Um experimento comparou os efeitos de 5 tratamentos em relação ao crescimento de mudas de Pinus oocarpa, 60 dias após a semeadura. Os tratamentos utilizados foram: 1 - T1 = Solo de cerrado 2 - T2 = Solo de cerrado + esterco 3 - T3 = Solo de cerrado + esterco + NPK 4 - T4 = Solo de cerrado + Vermiculita 5 - T5 = Solo de cerrado + Vermiculita + NPK
pinus = read.table("pinus.txt", header = TRUE)
str(pinus)
## 'data.frame': 20 obs. of 2 variables:
## $ tratamento: Factor w/ 5 levels "T1","T2","T3",..: 1 1 1 1 2 2 2 2 3 3 ...
## $ altura : num 4.6 5.1 5.8 5.5 6 7.1 7.2 6.8 5.8 7.2 ...
summary(pinus)
## tratamento altura
## T1:4 Min. :4.600
## T2:4 1st Qu.:5.675
## T3:4 Median :5.950
## T4:4 Mean :6.120
## T5:4 3rd Qu.:6.800
## Max. :7.200
boxplot(altura ~ tratamento, data = pinus, col = "yellow")
mod1 <- aov(altura ~ tratamento, data = pinus)
summary(mod1)
## Df Sum Sq Mean Sq F value Pr(>F)
## tratamento 4 7.597 1.899 7.277 0.00183 **
## Residuals 15 3.915 0.261
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
coef(mod1)
## (Intercept) tratamentoT2 tratamentoT3 tratamentoT4 tratamentoT5
## 5.250 1.525 1.400 0.275 1.150
library(agricolae)
cv.model(mod1)
## [1] 8.347738
names(mod1)
## [1] "coefficients" "residuals" "effects" "rank"
## [5] "fitted.values" "assign" "qr" "df.residual"
## [9] "contrasts" "xlevels" "call" "terms"
## [13] "model"
plot(mod1)
shapiro.test(mod1$residuals)
##
## Shapiro-Wilk normality test
##
## data: mod1$residuals
## W = 0.87837, p-value = 0.01654
names(mod1)
## [1] "coefficients" "residuals" "effects" "rank"
## [5] "fitted.values" "assign" "qr" "df.residual"
## [9] "contrasts" "xlevels" "call" "terms"
## [13] "model"
# resíduos
mod1$residuals
## 1 2
## -0.6499999999999992450483 -0.1500000000000017430501
## 3 4
## 0.5500000000000004884981 0.2499999999999997224442
## 5 6
## -0.7750000000000004662937 0.3249999999999999555911
## 7 8
## 0.4250000000000004884981 0.0250000000000001054712
## 9 10
## -0.8500000000000000888178 0.5500000000000002664535
## 11 12
## 0.2500000000000004440892 0.0500000000000001554312
## 13 14
## 0.0749999999999995947686 -0.6249999999999997779554
## 15 16
## 0.3750000000000002775558 0.1750000000000000999201
## 17 18
## -0.6000000000000000888178 0.0000000000000005273559
## 19 20
## 0.1999999999999997890576 0.3999999999999999111822
# Valores previstos pelo modelo
mod1$fitted.values
## 1 2 3 4 5 6 7 8 9 10 11 12
## 5.250 5.250 5.250 5.250 6.775 6.775 6.775 6.775 6.650 6.650 6.650 6.650
## 13 14 15 16 17 18 19 20
## 5.525 5.525 5.525 5.525 6.400 6.400 6.400 6.400
TukeyHSD(mod1)
## Tukey multiple comparisons of means
## 95% family-wise confidence level
##
## Fit: aov(formula = altura ~ tratamento, data = pinus)
##
## $tratamento
## diff lwr upr p adj
## T2-T1 1.525 0.40949396 2.640506042 0.0056636
## T3-T1 1.400 0.28449396 2.515506042 0.0110848
## T4-T1 0.275 -0.84050604 1.390506042 0.9378222
## T5-T1 1.150 0.03449396 2.265506042 0.0418184
## T3-T2 -0.125 -1.24050604 0.990506042 0.9965682
## T4-T2 -1.250 -2.36550604 -0.134493958 0.0247157
## T5-T2 -0.375 -1.49050604 0.740506042 0.8339632
## T4-T3 -1.125 -2.24050604 -0.009493958 0.0476084
## T5-T3 -0.250 -1.36550604 0.865506042 0.9551477
## T5-T4 0.875 -0.24050604 1.990506042 0.1626657
Gráfico Teste de Tukey
plot(TukeyHSD(mod1))