARKS   : Factor w/ 436781 levels "","-2 at Deer Park\n",..: 1 1 1 1 1 1 1 1 1 1 ...
##  $ REFNUM    : num  1 2 3 4 5 6 7 8 9 10 ...
##  $ DATE      : POSIXct, format: "1950-04-18" "1950-04-18" ...

Summary of data

summary(data_)
##     STATE__                  BGN_DATE             BGN_TIME     
##  Min.   : 1.0   5/25/2011 0:00:00:  1202   12:00:00 AM: 10163  
##  1st Qu.:19.0   4/27/2011 0:00:00:  1193   06:00:00 PM:  7350  
##  Median :30.0   6/9/2011 0:00:00 :  1030   04:00:00 PM:  7261  
##  Mean   :31.2   5/30/2004 0:00:00:  1016   05:00:00 PM:  6891  
##  3rd Qu.:45.0   4/4/2011 0:00:00 :  1009   12:00:00 PM:  6703  
##  Max.   :95.0   4/2/2006 0:00:00 :   981   03:00:00 PM:  6700  
##                 (Other)          :895866   (Other)    :857229  
##    TIME_ZONE          COUNTY           COUNTYNAME         STATE       
##  CST    :547493   Min.   :  0.0   JEFFERSON :  7840   TX     : 83728  
##  EST    :245558   1st Qu.: 31.0   WASHINGTON:  7603   KS     : 53440  
##  MST    : 68390   Median : 75.0   JACKSON   :  6660   OK     : 46802  
##  PST    : 28302   Mean   :100.6   FRANKLIN  :  6256   MO     : 35648  
##  AST    :  6360   3rd Qu.:131.0   LINCOLN   :  5937   IA     : 31069  
##  HST    :  2563   Max.   :873.0   MADISON   :  5632   NE     : 30271  
##  (Other):  3631                   (Other)   :862369   (Other):621339  
##                EVTYPE         BGN_RANGE           BGN_AZI      
##  HAIL             :288661   Min.   :   0.000          :547332  
##  TSTM WIND        :219940   1st Qu.:   0.000   N      : 86752  
##  THUNDERSTORM WIND: 82563   Median :   0.000   W      : 38446  
##  TORNADO          : 60652   Mean   :   1.484   S      : 37558  
##  FLASH FLOOD      : 54277   3rd Qu.:   1.000   E      : 33178  
##  FLOOD            : 25326   Max.   :3749.000   NW     : 24041  
##  (Other)          :170878                      (Other):134990  
##          BGN_LOCATI                  END_DATE             END_TIME     
##               :287743                    :243411              :238978  
##  COUNTYWIDE   : 19680   4/27/2011 0:00:00:  1214   06:00:00 PM:  9802  
##  Countywide   :   993   5/25/2011 0:00:00:  1196   05:00:00 PM:  8314  
##  SPRINGFIELD  :   843   6/9/2011 0:00:00 :  1021   04:00:00 PM:  8104  
##  SOUTH PORTION:   810   4/4/2011 0:00:00 :  1007   12:00:00 PM:  7483  
##  NORTH PORTION:   784   5/30/2004 0:00:00:   998   11:59:00 PM:  7184  
##  (Other)      :591444   (Other)          :653450   (Other)    :622432  
##    COUNTY_END COUNTYENDN       END_RANGE           END_AZI      
##  Min.   :0    Mode:logical   Min.   :  0.0000          :724837  
##  1st Qu.:0    NA's:902297    1st Qu.:  0.0000   N      : 28082  
##  Median :0                   Median :  0.0000   S      : 22510  
##  Mean   :0                   Mean   :  0.9862   W      : 20119  
##  3rd Qu.:0                   3rd Qu.:  0.0000   E      : 20047  
##  Max.   :0                   Max.   :925.0000   NE     : 14606  
##                                                 (Other): 72096  
##            END_LOCATI         LENGTH              WIDTH         
##                 :499225   Min.   :   0.0000   Min.   :   0.000  
##  COUNTYWIDE     : 19731   1st Qu.:   0.0000   1st Qu.:   0.000  
##  SOUTH PORTION  :   833   Median :   0.0000   Median :   0.000  
##  NORTH PORTION  :   780   Mean   :   0.2301   Mean   :   7.503  
##  CENTRAL PORTION:   617   3rd Qu.:   0.0000   3rd Qu.:   0.000  
##  SPRINGFIELD    :   575   Max.   :2315.0000   Max.   :4400.000  
##  (Other)        :380536                                         
##        F               MAG            FATALITIES          INJURIES        
##  Min.   :0.0      Min.   :    0.0   Min.   :  0.0000   Min.   :   0.0000  
##  1st Qu.:0.0      1st Qu.:    0.0   1st Qu.:  0.0000   1st Qu.:   0.0000  
##  Median :1.0      Median :   50.0   Median :  0.0000   Median :   0.0000  
##  Mean   :0.9      Mean   :   46.9   Mean   :  0.0168   Mean   :   0.1557  
##  3rd Qu.:1.0      3rd Qu.:   75.0   3rd Qu.:  0.0000   3rd Qu.:   0.0000  
##  Max.   :5.0      Max.   :22000.0   Max.   :583.0000   Max.   :1700.0000  
##  NA's   :843563                                                           
##     PROPDMG          PROPDMGEXP        CROPDMG          CROPDMGEXP    
##  Min.   :   0.00          :465934   Min.   :  0.000          :618413  
##  1st Qu.:   0.00   K      :424665   1st Qu.:  0.000   K      :281832  
##  Median :   0.00   M      : 11330   Median :  0.000   M      :  1994  
##  Mean   :  12.06   0      :   216   Mean   :  1.527   k      :    21  
##  3rd Qu.:   0.50   B      :    40   3rd Qu.:  0.000   0      :    19  
##  Max.   :5000.00   5      :    28   Max.   :990.000   B      :     9  
##                    (Other):    84                     (Other):     9  
##       WFO                                       STATEOFFIC    
##         :142069                                      :248769  
##  OUN    : 17393   TEXAS, North                       : 12193  
##  JAN    : 13889   ARKANSAS, Central and North Central: 11738  
##  LWX    : 13174   IOWA, Central                      : 11345  
##  PHI    : 12551   KANSAS, Southwest                  : 11212  
##  TSA    : 12483   GEORGIA, North and Central         : 11120  
##  (Other):690738   (Other)                            :595920  
##                                                                                                                                                                                                     ZONENAMES     
##                                                                                                                                                                                                          :594029  
##                                                                                                                                                                                                          :205988  
##  GREATER RENO / CARSON CITY / M - GREATER RENO / CARSON CITY / M                                                                                                                                         :   639  
##  GREATER LAKE TAHOE AREA - GREATER LAKE TAHOE AREA                                                                                                                                                       :   592  
##  JEFFERSON - JEFFERSON                                                                                                                                                                                   :   303  
##  MADISON - MADISON                                                                                                                                                                                       :   302  
##  (Other)                                                                                                                                                                                                 :100444  
##     LATITUDE      LONGITUDE        LATITUDE_E     LONGITUDE_    
##  Min.   :   0   Min.   :-14451   Min.   :   0   Min.   :-14455  
##  1st Qu.:2802   1st Qu.:  7247   1st Qu.:   0   1st Qu.:     0  
##  Median :3540   Median :  8707   Median :   0   Median :     0  
##  Mean   :2875   Mean   :  6940   Mean   :1452   Mean   :  3509  
##  3rd Qu.:4019   3rd Qu.:  9605   3rd Qu.:3549   3rd Qu.:  8735  
##  Max.   :9706   Max.   : 17124   Max.   :9706   Max.   :106220  
##  NA's   :47                      NA's   :40                     
##                                            REMARKS           REFNUM      
##                                                :287433   Min.   :     1  
##                                                : 24013   1st Qu.:225575  
##  Trees down.\n                                 :  1110   Median :451149  
##  Several trees were blown down.\n              :   568   Mean   :451149  
##  Trees were downed.\n                          :   446   3rd Qu.:676723  
##  Large trees and power lines were blown down.\n:   432   Max.   :902297  
##  (Other)                                       :588295                   
##       DATE                    
##  Min.   :1950-01-03 00:00:00  
##  1st Qu.:1995-04-20 00:00:00  
##  Median :2002-03-18 00:00:00  
##  Mean   :1998-12-27 22:53:36  
##  3rd Qu.:2007-07-28 00:00:00  
##  Max.   :2011-11-30 00:00:00  
## 

List of all event types

types <- unique(data_$EVTYPE)
types[order(types)]
##   [1]    HIGH SURF ADVISORY           COASTAL FLOOD                
##   [3]  FLASH FLOOD                    LIGHTNING                    
##   [5]  TSTM WIND                      TSTM WIND (G45)              
##   [7]  WATERSPOUT                     WIND                         
##   [9] ?                              ABNORMAL WARMTH               
##  [11] ABNORMALLY DRY                 ABNORMALLY WET                
##  [13] ACCUMULATED SNOWFALL           AGRICULTURAL FREEZE           
##  [15] APACHE COUNTY                  ASTRONOMICAL HIGH TIDE        
##  [17] ASTRONOMICAL LOW TIDE          AVALANCE                      
##  [19] AVALANCHE                      BEACH EROSIN                  
##  [21] Beach Erosion                  BEACH EROSION                 
##  [23] BEACH EROSION/COASTAL FLOOD    BEACH FLOOD                   
##  [25] BELOW NORMAL PRECIPITATION     BITTER WIND CHILL             
##  [27] BITTER WIND CHILL TEMPERATURES Black Ice                     
##  [29] BLACK ICE                      BLIZZARD                      
##  [31] BLIZZARD AND EXTREME WIND CHIL BLIZZARD AND HEAVY SNOW       
##  [33] Blizzard Summary               BLIZZARD WEATHER              
##  [35] BLIZZARD/FREEZING RAIN         BLIZZARD/HEAVY SNOW           
##  [37] BLIZZARD/HIGH WIND             BLIZZARD/WINTER STORM         
##  [39] BLOW-OUT TIDE                  BLOW-OUT TIDES                
##  [41] BLOWING DUST                   blowing snow                  
##  [43] Blowing Snow                   BLOWING SNOW                  
##  [45] BLOWING SNOW- EXTREME WIND CHI BLOWING SNOW & EXTREME WIND CH
##  [47] BLOWING SNOW/EXTREME WIND CHIL BREAKUP FLOODING              
##  [49] BRUSH FIRE                     BRUSH FIRES                   
##  [51] COASTAL  FLOODING/EROSION      COASTAL EROSION               
##  [53] Coastal Flood                  COASTAL FLOOD                 
##  [55] coastal flooding               Coastal Flooding              
##  [57] COASTAL FLOODING               COASTAL FLOODING/EROSION      
##  [59] Coastal Storm                  COASTAL STORM                 
##  [61] COASTAL SURGE                  COASTAL/TIDAL FLOOD           
##  [63] COASTALFLOOD                   COASTALSTORM                  
##  [65] Cold                           COLD                          
##  [67] COLD AIR FUNNEL                COLD AIR FUNNELS              
##  [69] COLD AIR TORNADO               Cold and Frost                
##  [71] COLD AND FROST                 COLD AND SNOW                 
##  [73] COLD AND WET CONDITIONS        Cold Temperature              
##  [75] COLD TEMPERATURES              COLD WAVE                     
##  [77] COLD WEATHER                   COLD WIND CHILL TEMPERATURES  
##  [79] COLD/WIND CHILL                COLD/WINDS                    
##  [81] COOL AND WET                   COOL SPELL                    
##  [83] CSTL FLOODING/EROSION          DAM BREAK                     
##  [85] DAM FAILURE                    Damaging Freeze               
##  [87] DAMAGING FREEZE                DEEP HAIL                     
##  [89] DENSE FOG                      DENSE SMOKE                   
##  [91] DOWNBURST                      DOWNBURST WINDS               
##  [93] DRIEST MONTH                   Drifting Snow                 
##  [95] DROUGHT                        DROUGHT/EXCESSIVE HEAT        
##  [97] DROWNING                       DRY                           
##  [99] DRY CONDITIONS                 DRY HOT WEATHER               
## [101] DRY MICROBURST                 DRY MICROBURST 50             
## [103] DRY MICROBURST 53              DRY MICROBURST 58             
## [105] DRY MICROBURST 61              DRY MICROBURST 84             
## [107] DRY MICROBURST WINDS           DRY MIRCOBURST WINDS          
## [109] DRY PATTERN                    DRY SPELL                     
## [111] DRY WEATHER                    DRYNESS                       
## [113] DUST DEVEL                     Dust Devil                    
## [115] DUST DEVIL                     DUST DEVIL WATERSPOUT         
## [117] DUST STORM                     DUST STORM/HIGH WINDS         
## [119] DUSTSTORM                      EARLY FREEZE                  
## [121] Early Frost                    EARLY FROST                   
## [123] EARLY RAIN                     EARLY SNOW                    
## [125] Early snowfall                 EARLY SNOWFALL                
## [127] Erosion/Cstl Flood             EXCESSIVE                     
## [129] Excessive Cold                 EXCESSIVE HEAT                
## [131] EXCESSIVE HEAT/DROUGHT         EXCESSIVE PRECIPITATION       
## [133] EXCESSIVE RAIN                 EXCESSIVE RAINFALL            
## [135] EXCESSIVE SNOW                 EXCESSIVE WETNESS             
## [137] EXCESSIVELY DRY                Extended Cold                 
## [139] Extreme Cold                   EXTREME COLD                  
## [141] EXTREME COLD/WIND CHILL        EXTREME HEAT                  
## [143] EXTREME WIND CHILL             EXTREME WIND CHILL/BLOWING SNO
## [145] EXTREME WIND CHILLS            EXTREME WINDCHILL             
## [147] EXTREME WINDCHILL TEMPERATURES EXTREME/RECORD COLD           
## [149] EXTREMELY WET                  FALLING SNOW/ICE              
## [151] FIRST FROST                    FIRST SNOW                    
## [153] FLASH FLOOD                    FLASH FLOOD - HEAVY RAIN      
## [155] FLASH FLOOD FROM ICE JAMS      FLASH FLOOD LANDSLIDES        
## [157] FLASH FLOOD WINDS              FLASH FLOOD/                  
## [159] FLASH FLOOD/ FLOOD             FLASH FLOOD/ STREET           
## [161] FLASH FLOOD/FLOOD              FLASH FLOOD/HEAVY RAIN        
## [163] FLASH FLOOD/LANDSLIDE          FLASH FLOODING                
## [165] FLASH FLOODING/FLOOD           FLASH FLOODING/THUNDERSTORM WI
## [167] FLASH FLOODS                   FLASH FLOOODING               
## [169] Flood                          FLOOD                         
## [171] FLOOD & HEAVY RAIN             FLOOD FLASH                   
## [173] FLOOD FLOOD/FLASH              FLOOD WATCH/                  
## [175] FLOOD/FLASH                    Flood/Flash Flood             
## [177] FLOOD/FLASH FLOOD              FLOOD/FLASH FLOODING          
## [179] FLOOD/FLASH/FLOOD              FLOOD/FLASHFLOOD              
## [181] FLOOD/RAIN/WIND                FLOOD/RAIN/WINDS              
## [183] FLOOD/RIVER FLOOD              Flood/Strong Wind             
## [185] FLOODING                       FLOODING/HEAVY RAIN           
## [187] FLOODS                         FOG                           
## [189] FOG AND COLD TEMPERATURES      FOREST FIRES                  
## [191] Freeze                         FREEZE                        
## [193] Freezing drizzle               Freezing Drizzle              
## [195] FREEZING DRIZZLE               FREEZING DRIZZLE AND FREEZING 
## [197] Freezing Fog                   FREEZING FOG                  
## [199] Freezing rain                  Freezing Rain                 
## [201] FREEZING RAIN                  FREEZING RAIN AND SLEET       
## [203] FREEZING RAIN AND SNOW         FREEZING RAIN SLEET AND       
## [205] FREEZING RAIN SLEET AND LIGHT  FREEZING RAIN/SLEET           
## [207] FREEZING RAIN/SNOW             Freezing Spray                
## [209] Frost                          FROST                         
## [211] Frost/Freeze                   FROST/FREEZE                  
## [213] FROST\\FREEZE                  FUNNEL                        
## [215] Funnel Cloud                   FUNNEL CLOUD                  
## [217] FUNNEL CLOUD.                  FUNNEL CLOUD/HAIL             
## [219] FUNNEL CLOUDS                  FUNNELS                       
## [221] Glaze                          GLAZE                         
## [223] GLAZE ICE                      GLAZE/ICE STORM               
## [225] gradient wind                  Gradient wind                 
## [227] GRADIENT WIND                  GRADIENT WINDS                
## [229] GRASS FIRES                    GROUND BLIZZARD               
## [231] GUSTNADO                       GUSTNADO AND                  
## [233] GUSTY LAKE WIND                GUSTY THUNDERSTORM WIND       
## [235] GUSTY THUNDERSTORM WINDS       Gusty Wind                    
## [237] GUSTY WIND                     GUSTY WIND/HAIL               
## [239] GUSTY WIND/HVY RAIN            Gusty wind/rain               
## [241] Gusty winds                    Gusty Winds                   
## [243] GUSTY WINDS                    HAIL                          
## [245] HAIL 0.75                      HAIL 0.88                     
## [247] HAIL 075                       HAIL 088                      
## [249] HAIL 1.00                      HAIL 1.75                     
## [251] HAIL 1.75)                     HAIL 100                      
## [253] HAIL 125                       HAIL 150                      
## [255] HAIL 175                       HAIL 200                      
## [257] HAIL 225                       HAIL 275                      
## [259] HAIL 450                       HAIL 75                       
## [261] HAIL 80                        HAIL 88                       
## [263] HAIL ALOFT                     HAIL DAMAGE                   
## [265] HAIL FLOODING                  HAIL STORM                    
## [267] Hail(0.75)                     HAIL/ICY ROADS                
## [269] HAIL/WIND                      HAIL/WINDS                    
## [271] HAILSTORM                      HAILSTORMS                    
## [273] HARD FREEZE                    HAZARDOUS SURF                
## [275] HEAT                           HEAT DROUGHT                  
## [277] Heat Wave                      HEAT WAVE                     
## [279] HEAT WAVE DROUGHT              HEAT WAVES                    
## [281] HEAT/DROUGHT                   Heatburst                     
## [283] HEAVY LAKE SNOW                HEAVY MIX                     
## [285] HEAVY PRECIPATATION            Heavy Precipitation           
## [287] HEAVY PRECIPITATION            Heavy rain                    
## [289] Heavy Rain                     HEAVY RAIN                    
## [291] HEAVY RAIN AND FLOOD           Heavy Rain and Wind           
## [293] HEAVY RAIN EFFECTS             HEAVY RAIN/FLOODING           
## [295] Heavy Rain/High Surf           HEAVY RAIN/LIGHTNING          
## [297] HEAVY RAIN/MUDSLIDES/FLOOD     HEAVY RAIN/SEVERE WEATHER     
## [299] HEAVY RAIN/SMALL STREAM URBAN  HEAVY RAIN/SNOW               
## [301] HEAVY RAIN/URBAN FLOOD         HEAVY RAIN/WIND               
## [303] HEAVY RAIN; URBAN FLOOD WINDS; HEAVY RAINFALL                
## [305] HEAVY RAINS                    HEAVY RAINS/FLOODING          
## [307] HEAVY SEAS                     HEAVY SHOWER                  
## [309] HEAVY SHOWERS                  HEAVY SNOW                    
## [311] HEAVY SNOW-SQUALLS             HEAVY SNOW   FREEZING RAIN    
## [313] HEAVY SNOW & ICE               HEAVY SNOW AND                
## [315] HEAVY SNOW AND HIGH WINDS      HEAVY SNOW AND ICE            
## [317] HEAVY SNOW AND ICE STORM       HEAVY SNOW AND STRONG WINDS   
## [319] HEAVY SNOW ANDBLOWING SNOW     Heavy snow shower             
## [321] HEAVY SNOW SQUALLS             HEAVY SNOW/BLIZZARD           
## [323] HEAVY SNOW/BLIZZARD/AVALANCHE  HEAVY SNOW/BLOWING SNOW       
## [325] HEAVY SNOW/FREEZING RAIN       HEAVY SNOW/HIGH               
## [327] HEAVY SNOW/HIGH WIND           HEAVY SNOW/HIGH WINDS         
## [329] HEAVY SNOW/HIGH WINDS & FLOOD  HEAVY SNOW/HIGH WINDS/FREEZING
## [331] HEAVY SNOW/ICE                 HEAVY SNOW/ICE STORM          
## [333] HEAVY SNOW/SLEET               HEAVY SNOW/SQUALLS            
## [335] HEAVY SNOW/WIND                HEAVY SNOW/WINTER STORM       
## [337] HEAVY SNOWPACK                 Heavy Surf                    
## [339] HEAVY SURF                     Heavy surf and wind           
## [341] HEAVY SURF COASTAL FLOODING    HEAVY SURF/HIGH SURF          
## [343] HEAVY SWELLS                   HEAVY WET SNOW                
## [345] HIGH                           HIGH  SWELLS                  
## [347] HIGH  WINDS                    HIGH SEAS                     
## [349] High Surf                      HIGH SURF                     
## [351] HIGH SURF ADVISORIES           HIGH SURF ADVISORY            
## [353] HIGH SWELLS                    HIGH TEMPERATURE RECORD       
## [355] HIGH TIDES                     HIGH WATER                    
## [357] HIGH WAVES                     High Wind                     
## [359] HIGH WIND                      HIGH WIND (G40)               
## [361] HIGH WIND 48                   HIGH WIND 63                  
## [363] HIGH WIND 70                   HIGH WIND AND HEAVY SNOW      
## [365] HIGH WIND AND HIGH TIDES       HIGH WIND AND SEAS            
## [367] HIGH WIND DAMAGE               HIGH WIND/ BLIZZARD           
## [369] HIGH WIND/BLIZZARD             HIGH WIND/BLIZZARD/FREEZING RA
## [371] HIGH WIND/HEAVY SNOW           HIGH WIND/LOW WIND CHILL      
## [373] HIGH WIND/SEAS                 HIGH WIND/WIND CHILL          
## [375] HIGH WIND/WIND CHILL/BLIZZARD  HIGH WINDS                    
## [377] HIGH WINDS 55                  HIGH WINDS 57                 
## [379] HIGH WINDS 58                  HIGH WINDS 63                 
## [381] HIGH WINDS 66                  HIGH WINDS 67                 
## [383] HIGH WINDS 73                  HIGH WINDS 76                 
## [385] HIGH WINDS 80                  HIGH WINDS 82                 
## [387] HIGH WINDS AND WIND CHILL      HIGH WINDS DUST STORM         
## [389] HIGH WINDS HEAVY RAINS         HIGH WINDS/                   
## [391] HIGH WINDS/COASTAL FLOOD       HIGH WINDS/COLD               
## [393] HIGH WINDS/FLOODING            HIGH WINDS/HEAVY RAIN         
## [395] HIGH WINDS/SNOW                HIGHWAY FLOODING              
## [397] Hot and Dry                    HOT PATTERN                   
## [399] HOT SPELL                      HOT WEATHER                   
## [401] HOT/DRY PATTERN                HURRICANE                     
## [403] HURRICANE-GENERATED SWELLS     Hurricane Edouard             
## [405] HURRICANE EMILY                HURRICANE ERIN                
## [407] HURRICANE FELIX                HURRICANE GORDON              
## [409] HURRICANE OPAL                 HURRICANE OPAL/HIGH WINDS     
## [411] HURRICANE/TYPHOON              HVY RAIN                      
## [413] HYPERTHERMIA/EXPOSURE          HYPOTHERMIA                   
## [415] Hypothermia/Exposure           HYPOTHERMIA/EXPOSURE          
## [417] ICE                            ICE AND SNOW                  
## [419] ICE FLOES                      Ice Fog                       
## [421] ICE JAM                        Ice jam flood (minor          
## [423] ICE JAM FLOODING               ICE ON ROAD                   
## [425] ICE PELLETS                    ICE ROADS                     
## [427] ICE STORM                      ICE STORM AND SNOW            
## [429] ICE STORM/FLASH FLOOD          Ice/Snow                      
## [431] ICE/SNOW                       ICE/STRONG WINDS              
## [433] Icestorm/Blizzard              Icy Roads                     
## [435] ICY ROADS                      LACK OF SNOW                  
## [437] LAKE-EFFECT SNOW               Lake Effect Snow              
## [439] LAKE EFFECT SNOW               LAKE FLOOD                    
## [441] LAKESHORE FLOOD                LANDSLIDE                     
## [443] LANDSLIDE/URBAN FLOOD          LANDSLIDES                    
## [445] Landslump                      LANDSLUMP                     
## [447] LANDSPOUT                      LARGE WALL CLOUD              
## [449] Late-season Snowfall           LATE FREEZE                   
## [451] LATE SEASON HAIL               LATE SEASON SNOW              
## [453] Late Season Snowfall           LATE SNOW                     
## [455] LIGHT FREEZING RAIN            Light snow                    
## [457] Light Snow                     LIGHT SNOW                    
## [459] LIGHT SNOW AND SLEET           Light Snow/Flurries           
## [461] LIGHT SNOW/FREEZING PRECIP     Light Snowfall                
## [463] LIGHTING                       LIGHTNING                     
## [465] LIGHTNING  WAUSEON             LIGHTNING AND HEAVY RAIN      
## [467] LIGHTNING AND THUNDERSTORM WIN LIGHTNING AND WINDS           
## [469] LIGHTNING DAMAGE               LIGHTNING FIRE                
## [471] LIGHTNING INJURY               LIGHTNING THUNDERSTORM WINDS  
## [473] LIGHTNING THUNDERSTORM WINDSS  LIGHTNING.                    
## [475] LIGHTNING/HEAVY RAIN           LIGNTNING                     
## [477] LOCAL FLASH FLOOD              LOCAL FLOOD                   
## [479] LOCALLY HEAVY RAIN             LOW TEMPERATURE               
## [481] LOW TEMPERATURE RECORD         LOW WIND CHILL                
## [483] MAJOR FLOOD                    Marine Accident               
## [485] MARINE HAIL                    MARINE HIGH WIND              
## [487] MARINE MISHAP                  MARINE STRONG WIND            
## [489] MARINE THUNDERSTORM WIND       MARINE TSTM WIND              
## [491] Metro Storm, May 26            Microburst                    
## [493] MICROBURST                     MICROBURST WINDS              
## [495] Mild and Dry Pattern           MILD PATTERN                  
## [497] MILD/DRY PATTERN               MINOR FLOOD                   
## [499] Minor Flooding                 MINOR FLOODING                
## [501] MIXED PRECIP                   Mixed Precipitation           
## [503] MIXED PRECIPITATION            MODERATE SNOW                 
## [505] MODERATE SNOWFALL              MONTHLY PRECIPITATION         
## [507] Monthly Rainfall               MONTHLY RAINFALL              
## [509] Monthly Snowfall               MONTHLY SNOWFALL              
## [511] MONTHLY TEMPERATURE            Mountain Snows                
## [513] MUD SLIDE                      MUD SLIDES                    
## [515] MUD SLIDES URBAN FLOODING      MUD/ROCK SLIDE                
## [517] Mudslide                       MUDSLIDE                      
## [519] MUDSLIDE/LANDSLIDE             Mudslides                     
## [521] MUDSLIDES                      NEAR RECORD SNOW              
## [523] No Severe Weather              NON-SEVERE WIND DAMAGE        
## [525] NON-TSTM WIND                  NON SEVERE HAIL               
## [527] NON TSTM WIND                  NONE                          
## [529] NORMAL PRECIPITATION           NORTHERN LIGHTS               
## [531] Other                          OTHER                         
## [533] PATCHY DENSE FOG               PATCHY ICE                    
## [535] Prolong Cold                   PROLONG COLD                  
## [537] PROLONG COLD/SNOW              PROLONG WARMTH                
## [539] PROLONGED RAIN                 RAIN                          
## [541] RAIN (HEAVY)                   RAIN AND WIND                 
## [543] Rain Damage                    RAIN/SNOW                     
## [545] RAIN/WIND                      RAINSTORM                     
## [547] RAPIDLY RISING WATER           RECORD  COLD                  
## [549] Record Cold                    RECORD COLD                   
## [551] RECORD COLD AND HIGH WIND      RECORD COLD/FROST             
## [553] RECORD COOL                    Record dry month              
## [555] RECORD DRYNESS                 Record Heat                   
## [557] RECORD HEAT                    RECORD HEAT WAVE              
## [559] Record High                    RECORD HIGH                   
## [561] RECORD HIGH TEMPERATURE        RECORD HIGH TEMPERATURES      
## [563] RECORD LOW                     RECORD LOW RAINFALL           
## [565] Record May Snow                RECORD PRECIPITATION          
## [567] RECORD RAINFALL                RECORD SNOW                   
## [569] RECORD SNOW/COLD               RECORD SNOWFALL               
## [571] Record temperature             RECORD TEMPERATURE            
## [573] Record Temperatures            RECORD TEMPERATURES           
## [575] RECORD WARM                    RECORD WARM TEMPS.            
## [577] Record Warmth                  RECORD WARMTH                 
## [579] Record Winter Snow             RECORD/EXCESSIVE HEAT         
## [581] RECORD/EXCESSIVE RAINFALL      RED FLAG CRITERIA             
## [583] RED FLAG FIRE WX               REMNANTS OF FLOYD             
## [585] RIP CURRENT                    RIP CURRENTS                  
## [587] RIP CURRENTS HEAVY SURF        RIP CURRENTS/HEAVY SURF       
## [589] RIVER AND STREAM FLOOD         RIVER FLOOD                   
## [591] River Flooding                 RIVER FLOODING                
## [593] ROCK SLIDE                     ROGUE WAVE                    
## [595] ROTATING WALL CLOUD            ROUGH SEAS                    
## [597] ROUGH SURF                     RURAL FLOOD                   
## [599] Saharan Dust                   SAHARAN DUST                  
## [601] Seasonal Snowfall              SEICHE                        
## [603] SEVERE COLD                    SEVERE THUNDERSTORM           
## [605] SEVERE THUNDERSTORM WINDS      SEVERE THUNDERSTORMS          
## [607] SEVERE TURBULENCE              SLEET                         
## [609] SLEET & FREEZING RAIN          SLEET STORM                   
## [611] SLEET/FREEZING RAIN            SLEET/ICE STORM               
## [613] SLEET/RAIN/SNOW                SLEET/SNOW                    
## [615] small hail                     Small Hail                    
## [617] SMALL HAIL                     SMALL STREAM                  
## [619] SMALL STREAM AND               SMALL STREAM AND URBAN FLOOD  
## [621] SMALL STREAM AND URBAN FLOODIN SMALL STREAM FLOOD            
## [623] SMALL STREAM FLOODING          SMALL STREAM URBAN FLOOD      
## [625] SMALL STREAM/URBAN FLOOD       Sml Stream Fld                
## [627] SMOKE                          Snow                          
## [629] SNOW                           SNOW- HIGH WIND- WIND CHILL   
## [631] Snow Accumulation              SNOW ACCUMULATION             
## [633] SNOW ADVISORY                  SNOW AND COLD                 
## [635] SNOW AND HEAVY SNOW            Snow and Ice                  
## [637] SNOW AND ICE                   SNOW AND ICE STORM            
## [639] Snow and sleet                 SNOW AND SLEET                
## [641] SNOW AND WIND                  SNOW DROUGHT                  
## [643] SNOW FREEZING RAIN             SNOW SHOWERS                  
## [645] SNOW SLEET                     SNOW SQUALL                   
## [647] Snow squalls                   Snow Squalls                  
## [649] SNOW SQUALLS                   SNOW/ BITTER COLD             
## [651] SNOW/ ICE                      SNOW/BLOWING SNOW             
## [653] SNOW/COLD                      SNOW/FREEZING RAIN            
## [655] SNOW/HEAVY SNOW                SNOW/HIGH WINDS               
## [657] SNOW/ICE                       SNOW/ICE STORM                
## [659] SNOW/RAIN                      SNOW/RAIN/SLEET               
## [661] SNOW/SLEET                     SNOW/SLEET/FREEZING RAIN      
## [663] SNOW/SLEET/RAIN                SNOW\\COLD                    
## [665] SNOWFALL RECORD                SNOWMELT FLOODING             
## [667] SNOWSTORM                      SOUTHEAST                     
## [669] STORM FORCE WINDS              STORM SURGE                   
## [671] STORM SURGE/TIDE               STREAM FLOODING               
## [673] STREET FLOOD                   STREET FLOODING               
## [675] Strong Wind                    STRONG WIND                   
## [677] STRONG WIND GUST               Strong winds                  
## [679] Strong Winds                   STRONG WINDS                  
## [681] Summary August 10              Summary August 11             
## [683] Summary August 17              Summary August 2-3            
## [685] Summary August 21              Summary August 28             
## [687] Summary August 4               Summary August 7              
## [689] Summary August 9               Summary Jan 17                
## [691] Summary July 23-24             Summary June 18-19            
## [693] Summary June 5-6               Summary June 6                
## [695] Summary of April 12            Summary of April 13           
## [697] Summary of April 21            Summary of April 27           
## [699] Summary of April 3rd           Summary of August 1           
## [701] Summary of July 11             Summary of July 2             
## [703] Summary of July 22             Summary of July 26            
## [705] Summary of July 29             Summary of July 3             
## [707] Summary of June 10             Summary of June 11            
## [709] Summary of June 12             Summary of June 13            
## [711] Summary of June 15             Summary of June 16            
## [713] Summary of June 18             Summary of June 23            
## [715] Summary of June 24             Summary of June 3             
## [717] Summary of June 30             Summary of June 4             
## [719] Summary of June 6              Summary of March 14           
## [721] Summary of March 23            Summary of March 24           
## [723] SUMMARY OF MARCH 24-25         SUMMARY OF MARCH 27           
## [725] SUMMARY OF MARCH 29            Summary of May 10             
## [727] Summary of May 13              Summary of May 14             
## [729] Summary of May 22              Summary of May 22 am          
## [731] Summary of May 22 pm           Summary of May 26 am          
## [733] Summary of May 26 pm           Summary of May 31 am          
## [735] Summary of May 31 pm           Summary of May 9-10           
## [737] Summary Sept. 25-26            Summary September 20          
## [739] Summary September 23           Summary September 3           
## [741] Summary September 4            Summary: Nov. 16              
## [743] Summary: Nov. 6-7              Summary: Oct. 20-21           
## [745] Summary: October 31            Summary: Sept. 18             
## [747] Temperature record             THUDERSTORM WINDS             
## [749] THUNDEERSTORM WINDS            THUNDERESTORM WINDS           
## [751] THUNDERSNOW                    Thundersnow shower            
## [753] THUNDERSTORM                   THUNDERSTORM  WINDS           
## [755] THUNDERSTORM DAMAGE            THUNDERSTORM DAMAGE TO        
## [757] THUNDERSTORM HAIL              THUNDERSTORM W INDS           
## [759] Thunderstorm Wind              THUNDERSTORM WIND             
## [761] THUNDERSTORM WIND (G40)        THUNDERSTORM WIND 50          
## [763] THUNDERSTORM WIND 52           THUNDERSTORM WIND 56          
## [765] THUNDERSTORM WIND 59           THUNDERSTORM WIND 59 MPH      
## [767] THUNDERSTORM WIND 59 MPH.      THUNDERSTORM WIND 60 MPH      
## [769] THUNDERSTORM WIND 65 MPH       THUNDERSTORM WIND 65MPH       
## [771] THUNDERSTORM WIND 69           THUNDERSTORM WIND 98 MPH      
## [773] THUNDERSTORM WIND G50          THUNDERSTORM WIND G51         
## [775] THUNDERSTORM WIND G52          THUNDERSTORM WIND G55         
## [777] THUNDERSTORM WIND G60          THUNDERSTORM WIND G61         
## [779] THUNDERSTORM WIND TREES        THUNDERSTORM WIND.            
## [781] THUNDERSTORM WIND/ TREE        THUNDERSTORM WIND/ TREES      
## [783] THUNDERSTORM WIND/AWNING       THUNDERSTORM WIND/HAIL        
## [785] THUNDERSTORM WIND/LIGHTNING    THUNDERSTORM WINDS            
## [787] THUNDERSTORM WINDS      LE CEN THUNDERSTORM WINDS 13         
## [789] THUNDERSTORM WINDS 2           THUNDERSTORM WINDS 50         
## [791] THUNDERSTORM WINDS 52          THUNDERSTORM WINDS 53         
## [793] THUNDERSTORM WINDS 60          THUNDERSTORM WINDS 61         
## [795] THUNDERSTORM WINDS 62          THUNDERSTORM WINDS 63 MPH     
## [797] THUNDERSTORM WINDS AND         THUNDERSTORM WINDS FUNNEL CLOU
## [799] THUNDERSTORM WINDS G           THUNDERSTORM WINDS G60        
## [801] THUNDERSTORM WINDS HAIL        THUNDERSTORM WINDS HEAVY RAIN 
## [803] THUNDERSTORM WINDS LIGHTNING   THUNDERSTORM WINDS SMALL STREA
## [805] THUNDERSTORM WINDS URBAN FLOOD THUNDERSTORM WINDS.           
## [807] THUNDERSTORM WINDS/ FLOOD      THUNDERSTORM WINDS/ HAIL      
## [809] THUNDERSTORM WINDS/FLASH FLOOD THUNDERSTORM WINDS/FLOODING   
## [811] THUNDERSTORM WINDS/FUNNEL CLOU THUNDERSTORM WINDS/HAIL       
## [813] THUNDERSTORM WINDS/HEAVY RAIN  THUNDERSTORM WINDS53          
## [815] THUNDERSTORM WINDSHAIL         THUNDERSTORM WINDSS           
## [817] THUNDERSTORM WINS              THUNDERSTORMS                 
## [819] THUNDERSTORMS WIND             THUNDERSTORMS WINDS           
## [821] THUNDERSTORMW                  THUNDERSTORMW 50              
## [823] THUNDERSTORMW WINDS            THUNDERSTORMWINDS             
## [825] THUNDERSTROM WIND              THUNDERSTROM WINDS            
## [827] THUNDERTORM WINDS              THUNDERTSORM WIND             
## [829] THUNDESTORM WINDS              THUNERSTORM WINDS             
## [831] TIDAL FLOOD                    Tidal Flooding                
## [833] TIDAL FLOODING                 TORNADO                       
## [835] TORNADO DEBRIS                 TORNADO F0                    
## [837] TORNADO F1                     TORNADO F2                    
## [839] TORNADO F3                     TORNADO/WATERSPOUT            
## [841] TORNADOES                      TORNADOES, TSTM WIND, HAIL    
## [843] TORNADOS                       TORNDAO                       
## [845] TORRENTIAL RAIN                Torrential Rainfall           
## [847] TROPICAL DEPRESSION            TROPICAL STORM                
## [849] TROPICAL STORM ALBERTO         TROPICAL STORM DEAN           
## [851] TROPICAL STORM GORDON          TROPICAL STORM JERRY          
## [853] TSTM                           TSTM HEAVY RAIN               
## [855] Tstm Wind                      TSTM WIND                     
## [857] TSTM WIND  (G45)               TSTM WIND (41)                
## [859] TSTM WIND (G35)                TSTM WIND (G40)               
## [861] TSTM WIND (G45)                TSTM WIND 40                  
## [863] TSTM WIND 45                   TSTM WIND 50                  
## [865] TSTM WIND 51                   TSTM WIND 52                  
## [867] TSTM WIND 55                   TSTM WIND 65)                 
## [869] TSTM WIND AND LIGHTNING        TSTM WIND DAMAGE              
## [871] TSTM WIND G45                  TSTM WIND G58                 
## [873] TSTM WIND/HAIL                 TSTM WINDS                    
## [875] TSTM WND                       TSTMW                         
## [877] TSUNAMI                        TUNDERSTORM WIND              
## [879] TYPHOON                        Unseasonable Cold             
## [881] UNSEASONABLY COLD              UNSEASONABLY COOL             
## [883] UNSEASONABLY COOL & WET        UNSEASONABLY DRY              
## [885] UNSEASONABLY HOT               UNSEASONABLY WARM             
## [887] UNSEASONABLY WARM & WET        UNSEASONABLY WARM AND DRY     
## [889] UNSEASONABLY WARM YEAR         UNSEASONABLY WARM/WET         
## [891] UNSEASONABLY WET               UNSEASONAL LOW TEMP           
## [893] UNSEASONAL RAIN                UNUSUAL WARMTH                
## [895] UNUSUAL/RECORD WARMTH          UNUSUALLY COLD                
## [897] UNUSUALLY LATE SNOW            UNUSUALLY WARM                
## [899] URBAN AND SMALL                URBAN AND SMALL STREAM        
## [901] URBAN AND SMALL STREAM FLOOD   URBAN AND SMALL STREAM FLOODIN
## [903] Urban flood                    Urban Flood                   
## [905] URBAN FLOOD                    URBAN FLOOD LANDSLIDE         
## [907] Urban Flooding                 URBAN FLOODING                
## [909] URBAN FLOODS                   URBAN SMALL                   
## [911] URBAN SMALL STREAM FLOOD       URBAN/SMALL                   
## [913] URBAN/SMALL FLOODING           URBAN/SMALL STREAM            
## [915] URBAN/SMALL STREAM  FLOOD      URBAN/SMALL STREAM FLOOD      
## [917] URBAN/SMALL STREAM FLOODING    URBAN/SMALL STRM FLDG         
## [919] URBAN/SML STREAM FLD           URBAN/SML STREAM FLDG         
## [921] URBAN/STREET FLOODING          VERY DRY                      
## [923] VERY WARM                      VOG                           
## [925] Volcanic Ash                   VOLCANIC ASH                  
## [927] Volcanic Ash Plume             VOLCANIC ASHFALL              
## [929] VOLCANIC ERUPTION              WAKE LOW WIND                 
## [931] WALL CLOUD                     WALL CLOUD/FUNNEL CLOUD       
## [933] WARM DRY CONDITIONS            WARM WEATHER                  
## [935] WATER SPOUT                    WATERSPOUT                    
## [937] WATERSPOUT-                    WATERSPOUT-TORNADO            
## [939] WATERSPOUT FUNNEL CLOUD        WATERSPOUT TORNADO            
## [941] WATERSPOUT/                    WATERSPOUT/ TORNADO           
## [943] WATERSPOUT/TORNADO             WATERSPOUTS                   
## [945] WAYTERSPOUT                    wet micoburst                 
## [947] WET MICROBURST                 Wet Month                     
## [949] WET SNOW                       WET WEATHER                   
## [951] Wet Year                       Whirlwind                     
## [953] WHIRLWIND                      WILD FIRES                    
## [955] WILD/FOREST FIRE               WILD/FOREST FIRES             
## [957] WILDFIRE                       WILDFIRES                     
## [959] Wind                           WIND                          
## [961] WIND ADVISORY                  WIND AND WAVE                 
## [963] WIND CHILL                     WIND CHILL/HIGH WIND          
## [965] Wind Damage                    WIND DAMAGE                   
## [967] WIND GUSTS                     WIND STORM                    
## [969] WIND/HAIL                      WINDS                         
## [971] WINTER MIX                     WINTER STORM                  
## [973] WINTER STORM HIGH WINDS        WINTER STORM/HIGH WIND        
## [975] WINTER STORM/HIGH WINDS        WINTER STORMS                 
## [977] Winter Weather                 WINTER WEATHER                
## [979] WINTER WEATHER MIX             WINTER WEATHER/MIX            
## [981] WINTERY MIX                    Wintry mix                    
## [983] Wintry Mix                     WINTRY MIX                    
## [985] WND                           
## 985 Levels:    HIGH SURF ADVISORY  COASTAL FLOOD ... WND
# close(conn)