Taken from Chapter 13 of R for Data Science
It’s rare that a data analysis involves only a single table of data. Typically you have many tables of data, and you must combine them to answer the questions that you’re interested in. Collectively, multiple tables of data are called relational data because it is the relations, not just the individual datasets, that are important. Relations are always defined between a pair of tables. All other relations are built up from this simple idea: the relations of three or more tables are always a property of the relations between each pair. Sometimes both elements of a pair can be the same table! This is needed if, for example, you have a table of people, and each person has a reference to their parents. To work with relational data you need verbs that work with pairs of tables. There are three families of verbs designed to work with relational data:
The most common place to find relational data is in a relational database management system (or RDBMS), a term that encompasses almost all modern databases. If you’ve used a database before, you’ve almost certainly used SQL. If so, you should find the concepts in this chapter familiar, although their expression in dplyr
is a little different. Generally, dplyr
is a little easier to use than SQL because dplyr
is specialised to do data analysis: it makes common data analysis operations easier, at the expense of making it more difficult to do other things that aren’t commonly needed for data analysis.
We will explore relational data from nycflights13
using the two-table verbs from dplyr
.
library(tidyverse)
## -- Attaching packages ---------------------------------------------------------------------------------- tidyverse 1.3.0 --
## v ggplot2 3.2.1 v purrr 0.3.3
## v tibble 2.1.3 v dplyr 0.8.3
## v tidyr 1.0.0 v stringr 1.4.0
## v readr 1.3.1 v forcats 0.4.0
## -- Conflicts ------------------------------------------------------------------------------------- tidyverse_conflicts() --
## x dplyr::filter() masks stats::filter()
## x dplyr::lag() masks stats::lag()
library(nycflights13)
We will use the nycflights13
package to learn about relational data. nycflights13
contains four tibbles that are related to the flights
table that you used in data transformation:
flights
## # A tibble: 336,776 x 19
## year month day dep_time sched_dep_time dep_delay arr_time sched_arr_time
## <int> <int> <int> <int> <int> <dbl> <int> <int>
## 1 2013 1 1 517 515 2 830 819
## 2 2013 1 1 533 529 4 850 830
## 3 2013 1 1 542 540 2 923 850
## 4 2013 1 1 544 545 -1 1004 1022
## 5 2013 1 1 554 600 -6 812 837
## 6 2013 1 1 554 558 -4 740 728
## 7 2013 1 1 555 600 -5 913 854
## 8 2013 1 1 557 600 -3 709 723
## 9 2013 1 1 557 600 -3 838 846
## 10 2013 1 1 558 600 -2 753 745
## # ... with 336,766 more rows, and 11 more variables: arr_delay <dbl>,
## # carrier <chr>, flight <int>, tailnum <chr>, origin <chr>, dest <chr>,
## # air_time <dbl>, distance <dbl>, hour <dbl>, minute <dbl>, time_hour <dttm>
airlines
lets you look up the full carrier name from its abbreviated code:## # A tibble: 16 x 2
## carrier name
## <chr> <chr>
## 1 9E Endeavor Air Inc.
## 2 AA American Airlines Inc.
## 3 AS Alaska Airlines Inc.
## 4 B6 JetBlue Airways
## 5 DL Delta Air Lines Inc.
## 6 EV ExpressJet Airlines Inc.
## 7 F9 Frontier Airlines Inc.
## 8 FL AirTran Airways Corporation
## 9 HA Hawaiian Airlines Inc.
## 10 MQ Envoy Air
## 11 OO SkyWest Airlines Inc.
## 12 UA United Air Lines Inc.
## 13 US US Airways Inc.
## 14 VX Virgin America
## 15 WN Southwest Airlines Co.
## 16 YV Mesa Airlines Inc.
airports
gives information about each airport, identified by the faa
airport code:airports
## # A tibble: 1,458 x 8
## faa name lat lon alt tz dst tzone
## <chr> <chr> <dbl> <dbl> <dbl> <dbl> <chr> <chr>
## 1 04G Lansdowne Airport 41.1 -80.6 1044 -5 A America/New_Yo~
## 2 06A Moton Field Municipal A~ 32.5 -85.7 264 -6 A America/Chicago
## 3 06C Schaumburg Regional 42.0 -88.1 801 -6 A America/Chicago
## 4 06N Randall Airport 41.4 -74.4 523 -5 A America/New_Yo~
## 5 09J Jekyll Island Airport 31.1 -81.4 11 -5 A America/New_Yo~
## 6 0A9 Elizabethton Municipal ~ 36.4 -82.2 1593 -5 A America/New_Yo~
## 7 0G6 Williams County Airport 41.5 -84.5 730 -5 A America/New_Yo~
## 8 0G7 Finger Lakes Regional A~ 42.9 -76.8 492 -5 A America/New_Yo~
## 9 0P2 Shoestring Aviation Air~ 39.8 -76.6 1000 -5 U America/New_Yo~
## 10 0S9 Jefferson County Intl 48.1 -123. 108 -8 A America/Los_An~
## # ... with 1,448 more rows
planes
gives information about each plane, identified by its tailnum
:planes
## # A tibble: 3,322 x 9
## tailnum year type manufacturer model engines seats speed engine
## <chr> <int> <chr> <chr> <chr> <int> <int> <int> <chr>
## 1 N10156 2004 Fixed wing m~ EMBRAER EMB-1~ 2 55 NA Turbo-~
## 2 N102UW 1998 Fixed wing m~ AIRBUS INDUST~ A320-~ 2 182 NA Turbo-~
## 3 N103US 1999 Fixed wing m~ AIRBUS INDUST~ A320-~ 2 182 NA Turbo-~
## 4 N104UW 1999 Fixed wing m~ AIRBUS INDUST~ A320-~ 2 182 NA Turbo-~
## 5 N10575 2002 Fixed wing m~ EMBRAER EMB-1~ 2 55 NA Turbo-~
## 6 N105UW 1999 Fixed wing m~ AIRBUS INDUST~ A320-~ 2 182 NA Turbo-~
## 7 N107US 1999 Fixed wing m~ AIRBUS INDUST~ A320-~ 2 182 NA Turbo-~
## 8 N108UW 1999 Fixed wing m~ AIRBUS INDUST~ A320-~ 2 182 NA Turbo-~
## 9 N109UW 1999 Fixed wing m~ AIRBUS INDUST~ A320-~ 2 182 NA Turbo-~
## 10 N110UW 1999 Fixed wing m~ AIRBUS INDUST~ A320-~ 2 182 NA Turbo-~
## # ... with 3,312 more rows
weather
gives the weather at each NYC airport for each hour:weather
## # A tibble: 26,115 x 15
## origin year month day hour temp dewp humid wind_dir wind_speed
## <chr> <int> <int> <int> <int> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 EWR 2013 1 1 1 39.0 26.1 59.4 270 10.4
## 2 EWR 2013 1 1 2 39.0 27.0 61.6 250 8.06
## 3 EWR 2013 1 1 3 39.0 28.0 64.4 240 11.5
## 4 EWR 2013 1 1 4 39.9 28.0 62.2 250 12.7
## 5 EWR 2013 1 1 5 39.0 28.0 64.4 260 12.7
## 6 EWR 2013 1 1 6 37.9 28.0 67.2 240 11.5
## 7 EWR 2013 1 1 7 39.0 28.0 64.4 240 15.0
## 8 EWR 2013 1 1 8 39.9 28.0 62.2 250 10.4
## 9 EWR 2013 1 1 9 39.9 28.0 62.2 260 15.0
## 10 EWR 2013 1 1 10 41 28.0 59.6 260 13.8
## # ... with 26,105 more rows, and 5 more variables: wind_gust <dbl>,
## # precip <dbl>, pressure <dbl>, visib <dbl>, time_hour <dttm>
One way to show the relationships between the different tables is with a drawing:
Realational NYC Flights
This diagram is a little overwhelming, but it’s simple compared to some you’ll see in the wild! The key to understanding diagrams like this is to remember each relation always concerns a pair of tables. You don’t need to understand the whole thing; you just need to understand the chain of relations between the tables that you are interested in. For nycflights13
:
flights
connects to planes
via a single variable, tailnum
.flights
connects to airlines
through the carrier
variable.flights
connects to airports
in two ways: via the origin
and dest
variables.flights
connects to weather
via origin
(the location), and year
, month
, day
and hour
(the time).The variables used to connect each pair of tables are called keys. A key is a variable (or set of variables) that uniquely identifies an observation. In simple cases, a single variable is sufficient to identify an observation. For example, each plane is uniquely identified by its tailnum
. In other cases, multiple variables may be needed. For example, to identify an observation in weather
you need five variables: year
, month
, day
, hour
, and origin
. There are two types of keys:
flights$tailnum
is a foreign key because it appears in the flights
table where it matches each flight to a unique plane.A variable can be both a primary key and a foreign key. For example, origin
is part of the weather primary key
, and is also a foreign key for the airport
table. Once you’ve identified the primary keys in your tables, it’s good practice to verify that they do indeed uniquely identify each observation. One way to do that is to count()
the primary keys and look for entries where \(n>1\).
planes %>%
count(tailnum) %>%
filter(n > 1)
## # A tibble: 0 x 2
## # ... with 2 variables: tailnum <chr>, n <int>
weather %>%
count(year, month, day, hour, origin) %>%
filter(n > 1)
## # A tibble: 3 x 6
## year month day hour origin n
## <int> <int> <int> <int> <chr> <int>
## 1 2013 11 3 1 EWR 2
## 2 2013 11 3 1 JFK 2
## 3 2013 11 3 1 LGA 2
Sometimes a table doesn’t have an explicit primary key: each row is an observation, but no combination of variables reliably identifies it. For example, what’s the primary key in the flights
table? You might think it would be the date plus the flight or tail number, but neither of those are unique:
flights %>%
count(year, month, day, flight) %>%
filter(n > 1)
## # A tibble: 29,768 x 5
## year month day flight n
## <int> <int> <int> <int> <int>
## 1 2013 1 1 1 2
## 2 2013 1 1 3 2
## 3 2013 1 1 4 2
## 4 2013 1 1 11 3
## 5 2013 1 1 15 2
## 6 2013 1 1 21 2
## 7 2013 1 1 27 4
## 8 2013 1 1 31 2
## 9 2013 1 1 32 2
## 10 2013 1 1 35 2
## # ... with 29,758 more rows
flights %>%
count(year, month, day, tailnum) %>%
filter(n > 1)
## # A tibble: 64,928 x 5
## year month day tailnum n
## <int> <int> <int> <chr> <int>
## 1 2013 1 1 N0EGMQ 2
## 2 2013 1 1 N11189 2
## 3 2013 1 1 N11536 2
## 4 2013 1 1 N11544 3
## 5 2013 1 1 N11551 2
## 6 2013 1 1 N12540 2
## 7 2013 1 1 N12567 2
## 8 2013 1 1 N13123 2
## 9 2013 1 1 N13538 3
## 10 2013 1 1 N13566 3
## # ... with 64,918 more rows
If a table lacks a primary key, it’s sometimes useful to add one with mutate()
and row_number()
. That makes it easier to match observations if you’ve done some filtering and want to check back in with the original data. This is called a surrogate key. A primary key and the corresponding foreign key in another table form a relation. Relations are typically one-to-many. For example, each flight has one plane, but each plane has many flights. In other data, you’ll occasionally see a 1-to-1 relationship. You can think of this as a special case of 1-to-many. You can model many-to-many relations with a many-to-1 relation plus a 1-to-many relation. For example, in this data there’s a many-to-many relationship between airlines and airports: each airline flies to many airports; each airport hosts many airlines.
The first tool we’ll look at for combining a pair of tables is the mutating join. A mutating join allows you to combine variables from two tables. It first matches observations by their keys, then copies across variables from one table to the other. Like mutate()
, the join functions add variables to the right, so if you have a lot of variables already, the new variables won’t get printed out. For these examples, we’ll make it easier to see what’s going on in the examples by creating a narrower dataset:
flights2 <- flights %>%
select(year:day, hour, origin, dest, tailnum, carrier)
flights2
## # A tibble: 336,776 x 8
## year month day hour origin dest tailnum carrier
## <int> <int> <int> <dbl> <chr> <chr> <chr> <chr>
## 1 2013 1 1 5 EWR IAH N14228 UA
## 2 2013 1 1 5 LGA IAH N24211 UA
## 3 2013 1 1 5 JFK MIA N619AA AA
## 4 2013 1 1 5 JFK BQN N804JB B6
## 5 2013 1 1 6 LGA ATL N668DN DL
## 6 2013 1 1 5 EWR ORD N39463 UA
## 7 2013 1 1 6 EWR FLL N516JB B6
## 8 2013 1 1 6 LGA IAD N829AS EV
## 9 2013 1 1 6 JFK MCO N593JB B6
## 10 2013 1 1 6 LGA ORD N3ALAA AA
## # ... with 336,766 more rows
Imagine you want to add the full airline name to the flights2
data. You can combine the airlines
and flights2
data frames with left_join()
:
flights2 %>%
select(-origin, -dest) %>%
left_join(airlines, by = 'carrier')
## # A tibble: 336,776 x 7
## year month day hour tailnum carrier name
## <int> <int> <int> <dbl> <chr> <chr> <chr>
## 1 2013 1 1 5 N14228 UA United Air Lines Inc.
## 2 2013 1 1 5 N24211 UA United Air Lines Inc.
## 3 2013 1 1 5 N619AA AA American Airlines Inc.
## 4 2013 1 1 5 N804JB B6 JetBlue Airways
## 5 2013 1 1 6 N668DN DL Delta Air Lines Inc.
## 6 2013 1 1 5 N39463 UA United Air Lines Inc.
## 7 2013 1 1 6 N516JB B6 JetBlue Airways
## 8 2013 1 1 6 N829AS EV ExpressJet Airlines Inc.
## 9 2013 1 1 6 N593JB B6 JetBlue Airways
## 10 2013 1 1 6 N3ALAA AA American Airlines Inc.
## # ... with 336,766 more rows
The result of joining airlines
to flights2
is an additional variable: name
. This is why I call this type of join a mutating join. In this case, you could have got to the same place using mutate() and R’s base subsetting:
flights2 %>%
select(-origin, -dest) %>%
mutate(name = airlines$name[match(carrier, airlines$carrier)])
## # A tibble: 336,776 x 7
## year month day hour tailnum carrier name
## <int> <int> <int> <dbl> <chr> <chr> <chr>
## 1 2013 1 1 5 N14228 UA United Air Lines Inc.
## 2 2013 1 1 5 N24211 UA United Air Lines Inc.
## 3 2013 1 1 5 N619AA AA American Airlines Inc.
## 4 2013 1 1 5 N804JB B6 JetBlue Airways
## 5 2013 1 1 6 N668DN DL Delta Air Lines Inc.
## 6 2013 1 1 5 N39463 UA United Air Lines Inc.
## 7 2013 1 1 6 N516JB B6 JetBlue Airways
## 8 2013 1 1 6 N829AS EV ExpressJet Airlines Inc.
## 9 2013 1 1 6 N593JB B6 JetBlue Airways
## 10 2013 1 1 6 N3ALAA AA American Airlines Inc.
## # ... with 336,766 more rows
But this is hard to generalise when you need to match multiple variables, and takes close reading to figure out the overall intent.
The pairs of tables are usually joined by a single variable, and that variable has the same name in both tables. That constraint is encoded by by = 'key'
. But, you can use other values for by to connect the tables in other ways:
by = NULL
, uses all variables that appear in both tables, the so called natural join. For example, the flights
and weather
tables match on their common variables: year
, month
, day
, hour
and origin
.flights2 %>%
left_join(weather)
## Joining, by = c("year", "month", "day", "hour", "origin")
## # A tibble: 336,776 x 18
## year month day hour origin dest tailnum carrier temp dewp humid
## <int> <int> <int> <dbl> <chr> <chr> <chr> <chr> <dbl> <dbl> <dbl>
## 1 2013 1 1 5 EWR IAH N14228 UA 39.0 28.0 64.4
## 2 2013 1 1 5 LGA IAH N24211 UA 39.9 25.0 54.8
## 3 2013 1 1 5 JFK MIA N619AA AA 39.0 27.0 61.6
## 4 2013 1 1 5 JFK BQN N804JB B6 39.0 27.0 61.6
## 5 2013 1 1 6 LGA ATL N668DN DL 39.9 25.0 54.8
## 6 2013 1 1 5 EWR ORD N39463 UA 39.0 28.0 64.4
## 7 2013 1 1 6 EWR FLL N516JB B6 37.9 28.0 67.2
## 8 2013 1 1 6 LGA IAD N829AS EV 39.9 25.0 54.8
## 9 2013 1 1 6 JFK MCO N593JB B6 37.9 27.0 64.3
## 10 2013 1 1 6 LGA ORD N3ALAA AA 39.9 25.0 54.8
## # ... with 336,766 more rows, and 7 more variables: wind_dir <dbl>,
## # wind_speed <dbl>, wind_gust <dbl>, precip <dbl>, pressure <dbl>,
## # visib <dbl>, time_hour <dttm>
by = 'x'
. This is like a natural join, but uses only some of the common variables. For example, flights
and planes
have year
variables, but they mean different things so we only want to join by tailnum
.flights2 %>%
left_join(planes, by = 'tailnum')
## # A tibble: 336,776 x 16
## year.x month day hour origin dest tailnum carrier year.y type
## <int> <int> <int> <dbl> <chr> <chr> <chr> <chr> <int> <chr>
## 1 2013 1 1 5 EWR IAH N14228 UA 1999 Fixe~
## 2 2013 1 1 5 LGA IAH N24211 UA 1998 Fixe~
## 3 2013 1 1 5 JFK MIA N619AA AA 1990 Fixe~
## 4 2013 1 1 5 JFK BQN N804JB B6 2012 Fixe~
## 5 2013 1 1 6 LGA ATL N668DN DL 1991 Fixe~
## 6 2013 1 1 5 EWR ORD N39463 UA 2012 Fixe~
## 7 2013 1 1 6 EWR FLL N516JB B6 2000 Fixe~
## 8 2013 1 1 6 LGA IAD N829AS EV 1998 Fixe~
## 9 2013 1 1 6 JFK MCO N593JB B6 2004 Fixe~
## 10 2013 1 1 6 LGA ORD N3ALAA AA NA <NA>
## # ... with 336,766 more rows, and 6 more variables: manufacturer <chr>,
## # model <chr>, engines <int>, seats <int>, speed <int>, engine <chr>
Note that the year
variables (which appear in both input data frames, but are not constrained to be equal) are disambiguated in the output with a suffix.
by = c('a' = 'b')
. This will match variable a
in table x
to variable b
in table y
. The variables from x
will be used in the output.For example, if we want to draw a map we need to combine the flights
data with the airports
data which contains the location (lat
and lon
) of each airport. Each flight
has an origin and destination airport, so we need to specify which one we want to join to:
flights2 %>%
left_join(airports, c('dest' = 'faa'))
## # A tibble: 336,776 x 15
## year month day hour origin dest tailnum carrier name lat lon alt
## <int> <int> <int> <dbl> <chr> <chr> <chr> <chr> <chr> <dbl> <dbl> <dbl>
## 1 2013 1 1 5 EWR IAH N14228 UA Geor~ 30.0 -95.3 97
## 2 2013 1 1 5 LGA IAH N24211 UA Geor~ 30.0 -95.3 97
## 3 2013 1 1 5 JFK MIA N619AA AA Miam~ 25.8 -80.3 8
## 4 2013 1 1 5 JFK BQN N804JB B6 <NA> NA NA NA
## 5 2013 1 1 6 LGA ATL N668DN DL Hart~ 33.6 -84.4 1026
## 6 2013 1 1 5 EWR ORD N39463 UA Chic~ 42.0 -87.9 668
## 7 2013 1 1 6 EWR FLL N516JB B6 Fort~ 26.1 -80.2 9
## 8 2013 1 1 6 LGA IAD N829AS EV Wash~ 38.9 -77.5 313
## 9 2013 1 1 6 JFK MCO N593JB B6 Orla~ 28.4 -81.3 96
## 10 2013 1 1 6 LGA ORD N3ALAA AA Chic~ 42.0 -87.9 668
## # ... with 336,766 more rows, and 3 more variables: tz <dbl>, dst <chr>,
## # tzone <chr>
flights2 %>%
left_join(airports, c('origin' = 'faa'))
## # A tibble: 336,776 x 15
## year month day hour origin dest tailnum carrier name lat lon alt
## <int> <int> <int> <dbl> <chr> <chr> <chr> <chr> <chr> <dbl> <dbl> <dbl>
## 1 2013 1 1 5 EWR IAH N14228 UA Newa~ 40.7 -74.2 18
## 2 2013 1 1 5 LGA IAH N24211 UA La G~ 40.8 -73.9 22
## 3 2013 1 1 5 JFK MIA N619AA AA John~ 40.6 -73.8 13
## 4 2013 1 1 5 JFK BQN N804JB B6 John~ 40.6 -73.8 13
## 5 2013 1 1 6 LGA ATL N668DN DL La G~ 40.8 -73.9 22
## 6 2013 1 1 5 EWR ORD N39463 UA Newa~ 40.7 -74.2 18
## 7 2013 1 1 6 EWR FLL N516JB B6 Newa~ 40.7 -74.2 18
## 8 2013 1 1 6 LGA IAD N829AS EV La G~ 40.8 -73.9 22
## 9 2013 1 1 6 JFK MCO N593JB B6 John~ 40.6 -73.8 13
## 10 2013 1 1 6 LGA ORD N3ALAA AA La G~ 40.8 -73.9 22
## # ... with 336,766 more rows, and 3 more variables: tz <dbl>, dst <chr>,
## # tzone <chr>
Filtering joins match observations in the same way as mutating joins, but affect the observations, not the variables. There are two types:
semi_join(x, y)
keeps all observations in x
that have a match in y
.anti_join(x, y)
drops all observations in x
that have a match in y
.Semi-joins are useful for matching filtered summary tables back to the original rows. For example, imagine you’ve found the top ten most popular destinations:
top_dest <- flights %>%
count(dest, sort = TRUE) %>%
head(10)
top_dest
## # A tibble: 10 x 2
## dest n
## <chr> <int>
## 1 ORD 17283
## 2 ATL 17215
## 3 LAX 16174
## 4 BOS 15508
## 5 MCO 14082
## 6 CLT 14064
## 7 SFO 13331
## 8 FLL 12055
## 9 MIA 11728
## 10 DCA 9705
Now you want to find each flight that went to one of those destinations. You could construct a filter yourself:
flights %>%
filter(dest %in% top_dest$dest)
## # A tibble: 141,145 x 19
## year month day dep_time sched_dep_time dep_delay arr_time sched_arr_time
## <int> <int> <int> <int> <int> <dbl> <int> <int>
## 1 2013 1 1 542 540 2 923 850
## 2 2013 1 1 554 600 -6 812 837
## 3 2013 1 1 554 558 -4 740 728
## 4 2013 1 1 555 600 -5 913 854
## 5 2013 1 1 557 600 -3 838 846
## 6 2013 1 1 558 600 -2 753 745
## 7 2013 1 1 558 600 -2 924 917
## 8 2013 1 1 558 600 -2 923 937
## 9 2013 1 1 559 559 0 702 706
## 10 2013 1 1 600 600 0 851 858
## # ... with 141,135 more rows, and 11 more variables: arr_delay <dbl>,
## # carrier <chr>, flight <int>, tailnum <chr>, origin <chr>, dest <chr>,
## # air_time <dbl>, distance <dbl>, hour <dbl>, minute <dbl>, time_hour <dttm>
But it’s difficult to extend that approach to multiple variables. For example, imagine that you’d found the 10 days with highest average delays. How would you construct the filter statement that used year
, month
, and day
to match it back to flights
? Instead you can use a semi-join, which connects the two tables like a mutating join, but instead of adding new columns, only keeps the rows in x
that have a match in y
:
flights %>%
semi_join(top_dest)
## Joining, by = "dest"
## # A tibble: 141,145 x 19
## year month day dep_time sched_dep_time dep_delay arr_time sched_arr_time
## <int> <int> <int> <int> <int> <dbl> <int> <int>
## 1 2013 1 1 542 540 2 923 850
## 2 2013 1 1 554 600 -6 812 837
## 3 2013 1 1 554 558 -4 740 728
## 4 2013 1 1 555 600 -5 913 854
## 5 2013 1 1 557 600 -3 838 846
## 6 2013 1 1 558 600 -2 753 745
## 7 2013 1 1 558 600 -2 924 917
## 8 2013 1 1 558 600 -2 923 937
## 9 2013 1 1 559 559 0 702 706
## 10 2013 1 1 600 600 0 851 858
## # ... with 141,135 more rows, and 11 more variables: arr_delay <dbl>,
## # carrier <chr>, flight <int>, tailnum <chr>, origin <chr>, dest <chr>,
## # air_time <dbl>, distance <dbl>, hour <dbl>, minute <dbl>, time_hour <dttm>
Anti-joins are useful for diagnosing join mismatches. For example, when connecting flights
and planes
, you might be interested to know that there are many flights that don’t have a match in planes:
flights %>%
anti_join(planes, by = "tailnum") %>%
count(tailnum, sort = TRUE)
## # A tibble: 722 x 2
## tailnum n
## <chr> <int>
## 1 <NA> 2512
## 2 N725MQ 575
## 3 N722MQ 513
## 4 N723MQ 507
## 5 N713MQ 483
## 6 N735MQ 396
## 7 N0EGMQ 371
## 8 N534MQ 364
## 9 N542MQ 363
## 10 N531MQ 349
## # ... with 712 more rows
The final type of two-table verb are the set operations. Generally, I use these the least frequently, but they are occasionally useful when you want to break a single complex filter into simpler pieces. All these operations work with a complete row, comparing the values of every variable. These expect the x and y inputs to have the same variables, and treat the observations like sets:
intersect(x, y)
: return only observations in both x
and y
.union(x, y)
: return unique observations in x
and y
.setdiff(x, y)
: return observations in x
, but not in y
.Given some simple data, the four possibilities would be:
df1 <- tribble(
~x, ~y,
1, 1,
2, 1
)
df2 <- tribble(
~x, ~y,
1, 1,
1, 2
)
intersect(df1, df2)
## # A tibble: 1 x 2
## x y
## <dbl> <dbl>
## 1 1 1
union(df1, df2)
## # A tibble: 3 x 2
## x y
## <dbl> <dbl>
## 1 1 1
## 2 2 1
## 3 1 2
setdiff(df1, df2)
## # A tibble: 1 x 2
## x y
## <dbl> <dbl>
## 1 2 1
setdiff(df2, df1)
## # A tibble: 1 x 2
## x y
## <dbl> <dbl>
## 1 1 2