Relational data

Taken from Chapter 13 of R for Data Science

Introduction

It’s rare that a data analysis involves only a single table of data. Typically you have many tables of data, and you must combine them to answer the questions that you’re interested in. Collectively, multiple tables of data are called relational data because it is the relations, not just the individual datasets, that are important. Relations are always defined between a pair of tables. All other relations are built up from this simple idea: the relations of three or more tables are always a property of the relations between each pair. Sometimes both elements of a pair can be the same table! This is needed if, for example, you have a table of people, and each person has a reference to their parents. To work with relational data you need verbs that work with pairs of tables. There are three families of verbs designed to work with relational data:

The most common place to find relational data is in a relational database management system (or RDBMS), a term that encompasses almost all modern databases. If you’ve used a database before, you’ve almost certainly used SQL. If so, you should find the concepts in this chapter familiar, although their expression in dplyr is a little different. Generally, dplyr is a little easier to use than SQL because dplyr is specialised to do data analysis: it makes common data analysis operations easier, at the expense of making it more difficult to do other things that aren’t commonly needed for data analysis.

Prerequisites

We will explore relational data from nycflights13 using the two-table verbs from dplyr.

library(tidyverse)
## -- Attaching packages ---------------------------------------------------------------------------------- tidyverse 1.3.0 --
## v ggplot2 3.2.1     v purrr   0.3.3
## v tibble  2.1.3     v dplyr   0.8.3
## v tidyr   1.0.0     v stringr 1.4.0
## v readr   1.3.1     v forcats 0.4.0
## -- Conflicts ------------------------------------------------------------------------------------- tidyverse_conflicts() --
## x dplyr::filter() masks stats::filter()
## x dplyr::lag()    masks stats::lag()
library(nycflights13)

nycflights13

We will use the nycflights13 package to learn about relational data. nycflights13 contains four tibbles that are related to the flights table that you used in data transformation:

flights
## # A tibble: 336,776 x 19
##     year month   day dep_time sched_dep_time dep_delay arr_time sched_arr_time
##    <int> <int> <int>    <int>          <int>     <dbl>    <int>          <int>
##  1  2013     1     1      517            515         2      830            819
##  2  2013     1     1      533            529         4      850            830
##  3  2013     1     1      542            540         2      923            850
##  4  2013     1     1      544            545        -1     1004           1022
##  5  2013     1     1      554            600        -6      812            837
##  6  2013     1     1      554            558        -4      740            728
##  7  2013     1     1      555            600        -5      913            854
##  8  2013     1     1      557            600        -3      709            723
##  9  2013     1     1      557            600        -3      838            846
## 10  2013     1     1      558            600        -2      753            745
## # ... with 336,766 more rows, and 11 more variables: arr_delay <dbl>,
## #   carrier <chr>, flight <int>, tailnum <chr>, origin <chr>, dest <chr>,
## #   air_time <dbl>, distance <dbl>, hour <dbl>, minute <dbl>, time_hour <dttm>
  • airlines lets you look up the full carrier name from its abbreviated code:
## # A tibble: 16 x 2
##    carrier name                       
##    <chr>   <chr>                      
##  1 9E      Endeavor Air Inc.          
##  2 AA      American Airlines Inc.     
##  3 AS      Alaska Airlines Inc.       
##  4 B6      JetBlue Airways            
##  5 DL      Delta Air Lines Inc.       
##  6 EV      ExpressJet Airlines Inc.   
##  7 F9      Frontier Airlines Inc.     
##  8 FL      AirTran Airways Corporation
##  9 HA      Hawaiian Airlines Inc.     
## 10 MQ      Envoy Air                  
## 11 OO      SkyWest Airlines Inc.      
## 12 UA      United Air Lines Inc.      
## 13 US      US Airways Inc.            
## 14 VX      Virgin America             
## 15 WN      Southwest Airlines Co.     
## 16 YV      Mesa Airlines Inc.
  • airports gives information about each airport, identified by the faa airport code:
airports
## # A tibble: 1,458 x 8
##    faa   name                       lat    lon   alt    tz dst   tzone          
##    <chr> <chr>                    <dbl>  <dbl> <dbl> <dbl> <chr> <chr>          
##  1 04G   Lansdowne Airport         41.1  -80.6  1044    -5 A     America/New_Yo~
##  2 06A   Moton Field Municipal A~  32.5  -85.7   264    -6 A     America/Chicago
##  3 06C   Schaumburg Regional       42.0  -88.1   801    -6 A     America/Chicago
##  4 06N   Randall Airport           41.4  -74.4   523    -5 A     America/New_Yo~
##  5 09J   Jekyll Island Airport     31.1  -81.4    11    -5 A     America/New_Yo~
##  6 0A9   Elizabethton Municipal ~  36.4  -82.2  1593    -5 A     America/New_Yo~
##  7 0G6   Williams County Airport   41.5  -84.5   730    -5 A     America/New_Yo~
##  8 0G7   Finger Lakes Regional A~  42.9  -76.8   492    -5 A     America/New_Yo~
##  9 0P2   Shoestring Aviation Air~  39.8  -76.6  1000    -5 U     America/New_Yo~
## 10 0S9   Jefferson County Intl     48.1 -123.    108    -8 A     America/Los_An~
## # ... with 1,448 more rows
  • planes gives information about each plane, identified by its tailnum:
planes
## # A tibble: 3,322 x 9
##    tailnum  year type          manufacturer   model  engines seats speed engine 
##    <chr>   <int> <chr>         <chr>          <chr>    <int> <int> <int> <chr>  
##  1 N10156   2004 Fixed wing m~ EMBRAER        EMB-1~       2    55    NA Turbo-~
##  2 N102UW   1998 Fixed wing m~ AIRBUS INDUST~ A320-~       2   182    NA Turbo-~
##  3 N103US   1999 Fixed wing m~ AIRBUS INDUST~ A320-~       2   182    NA Turbo-~
##  4 N104UW   1999 Fixed wing m~ AIRBUS INDUST~ A320-~       2   182    NA Turbo-~
##  5 N10575   2002 Fixed wing m~ EMBRAER        EMB-1~       2    55    NA Turbo-~
##  6 N105UW   1999 Fixed wing m~ AIRBUS INDUST~ A320-~       2   182    NA Turbo-~
##  7 N107US   1999 Fixed wing m~ AIRBUS INDUST~ A320-~       2   182    NA Turbo-~
##  8 N108UW   1999 Fixed wing m~ AIRBUS INDUST~ A320-~       2   182    NA Turbo-~
##  9 N109UW   1999 Fixed wing m~ AIRBUS INDUST~ A320-~       2   182    NA Turbo-~
## 10 N110UW   1999 Fixed wing m~ AIRBUS INDUST~ A320-~       2   182    NA Turbo-~
## # ... with 3,312 more rows
  • weather gives the weather at each NYC airport for each hour:
weather
## # A tibble: 26,115 x 15
##    origin  year month   day  hour  temp  dewp humid wind_dir wind_speed
##    <chr>  <int> <int> <int> <int> <dbl> <dbl> <dbl>    <dbl>      <dbl>
##  1 EWR     2013     1     1     1  39.0  26.1  59.4      270      10.4 
##  2 EWR     2013     1     1     2  39.0  27.0  61.6      250       8.06
##  3 EWR     2013     1     1     3  39.0  28.0  64.4      240      11.5 
##  4 EWR     2013     1     1     4  39.9  28.0  62.2      250      12.7 
##  5 EWR     2013     1     1     5  39.0  28.0  64.4      260      12.7 
##  6 EWR     2013     1     1     6  37.9  28.0  67.2      240      11.5 
##  7 EWR     2013     1     1     7  39.0  28.0  64.4      240      15.0 
##  8 EWR     2013     1     1     8  39.9  28.0  62.2      250      10.4 
##  9 EWR     2013     1     1     9  39.9  28.0  62.2      260      15.0 
## 10 EWR     2013     1     1    10  41    28.0  59.6      260      13.8 
## # ... with 26,105 more rows, and 5 more variables: wind_gust <dbl>,
## #   precip <dbl>, pressure <dbl>, visib <dbl>, time_hour <dttm>

One way to show the relationships between the different tables is with a drawing:

Realational NYC Flights

This diagram is a little overwhelming, but it’s simple compared to some you’ll see in the wild! The key to understanding diagrams like this is to remember each relation always concerns a pair of tables. You don’t need to understand the whole thing; you just need to understand the chain of relations between the tables that you are interested in. For nycflights13:

  • flights connects to planes via a single variable, tailnum.
  • flights connects to airlines through the carrier variable.
  • flights connects to airports in two ways: via the origin and dest variables.
  • flights connects to weather via origin (the location), and year, month, day and hour (the time).

Keys

The variables used to connect each pair of tables are called keys. A key is a variable (or set of variables) that uniquely identifies an observation. In simple cases, a single variable is sufficient to identify an observation. For example, each plane is uniquely identified by its tailnum. In other cases, multiple variables may be needed. For example, to identify an observation in weather you need five variables: year, month, day, hour, and origin. There are two types of keys:

  • A primary key uniquely identifies an observation in its own table. For example, planes$tailnum is a primary key because it uniquely identifies each plane in the planes table.
  • A foreign key uniquely identifies an observation in another table. For example, the flights$tailnum is a foreign key because it appears in the flights table where it matches each flight to a unique plane.

A variable can be both a primary key and a foreign key. For example, origin is part of the weather primary key, and is also a foreign key for the airport table. Once you’ve identified the primary keys in your tables, it’s good practice to verify that they do indeed uniquely identify each observation. One way to do that is to count() the primary keys and look for entries where \(n>1\).

planes %>% 
  count(tailnum) %>% 
  filter(n > 1)
## # A tibble: 0 x 2
## # ... with 2 variables: tailnum <chr>, n <int>
weather %>% 
  count(year, month, day, hour, origin) %>% 
  filter(n > 1)
## # A tibble: 3 x 6
##    year month   day  hour origin     n
##   <int> <int> <int> <int> <chr>  <int>
## 1  2013    11     3     1 EWR        2
## 2  2013    11     3     1 JFK        2
## 3  2013    11     3     1 LGA        2

Sometimes a table doesn’t have an explicit primary key: each row is an observation, but no combination of variables reliably identifies it. For example, what’s the primary key in the flights table? You might think it would be the date plus the flight or tail number, but neither of those are unique:

flights %>% 
  count(year, month, day, flight) %>% 
  filter(n > 1)
## # A tibble: 29,768 x 5
##     year month   day flight     n
##    <int> <int> <int>  <int> <int>
##  1  2013     1     1      1     2
##  2  2013     1     1      3     2
##  3  2013     1     1      4     2
##  4  2013     1     1     11     3
##  5  2013     1     1     15     2
##  6  2013     1     1     21     2
##  7  2013     1     1     27     4
##  8  2013     1     1     31     2
##  9  2013     1     1     32     2
## 10  2013     1     1     35     2
## # ... with 29,758 more rows
flights %>% 
  count(year, month, day, tailnum) %>% 
  filter(n > 1)
## # A tibble: 64,928 x 5
##     year month   day tailnum     n
##    <int> <int> <int> <chr>   <int>
##  1  2013     1     1 N0EGMQ      2
##  2  2013     1     1 N11189      2
##  3  2013     1     1 N11536      2
##  4  2013     1     1 N11544      3
##  5  2013     1     1 N11551      2
##  6  2013     1     1 N12540      2
##  7  2013     1     1 N12567      2
##  8  2013     1     1 N13123      2
##  9  2013     1     1 N13538      3
## 10  2013     1     1 N13566      3
## # ... with 64,918 more rows

If a table lacks a primary key, it’s sometimes useful to add one with mutate() and row_number(). That makes it easier to match observations if you’ve done some filtering and want to check back in with the original data. This is called a surrogate key. A primary key and the corresponding foreign key in another table form a relation. Relations are typically one-to-many. For example, each flight has one plane, but each plane has many flights. In other data, you’ll occasionally see a 1-to-1 relationship. You can think of this as a special case of 1-to-many. You can model many-to-many relations with a many-to-1 relation plus a 1-to-many relation. For example, in this data there’s a many-to-many relationship between airlines and airports: each airline flies to many airports; each airport hosts many airlines.

Mutating joins

The first tool we’ll look at for combining a pair of tables is the mutating join. A mutating join allows you to combine variables from two tables. It first matches observations by their keys, then copies across variables from one table to the other. Like mutate(), the join functions add variables to the right, so if you have a lot of variables already, the new variables won’t get printed out. For these examples, we’ll make it easier to see what’s going on in the examples by creating a narrower dataset:

flights2 <- flights %>% 
  select(year:day, hour, origin, dest, tailnum, carrier)
flights2
## # A tibble: 336,776 x 8
##     year month   day  hour origin dest  tailnum carrier
##    <int> <int> <int> <dbl> <chr>  <chr> <chr>   <chr>  
##  1  2013     1     1     5 EWR    IAH   N14228  UA     
##  2  2013     1     1     5 LGA    IAH   N24211  UA     
##  3  2013     1     1     5 JFK    MIA   N619AA  AA     
##  4  2013     1     1     5 JFK    BQN   N804JB  B6     
##  5  2013     1     1     6 LGA    ATL   N668DN  DL     
##  6  2013     1     1     5 EWR    ORD   N39463  UA     
##  7  2013     1     1     6 EWR    FLL   N516JB  B6     
##  8  2013     1     1     6 LGA    IAD   N829AS  EV     
##  9  2013     1     1     6 JFK    MCO   N593JB  B6     
## 10  2013     1     1     6 LGA    ORD   N3ALAA  AA     
## # ... with 336,766 more rows

Imagine you want to add the full airline name to the flights2 data. You can combine the airlines and flights2 data frames with left_join():

flights2 %>%
  select(-origin, -dest) %>% 
  left_join(airlines, by = 'carrier')
## # A tibble: 336,776 x 7
##     year month   day  hour tailnum carrier name                    
##    <int> <int> <int> <dbl> <chr>   <chr>   <chr>                   
##  1  2013     1     1     5 N14228  UA      United Air Lines Inc.   
##  2  2013     1     1     5 N24211  UA      United Air Lines Inc.   
##  3  2013     1     1     5 N619AA  AA      American Airlines Inc.  
##  4  2013     1     1     5 N804JB  B6      JetBlue Airways         
##  5  2013     1     1     6 N668DN  DL      Delta Air Lines Inc.    
##  6  2013     1     1     5 N39463  UA      United Air Lines Inc.   
##  7  2013     1     1     6 N516JB  B6      JetBlue Airways         
##  8  2013     1     1     6 N829AS  EV      ExpressJet Airlines Inc.
##  9  2013     1     1     6 N593JB  B6      JetBlue Airways         
## 10  2013     1     1     6 N3ALAA  AA      American Airlines Inc.  
## # ... with 336,766 more rows

The result of joining airlines to flights2 is an additional variable: name. This is why I call this type of join a mutating join. In this case, you could have got to the same place using mutate() and R’s base subsetting:

flights2 %>%
  select(-origin, -dest) %>% 
  mutate(name = airlines$name[match(carrier, airlines$carrier)])
## # A tibble: 336,776 x 7
##     year month   day  hour tailnum carrier name                    
##    <int> <int> <int> <dbl> <chr>   <chr>   <chr>                   
##  1  2013     1     1     5 N14228  UA      United Air Lines Inc.   
##  2  2013     1     1     5 N24211  UA      United Air Lines Inc.   
##  3  2013     1     1     5 N619AA  AA      American Airlines Inc.  
##  4  2013     1     1     5 N804JB  B6      JetBlue Airways         
##  5  2013     1     1     6 N668DN  DL      Delta Air Lines Inc.    
##  6  2013     1     1     5 N39463  UA      United Air Lines Inc.   
##  7  2013     1     1     6 N516JB  B6      JetBlue Airways         
##  8  2013     1     1     6 N829AS  EV      ExpressJet Airlines Inc.
##  9  2013     1     1     6 N593JB  B6      JetBlue Airways         
## 10  2013     1     1     6 N3ALAA  AA      American Airlines Inc.  
## # ... with 336,766 more rows

But this is hard to generalise when you need to match multiple variables, and takes close reading to figure out the overall intent.

Defining the key columns

The pairs of tables are usually joined by a single variable, and that variable has the same name in both tables. That constraint is encoded by by = 'key'. But, you can use other values for by to connect the tables in other ways:

flights2 %>% 
  left_join(weather)
## Joining, by = c("year", "month", "day", "hour", "origin")
## # A tibble: 336,776 x 18
##     year month   day  hour origin dest  tailnum carrier  temp  dewp humid
##    <int> <int> <int> <dbl> <chr>  <chr> <chr>   <chr>   <dbl> <dbl> <dbl>
##  1  2013     1     1     5 EWR    IAH   N14228  UA       39.0  28.0  64.4
##  2  2013     1     1     5 LGA    IAH   N24211  UA       39.9  25.0  54.8
##  3  2013     1     1     5 JFK    MIA   N619AA  AA       39.0  27.0  61.6
##  4  2013     1     1     5 JFK    BQN   N804JB  B6       39.0  27.0  61.6
##  5  2013     1     1     6 LGA    ATL   N668DN  DL       39.9  25.0  54.8
##  6  2013     1     1     5 EWR    ORD   N39463  UA       39.0  28.0  64.4
##  7  2013     1     1     6 EWR    FLL   N516JB  B6       37.9  28.0  67.2
##  8  2013     1     1     6 LGA    IAD   N829AS  EV       39.9  25.0  54.8
##  9  2013     1     1     6 JFK    MCO   N593JB  B6       37.9  27.0  64.3
## 10  2013     1     1     6 LGA    ORD   N3ALAA  AA       39.9  25.0  54.8
## # ... with 336,766 more rows, and 7 more variables: wind_dir <dbl>,
## #   wind_speed <dbl>, wind_gust <dbl>, precip <dbl>, pressure <dbl>,
## #   visib <dbl>, time_hour <dttm>
flights2 %>% 
  left_join(planes, by = 'tailnum')
## # A tibble: 336,776 x 16
##    year.x month   day  hour origin dest  tailnum carrier year.y type 
##     <int> <int> <int> <dbl> <chr>  <chr> <chr>   <chr>    <int> <chr>
##  1   2013     1     1     5 EWR    IAH   N14228  UA        1999 Fixe~
##  2   2013     1     1     5 LGA    IAH   N24211  UA        1998 Fixe~
##  3   2013     1     1     5 JFK    MIA   N619AA  AA        1990 Fixe~
##  4   2013     1     1     5 JFK    BQN   N804JB  B6        2012 Fixe~
##  5   2013     1     1     6 LGA    ATL   N668DN  DL        1991 Fixe~
##  6   2013     1     1     5 EWR    ORD   N39463  UA        2012 Fixe~
##  7   2013     1     1     6 EWR    FLL   N516JB  B6        2000 Fixe~
##  8   2013     1     1     6 LGA    IAD   N829AS  EV        1998 Fixe~
##  9   2013     1     1     6 JFK    MCO   N593JB  B6        2004 Fixe~
## 10   2013     1     1     6 LGA    ORD   N3ALAA  AA          NA <NA> 
## # ... with 336,766 more rows, and 6 more variables: manufacturer <chr>,
## #   model <chr>, engines <int>, seats <int>, speed <int>, engine <chr>

Note that the year variables (which appear in both input data frames, but are not constrained to be equal) are disambiguated in the output with a suffix.

For example, if we want to draw a map we need to combine the flights data with the airports data which contains the location (lat and lon) of each airport. Each flight has an origin and destination airport, so we need to specify which one we want to join to:

flights2 %>% 
  left_join(airports, c('dest' = 'faa'))
## # A tibble: 336,776 x 15
##     year month   day  hour origin dest  tailnum carrier name    lat   lon   alt
##    <int> <int> <int> <dbl> <chr>  <chr> <chr>   <chr>   <chr> <dbl> <dbl> <dbl>
##  1  2013     1     1     5 EWR    IAH   N14228  UA      Geor~  30.0 -95.3    97
##  2  2013     1     1     5 LGA    IAH   N24211  UA      Geor~  30.0 -95.3    97
##  3  2013     1     1     5 JFK    MIA   N619AA  AA      Miam~  25.8 -80.3     8
##  4  2013     1     1     5 JFK    BQN   N804JB  B6      <NA>   NA    NA      NA
##  5  2013     1     1     6 LGA    ATL   N668DN  DL      Hart~  33.6 -84.4  1026
##  6  2013     1     1     5 EWR    ORD   N39463  UA      Chic~  42.0 -87.9   668
##  7  2013     1     1     6 EWR    FLL   N516JB  B6      Fort~  26.1 -80.2     9
##  8  2013     1     1     6 LGA    IAD   N829AS  EV      Wash~  38.9 -77.5   313
##  9  2013     1     1     6 JFK    MCO   N593JB  B6      Orla~  28.4 -81.3    96
## 10  2013     1     1     6 LGA    ORD   N3ALAA  AA      Chic~  42.0 -87.9   668
## # ... with 336,766 more rows, and 3 more variables: tz <dbl>, dst <chr>,
## #   tzone <chr>
flights2 %>% 
  left_join(airports, c('origin' = 'faa'))
## # A tibble: 336,776 x 15
##     year month   day  hour origin dest  tailnum carrier name    lat   lon   alt
##    <int> <int> <int> <dbl> <chr>  <chr> <chr>   <chr>   <chr> <dbl> <dbl> <dbl>
##  1  2013     1     1     5 EWR    IAH   N14228  UA      Newa~  40.7 -74.2    18
##  2  2013     1     1     5 LGA    IAH   N24211  UA      La G~  40.8 -73.9    22
##  3  2013     1     1     5 JFK    MIA   N619AA  AA      John~  40.6 -73.8    13
##  4  2013     1     1     5 JFK    BQN   N804JB  B6      John~  40.6 -73.8    13
##  5  2013     1     1     6 LGA    ATL   N668DN  DL      La G~  40.8 -73.9    22
##  6  2013     1     1     5 EWR    ORD   N39463  UA      Newa~  40.7 -74.2    18
##  7  2013     1     1     6 EWR    FLL   N516JB  B6      Newa~  40.7 -74.2    18
##  8  2013     1     1     6 LGA    IAD   N829AS  EV      La G~  40.8 -73.9    22
##  9  2013     1     1     6 JFK    MCO   N593JB  B6      John~  40.6 -73.8    13
## 10  2013     1     1     6 LGA    ORD   N3ALAA  AA      La G~  40.8 -73.9    22
## # ... with 336,766 more rows, and 3 more variables: tz <dbl>, dst <chr>,
## #   tzone <chr>

Filtering joins

Filtering joins match observations in the same way as mutating joins, but affect the observations, not the variables. There are two types:

  • semi_join(x, y) keeps all observations in x that have a match in y.
  • anti_join(x, y) drops all observations in x that have a match in y.

Semi-joins are useful for matching filtered summary tables back to the original rows. For example, imagine you’ve found the top ten most popular destinations:

top_dest <- flights %>%
  count(dest, sort = TRUE) %>%
  head(10)
top_dest
## # A tibble: 10 x 2
##    dest      n
##    <chr> <int>
##  1 ORD   17283
##  2 ATL   17215
##  3 LAX   16174
##  4 BOS   15508
##  5 MCO   14082
##  6 CLT   14064
##  7 SFO   13331
##  8 FLL   12055
##  9 MIA   11728
## 10 DCA    9705

Now you want to find each flight that went to one of those destinations. You could construct a filter yourself:

flights %>% 
  filter(dest %in% top_dest$dest)
## # A tibble: 141,145 x 19
##     year month   day dep_time sched_dep_time dep_delay arr_time sched_arr_time
##    <int> <int> <int>    <int>          <int>     <dbl>    <int>          <int>
##  1  2013     1     1      542            540         2      923            850
##  2  2013     1     1      554            600        -6      812            837
##  3  2013     1     1      554            558        -4      740            728
##  4  2013     1     1      555            600        -5      913            854
##  5  2013     1     1      557            600        -3      838            846
##  6  2013     1     1      558            600        -2      753            745
##  7  2013     1     1      558            600        -2      924            917
##  8  2013     1     1      558            600        -2      923            937
##  9  2013     1     1      559            559         0      702            706
## 10  2013     1     1      600            600         0      851            858
## # ... with 141,135 more rows, and 11 more variables: arr_delay <dbl>,
## #   carrier <chr>, flight <int>, tailnum <chr>, origin <chr>, dest <chr>,
## #   air_time <dbl>, distance <dbl>, hour <dbl>, minute <dbl>, time_hour <dttm>

But it’s difficult to extend that approach to multiple variables. For example, imagine that you’d found the 10 days with highest average delays. How would you construct the filter statement that used year, month, and day to match it back to flights? Instead you can use a semi-join, which connects the two tables like a mutating join, but instead of adding new columns, only keeps the rows in x that have a match in y:

flights %>% 
  semi_join(top_dest)
## Joining, by = "dest"
## # A tibble: 141,145 x 19
##     year month   day dep_time sched_dep_time dep_delay arr_time sched_arr_time
##    <int> <int> <int>    <int>          <int>     <dbl>    <int>          <int>
##  1  2013     1     1      542            540         2      923            850
##  2  2013     1     1      554            600        -6      812            837
##  3  2013     1     1      554            558        -4      740            728
##  4  2013     1     1      555            600        -5      913            854
##  5  2013     1     1      557            600        -3      838            846
##  6  2013     1     1      558            600        -2      753            745
##  7  2013     1     1      558            600        -2      924            917
##  8  2013     1     1      558            600        -2      923            937
##  9  2013     1     1      559            559         0      702            706
## 10  2013     1     1      600            600         0      851            858
## # ... with 141,135 more rows, and 11 more variables: arr_delay <dbl>,
## #   carrier <chr>, flight <int>, tailnum <chr>, origin <chr>, dest <chr>,
## #   air_time <dbl>, distance <dbl>, hour <dbl>, minute <dbl>, time_hour <dttm>

Anti-joins are useful for diagnosing join mismatches. For example, when connecting flights and planes, you might be interested to know that there are many flights that don’t have a match in planes:

flights %>%
  anti_join(planes, by = "tailnum") %>%
  count(tailnum, sort = TRUE)
## # A tibble: 722 x 2
##    tailnum     n
##    <chr>   <int>
##  1 <NA>     2512
##  2 N725MQ    575
##  3 N722MQ    513
##  4 N723MQ    507
##  5 N713MQ    483
##  6 N735MQ    396
##  7 N0EGMQ    371
##  8 N534MQ    364
##  9 N542MQ    363
## 10 N531MQ    349
## # ... with 712 more rows

Set operations

The final type of two-table verb are the set operations. Generally, I use these the least frequently, but they are occasionally useful when you want to break a single complex filter into simpler pieces. All these operations work with a complete row, comparing the values of every variable. These expect the x and y inputs to have the same variables, and treat the observations like sets:

  • intersect(x, y): return only observations in both x and y.
  • union(x, y): return unique observations in x and y.
  • setdiff(x, y): return observations in x, but not in y.

Given some simple data, the four possibilities would be:

df1 <- tribble(
  ~x, ~y,
   1,  1,
   2,  1
)
df2 <- tribble(
  ~x, ~y,
   1,  1,
   1,  2
)
intersect(df1, df2)
## # A tibble: 1 x 2
##       x     y
##   <dbl> <dbl>
## 1     1     1
union(df1, df2)
## # A tibble: 3 x 2
##       x     y
##   <dbl> <dbl>
## 1     1     1
## 2     2     1
## 3     1     2
setdiff(df1, df2)
## # A tibble: 1 x 2
##       x     y
##   <dbl> <dbl>
## 1     2     1
setdiff(df2, df1)
## # A tibble: 1 x 2
##       x     y
##   <dbl> <dbl>
## 1     1     2