Description of the data, data_quiz5
country
continent
lifeExp
life expectancy in yearpop
total populationgdpPercap
GDP per capita in U.S. dollarHint: The data is posted in Moodle. Look for data_quiz5.csv under the Data Files section.
quiz5data <- read.csv("data_quiz5.csv")
Hint: Use head()
to display the first six rows.
head(quiz5data)
## country continent lifeExp pop gdpPercap
## 1 Albania Europe 76.423 3600523 5937.030
## 2 Algeria Africa 72.301 33333216 6223.367
## 3 Argentina Americas 75.320 40301927 12779.380
## 4 Australia Oceania 81.235 20434176 34435.367
## 5 Austria Europe 79.829 8199783 36126.493
## 6 Bahrain Asia 75.635 708573 29796.048
Hint: Create a scatter plot to examine the relationship between GDP per capita (mapped to y-axis) and life expectancy (mapped to x-axis).
library(tidyverse)
ggplot(quiz5data,
aes(x = lifeExp,
y = gdpPercap)) +
geom_point() +
geom_smooth(method = "lm")
Quiz5dataregression<- lm(gdpPercap ~ lifeExp,
data = quiz5data)
summary(Quiz5dataregression)
##
## Call:
## lm(formula = gdpPercap ~ lifeExp, data = quiz5data)
##
## Residuals:
## Min 1Q Median 3Q Max
## -17319.8 -4512.4 -63.2 3443.1 24014.4
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -215340.5 18057.2 -11.93 <2e-16 ***
## lifeExp 3075.6 237.6 12.94 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 7578 on 81 degrees of freedom
## Multiple R-squared: 0.6741, Adjusted R-squared: 0.6701
## F-statistic: 167.5 on 1 and 81 DF, p-value: < 2.2e-16
Yes the life expectancy is statistically significant at 5% because the p-value is smaller then 0.05
Hint: Discuss both its sign and magnitude.
Life expetency positivly effects gdp per cap because when we look at the coefficient of life expectency it is positive, and the magnitude of life expectancy is positive.
Hint: Make your argument using the relevant test results, such as p-value.
Population is not statistically significant because the p- value is greater then 0.05 because it is 0.915. The friend is wrong because the population is not statistically significant.
Quiz5datapopulation <- lm(gdpPercap ~ lifeExp + pop,
data = quiz5data)
summary(Quiz5datapopulation)
##
## Call:
## lm(formula = gdpPercap ~ lifeExp + pop, data = quiz5data)
##
## Residuals:
## Min 1Q Median 3Q Max
## -17337 -4536 -82 3463 23993
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -2.151e+05 1.833e+04 -11.735 <2e-16 ***
## lifeExp 3.073e+03 2.408e+02 12.762 <2e-16 ***
## pop -6.064e-07 5.660e-06 -0.107 0.915
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 7625 on 80 degrees of freedom
## Multiple R-squared: 0.6741, Adjusted R-squared: 0.666
## F-statistic: 82.75 on 2 and 80 DF, p-value: < 2.2e-16