Description of the data, data_quiz5
countrycontinentlifeExp life expectancy in yearpop total populationgdpPercap GDP per capita in U.S. dollarHint: The data is posted in Moodle. Look for data_quiz5.csv under the Data Files section.
myClusterData <- read.csv("data_quiz5.csv")
Hint: Use head() to display the first six rows.
head(myClusterData, 6)
## country continent lifeExp pop gdpPercap
## 1 Albania Europe 76.423 3600523 5937.030
## 2 Algeria Africa 72.301 33333216 6223.367
## 3 Argentina Americas 75.320 40301927 12779.380
## 4 Australia Oceania 81.235 20434176 34435.367
## 5 Austria Europe 79.829 8199783 36126.493
## 6 Bahrain Asia 75.635 708573 29796.048
Hint: Create a scatter plot to examine the relationship between GDP per capita (mapped to y-axis) and life expectancy (mapped to x-axis).
library(tidyverse)
ggplot(myClusterData,
aes(x = lifeExp,
y = gdpPercap))+
geom_point() +
geom_smooth(method="lm")
gdpPercap_lm <- lm(gdpPercap ~ lifeExp, data = myClusterData)
summary(gdpPercap_lm)
##
## Call:
## lm(formula = gdpPercap ~ lifeExp, data = myClusterData)
##
## Residuals:
## Min 1Q Median 3Q Max
## -17319.8 -4512.4 -63.2 3443.1 24014.4
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -215340.5 18057.2 -11.93 <2e-16 ***
## lifeExp 3075.6 237.6 12.94 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 7578 on 81 degrees of freedom
## Multiple R-squared: 0.6741, Adjusted R-squared: 0.6701
## F-statistic: 167.5 on 1 and 81 DF, p-value: < 2.2e-16
options(scipen = 999)
at the 5 percent level the life expetency tells us that the life expetency is statistically significant. The P value is less then 5 percent this tells us that we are 95 percent conifdent that life expetency is a meaningful predidctor for this data
Hint: Discuss both its sign and magnitude.
The coefficent of lifeexpetency explains to us how much the response variable of gdp per capital changes per unit. The number is positive. This tells us that life expentency postively effects the gdp per cap.
Hint: Make your argument using the relevant test results, such as p-value.
gdpPercap_lm <- lm(gdpPercap ~ lifeExp + pop,
data = myClusterData)
summary(gdpPercap_lm)
##
## Call:
## lm(formula = gdpPercap ~ lifeExp + pop, data = myClusterData)
##
## Residuals:
## Min 1Q Median 3Q Max
## -17337 -4536 -82 3463 23993
##
## Coefficients:
## Estimate Std. Error t value
## (Intercept) -215081.8386328746 18328.1060846602 -11.735
## lifeExp 3072.6060571578 240.7532777810 12.762
## pop -0.0000006064 0.0000056600 -0.107
## Pr(>|t|)
## (Intercept) <0.0000000000000002 ***
## lifeExp <0.0000000000000002 ***
## pop 0.915
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 7625 on 80 degrees of freedom
## Multiple R-squared: 0.6741, Adjusted R-squared: 0.666
## F-statistic: 82.75 on 2 and 80 DF, p-value: < 0.00000000000000022
options(scipen = 999)