Fisher线性判别函数
## -- Attaching packages --------------------------------------- tidyverse 1.3.0 --
## √ ggplot2 3.2.1 √ purrr 0.3.3
## √ tibble 2.1.3 √ dplyr 0.8.3
## √ tidyr 1.0.0 √ stringr 1.4.0
## √ readr 1.3.1 √ forcats 0.4.0
## Warning: package 'ggplot2' was built under R version 3.6.1
## Warning: package 'tibble' was built under R version 3.6.1
## Warning: package 'tidyr' was built under R version 3.6.1
## Warning: package 'purrr' was built under R version 3.6.1
## Warning: package 'dplyr' was built under R version 3.6.1
## -- Conflicts ------------------------------------------ tidyverse_conflicts() --
## x dplyr::filter() masks stats::filter()
## x dplyr::lag() masks stats::lag()
##
## Attaching package: 'MASS'
## The following object is masked from 'package:dplyr':
##
## select
## city x1 x2 x3 x4 x5 x6 x7 x8
## 1 北京 8070.4 2643.0 12128.0 2511.0 5077.9 4054.7 2629.8 1140.6
## 2 天津 8679.6 2114.0 6187.3 1663.8 3991.9 2643.6 2172.2 892.2
## 3 河北 4991.6 1614.4 4483.2 1351.1 2664.1 1991.3 1549.9 460.4
## 4 山西 3862.8 1603.0 3633.8 951.6 2401.0 2439.0 1651.6 450.1
## 5 内蒙古 6445.8 2543.3 4006.1 1565.1 3045.2 2598.9 1840.2 699.9
## 6 辽宁 6901.6 2321.3 4632.8 1558.2 3447.0 3018.5 2313.6 802.8
## 7 吉林 4975.7 1819.0 3612.0 1107.1 2691.0 2367.5 2059.2 534.9
## 8 黑龙江 5019.3 1804.4 3352.4 1018.9 2462.9 2011.5 2007.5 468.3
## 9 上海 10014.8 1834.8 13216.0 1868.2 4447.5 4533.5 2839.9 1102.1
## 10 江苏 7389.2 1809.5 6140.6 1616.2 3952.4 3163.9 1624.5 736.6
## 11 浙江 8467.3 1903.9 7385.4 1420.7 5100.9 3452.3 1691.9 645.3
## 12 安徽 6381.7 1491.0 3931.2 1118.4 2748.4 2233.3 1269.3 432.9
## 13 福建 8299.6 1443.5 6530.5 1393.4 3205.7 2461.5 1178.5 492.8
## 14 江西 5667.5 1472.2 3915.9 1028.6 2310.6 1963.9 887.4 449.6
## 15 山东 5929.4 1977.7 4473.1 1576.5 3002.5 2399.3 1610.0 526.9
## 16 河南 5067.7 1746.6 3753.4 1430.2 1993.8 2078.8 1524.5 492.8
## 17 湖北 6294.3 1557.4 4176.7 1163.8 2391.9 2228.4 1792.0 435.6
## 18 湖南 6407.7 1666.4 3918.7 1384.1 2837.1 3406.1 1362.6 437.4
## 19 广东 9421.6 1583.4 6410.4 1721.9 4198.1 3103.4 1304.5 870.1
## 20 广西 5937.2 886.3 3784.3 1032.8 2259.8 2003.0 1065.9 299.3
## 21 海南 7419.7 859.6 3527.7 954.0 2582.3 1931.3 1399.8 341.0
## 22 重庆 6883.9 1939.2 3801.1 1466.0 2573.9 2232.4 1700.0 434.4
## 23 四川 7118.4 1767.5 3756.5 1311.1 2697.6 2008.4 1423.4 577.1
## 24 贵州 6010.3 1525.4 3793.1 1270.2 2684.4 2493.5 1050.1 374.6
## 25 云南 5528.2 1195.5 3814.4 1135.1 2791.2 2217.0 1526.7 414.3
## 26 西藏 8727.8 1812.5 3614.5 983.0 2198.4 922.5 585.3 596.5
## 27 陕西 5422.0 1542.2 3681.5 1367.7 2455.7 2474.0 2016.7 409.0
## 28 甘肃 5777.3 1776.9 3752.6 1329.1 2517.9 2322.1 1583.4 479.9
## 29 青海 5975.7 1963.5 3809.4 1322.1 3064.3 2352.9 1750.4 614.9
## 30 宁夏 4889.2 1726.7 3770.5 1245.1 3896.5 2415.7 1874.0 546.6
## 31 新疆 6179.4 1966.1 3543.9 1543.8 3074.1 2404.9 1934.8 581.5
两个类别数据,两个待判样本
## number city x1 x2 x3 x4 x5 x6 x7 x8
## 1 19 广东 9421.6 1583.4 6410.4 1721.9 4198.1 3103.4 1304.5 870.1
## 2 26 西藏 8727.8 1812.5 3614.5 983.0 2198.4 922.5 585.3 596.5
## number city x1 x2 x3 x4 x5 x6 x7 x8
## 1 1 北京 8070.4 2643.0 12128 2511.0 5077.9 4054.7 2629.8 1140.6
## 2 9 上海 10014.8 1834.8 13216 1868.2 4447.5 4533.5 2839.9 1102.1
## number city x1 x2 x3 x4 x5 x6 x7 x8
## 1 2 天津 8679.6 2114.0 6187.3 1663.8 3991.9 2643.6 2172.2 892.2
## 2 3 河北 4991.6 1614.4 4483.2 1351.1 2664.1 1991.3 1549.9 460.4
## 3 4 山西 3862.8 1603.0 3633.8 951.6 2401.0 2439.0 1651.6 450.1
## 4 5 内蒙古 6445.8 2543.3 4006.1 1565.1 3045.2 2598.9 1840.2 699.9
## 5 6 辽宁 6901.6 2321.3 4632.8 1558.2 3447.0 3018.5 2313.6 802.8
## 6 7 吉林 4975.7 1819.0 3612.0 1107.1 2691.0 2367.5 2059.2 534.9
## 7 8 黑龙江 5019.3 1804.4 3352.4 1018.9 2462.9 2011.5 2007.5 468.3
## 8 10 江苏 7389.2 1809.5 6140.6 1616.2 3952.4 3163.9 1624.5 736.6
## 9 11 浙江 8467.3 1903.9 7385.4 1420.7 5100.9 3452.3 1691.9 645.3
## 10 12 安徽 6381.7 1491.0 3931.2 1118.4 2748.4 2233.3 1269.3 432.9
## 11 13 福建 8299.6 1443.5 6530.5 1393.4 3205.7 2461.5 1178.5 492.8
## 12 14 江西 5667.5 1472.2 3915.9 1028.6 2310.6 1963.9 887.4 449.6
## 13 15 山东 5929.4 1977.7 4473.1 1576.5 3002.5 2399.3 1610.0 526.9
## 14 16 河南 5067.7 1746.6 3753.4 1430.2 1993.8 2078.8 1524.5 492.8
## 15 17 湖北 6294.3 1557.4 4176.7 1163.8 2391.9 2228.4 1792.0 435.6
## 16 18 湖南 6407.7 1666.4 3918.7 1384.1 2837.1 3406.1 1362.6 437.4
## 17 20 广西 5937.2 886.3 3784.3 1032.8 2259.8 2003.0 1065.9 299.3
## 18 21 海南 7419.7 859.6 3527.7 954.0 2582.3 1931.3 1399.8 341.0
## 19 22 重庆 6883.9 1939.2 3801.1 1466.0 2573.9 2232.4 1700.0 434.4
## 20 23 四川 7118.4 1767.5 3756.5 1311.1 2697.6 2008.4 1423.4 577.1
## 21 24 贵州 6010.3 1525.4 3793.1 1270.2 2684.4 2493.5 1050.1 374.6
## 22 25 云南 5528.2 1195.5 3814.4 1135.1 2791.2 2217.0 1526.7 414.3
## 23 27 陕西 5422.0 1542.2 3681.5 1367.7 2455.7 2474.0 2016.7 409.0
## 24 28 甘肃 5777.3 1776.9 3752.6 1329.1 2517.9 2322.1 1583.4 479.9
## 25 29 青海 5975.7 1963.5 3809.4 1322.1 3064.3 2352.9 1750.4 614.9
## 26 30 宁夏 4889.2 1726.7 3770.5 1245.1 3896.5 2415.7 1874.0 546.6
## 27 31 新疆 6179.4 1966.1 3543.9 1543.8 3074.1 2404.9 1934.8 581.5
下面建立费希尔判别函数,并将广东与西藏归类
## x1 x2 x3 x4 x5 x6 x7 x8
## 9042.60 2238.90 12672.00 2189.60 4762.70 4294.10 2734.85 1121.35
## x1 x2 x3 x4 x5 x6
## x1 1890345.7 -785732.04 1057753.6 -624930.16 -612874.88 465489.36
## x2 -785732.0 326593.62 -439660.8 259755.48 254744.64 -193483.08
## x3 1057753.6 -439660.80 591872.0 -349683.20 -342937.60 260467.20
## x4 -624930.2 259755.48 -349683.2 206595.92 202610.56 -153886.32
## x5 -612874.9 254744.64 -342937.6 202610.56 198702.08 -150917.76
## x6 465489.4 -193483.08 260467.2 -153886.32 -150917.76 114624.72
## x7 204259.2 -84901.41 114294.4 -67526.14 -66223.52 50297.94
## x8 -37429.7 15557.85 -20944.0 12373.90 12135.20 -9216.90
## x7 x8
## x1 204259.220 -37429.700
## x2 -84901.410 15557.850
## x3 114294.400 -20944.000
## x4 -67526.140 12373.900
## x5 -66223.520 12135.200
## x6 50297.940 -9216.900
## x7 22071.005 -4044.425
## x8 -4044.425 741.125
## x1 x2 x3 x4 x5 x6
## x1 1350072.167 57475.64 882691.85 118834.79 465123.66 203424.08
## x2 57475.636 135087.78 78701.83 55496.81 98760.67 66431.37
## x3 882691.851 78701.83 1073285.66 108681.78 542771.72 256115.87
## x4 118834.795 55496.81 108681.78 45070.30 72511.11 47391.94
## x5 465123.658 98760.67 542771.72 72511.11 448471.48 198259.05
## x6 203424.077 66431.37 256115.87 47391.94 198259.05 171720.11
## x7 -6737.919 82062.52 18761.12 29208.02 77587.63 39397.23
## x8 74307.576 40168.09 78143.49 20927.28 63622.06 30159.47
## x7 x8
## x1 -6737.919 74307.58
## x2 82062.522 40168.09
## x3 18761.123 78143.49
## x4 29208.024 20927.28
## x5 77587.628 63622.06
## x6 39397.233 30159.47
## x7 123891.400 29826.20
## x8 29826.198 19381.16
## x1 x2 x3 x4 x5 x6
## x1 36992222.02 708634.5 24007741.7 2464774.5 11480340 5754515.4
## x2 708634.48 3838875.9 1606586.8 1702672.5 2822522 1533732.5
## x3 24007741.72 1606586.8 28497299.2 2476043.2 13769127 6919479.7
## x4 2464774.51 1702672.5 2476043.2 1378423.6 2087899 1078304.2
## x5 11480340.22 2822522.1 13769127.1 2087899.5 11858961 5003817.5
## x6 5754515.36 1533732.5 6919479.7 1078304.2 5003818 4579347.5
## x7 29073.33 2048724.2 602083.6 691882.5 1951055 1074626.0
## x8 1894567.28 1059928.3 2010786.7 556483.3 1666309 774929.3
## x7 x8
## x1 29073.33 1894567.3
## x2 2048724.17 1059928.3
## x3 602083.59 2010786.7
## x4 691882.49 556483.3
## x5 1951054.81 1666308.9
## x6 1074626.01 774929.3
## x7 3243247.41 771436.7
## x8 771436.73 504651.3
## x1 x2 x3 x4 x5
## x1 1.870797e-06 2.727665e-06 -1.075786e-06 -2.325264e-06 2.062894e-07
## x2 2.727665e-06 3.719901e-05 3.098620e-06 -2.803182e-05 3.759616e-07
## x3 -1.075786e-06 3.098620e-06 3.915187e-06 -1.373249e-06 -2.351212e-06
## x4 -2.325264e-06 -2.803182e-05 -1.373249e-06 5.795242e-05 -1.368254e-06
## x5 2.062894e-07 3.759616e-07 -2.351212e-06 -1.368254e-06 7.982084e-06
## x6 -2.541857e-07 -3.262367e-06 -1.595938e-06 5.147847e-08 -3.191265e-06
## x7 6.113240e-07 -2.444204e-06 1.681203e-06 5.010538e-06 -5.769528e-07
## x8 -7.127095e-06 -6.230097e-05 -8.910986e-06 5.951788e-06 -1.126056e-05
## x6 x7 x8
## x1 -2.541857e-07 6.113240e-07 -7.127095e-06
## x2 -3.262367e-06 -2.444204e-06 -6.230097e-05
## x3 -1.595938e-06 1.681203e-06 -8.910986e-06
## x4 5.147847e-08 5.010538e-06 5.951788e-06
## x5 -3.191265e-06 -5.769528e-07 -1.126056e-05
## x6 1.213177e-05 -1.858449e-06 8.857471e-06
## x7 -1.858449e-06 1.657116e-05 -2.995808e-05
## x8 8.857471e-06 -2.995808e-05 3.094290e-04
## x1 x2 x3 x4 x5
## [1,] -0.008060849 -0.01671964 0.01950031 0.02471871 -0.01888066
## x6 x7 x8
## [1,] 0.004303822 0.01479747 0.0257263
## [,1]
## [1,] 109.1717
## [,1]
## [1,] 159.2218
## x1 x2 x3 x4 x5 x6 x7 x8
## [1,] 8070.4 2643.0 12128 2511.0 5077.9 4054.7 2629.8 1140.6
## [2,] 10014.8 1834.8 13216 1868.2 4447.5 4533.5 2839.9 1102.1
## [,1] [,2]
## [1,] 179.1586 198.4066
## [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8]
## [1,] 47.57496 46.64175 37.627 21.25174 37.21164 30.89321 23.83951 51.85801
## [,9] [,10] [,11] [,12] [,13] [,14] [,15]
## [1,] 39.23608 15.5736 50.93808 21.01187 36.34956 45.03187 35.59145
## [,16] [,17] [,18] [,19] [,20] [,21] [,22]
## [1,] 23.62458 26.07357 7.23423 19.78959 12.35001 16.63631 27.98147
## [,23] [,24] [,25] [,26] [,27]
## [1,] 40.75376 27.9821 19.95792 14.643 20.48342
## [,1] [,2]
## [1,] 40.92931 -19.40572
用包来实现类别的判断与分类
## number city x1 x2 x3 x4 x5 x6 x7 x8
## 1 19 广东 9421.6 1583.4 6410.4 1721.9 4198.1 3103.4 1304.5 870.1
## 2 26 西藏 8727.8 1812.5 3614.5 983.0 2198.4 922.5 585.3 596.5
## genre number city x1 x2 x3 x4 x5 x6 x7
## 1 1 1 北京 8070.4 2643.0 12128 2511.0 5077.9 4054.7 2629.8
## 2 1 9 上海 10014.8 1834.8 13216 1868.2 4447.5 4533.5 2839.9
## x8
## 1 1140.6
## 2 1102.1
## genre number city x1 x2 x3 x4 x5 x6 x7
## 1 2 2 天津 8679.6 2114.0 6187.3 1663.8 3991.9 2643.6 2172.2
## 2 2 3 河北 4991.6 1614.4 4483.2 1351.1 2664.1 1991.3 1549.9
## 3 2 4 山西 3862.8 1603.0 3633.8 951.6 2401.0 2439.0 1651.6
## 4 2 5 内蒙古 6445.8 2543.3 4006.1 1565.1 3045.2 2598.9 1840.2
## 5 2 6 辽宁 6901.6 2321.3 4632.8 1558.2 3447.0 3018.5 2313.6
## 6 2 7 吉林 4975.7 1819.0 3612.0 1107.1 2691.0 2367.5 2059.2
## 7 2 8 黑龙江 5019.3 1804.4 3352.4 1018.9 2462.9 2011.5 2007.5
## 8 2 10 江苏 7389.2 1809.5 6140.6 1616.2 3952.4 3163.9 1624.5
## 9 2 11 浙江 8467.3 1903.9 7385.4 1420.7 5100.9 3452.3 1691.9
## 10 2 12 安徽 6381.7 1491.0 3931.2 1118.4 2748.4 2233.3 1269.3
## 11 2 13 福建 8299.6 1443.5 6530.5 1393.4 3205.7 2461.5 1178.5
## 12 2 14 江西 5667.5 1472.2 3915.9 1028.6 2310.6 1963.9 887.4
## 13 2 15 山东 5929.4 1977.7 4473.1 1576.5 3002.5 2399.3 1610.0
## 14 2 16 河南 5067.7 1746.6 3753.4 1430.2 1993.8 2078.8 1524.5
## 15 2 17 湖北 6294.3 1557.4 4176.7 1163.8 2391.9 2228.4 1792.0
## 16 2 18 湖南 6407.7 1666.4 3918.7 1384.1 2837.1 3406.1 1362.6
## 17 2 20 广西 5937.2 886.3 3784.3 1032.8 2259.8 2003.0 1065.9
## 18 2 21 海南 7419.7 859.6 3527.7 954.0 2582.3 1931.3 1399.8
## 19 2 22 重庆 6883.9 1939.2 3801.1 1466.0 2573.9 2232.4 1700.0
## 20 2 23 四川 7118.4 1767.5 3756.5 1311.1 2697.6 2008.4 1423.4
## 21 2 24 贵州 6010.3 1525.4 3793.1 1270.2 2684.4 2493.5 1050.1
## 22 2 25 云南 5528.2 1195.5 3814.4 1135.1 2791.2 2217.0 1526.7
## 23 2 27 陕西 5422.0 1542.2 3681.5 1367.7 2455.7 2474.0 2016.7
## 24 2 28 甘肃 5777.3 1776.9 3752.6 1329.1 2517.9 2322.1 1583.4
## 25 2 29 青海 5975.7 1963.5 3809.4 1322.1 3064.3 2352.9 1750.4
## 26 2 30 宁夏 4889.2 1726.7 3770.5 1245.1 3896.5 2415.7 1874.0
## 27 2 31 新疆 6179.4 1966.1 3543.9 1543.8 3074.1 2404.9 1934.8
## x8
## 1 892.2
## 2 460.4
## 3 450.1
## 4 699.9
## 5 802.8
## 6 534.9
## 7 468.3
## 8 736.6
## 9 645.3
## 10 432.9
## 11 492.8
## 12 449.6
## 13 526.9
## 14 492.8
## 15 435.6
## 16 437.4
## 17 299.3
## 18 341.0
## 19 434.4
## 20 577.1
## 21 374.6
## 22 414.3
## 23 409.0
## 24 479.9
## 25 614.9
## 26 546.6
## 27 581.5
## genre number city x1 x2 x3 x4 x5 x6
## 1 1 1 北京 8070.4 2643.0 12128.0 2511.0 5077.9 4054.7
## 2 1 9 上海 10014.8 1834.8 13216.0 1868.2 4447.5 4533.5
## 3 2 2 天津 8679.6 2114.0 6187.3 1663.8 3991.9 2643.6
## 4 2 3 河北 4991.6 1614.4 4483.2 1351.1 2664.1 1991.3
## 5 2 4 山西 3862.8 1603.0 3633.8 951.6 2401.0 2439.0
## 6 2 5 内蒙古 6445.8 2543.3 4006.1 1565.1 3045.2 2598.9
## 7 2 6 辽宁 6901.6 2321.3 4632.8 1558.2 3447.0 3018.5
## 8 2 7 吉林 4975.7 1819.0 3612.0 1107.1 2691.0 2367.5
## 9 2 8 黑龙江 5019.3 1804.4 3352.4 1018.9 2462.9 2011.5
## 10 2 10 江苏 7389.2 1809.5 6140.6 1616.2 3952.4 3163.9
## 11 2 11 浙江 8467.3 1903.9 7385.4 1420.7 5100.9 3452.3
## 12 2 12 安徽 6381.7 1491.0 3931.2 1118.4 2748.4 2233.3
## 13 2 13 福建 8299.6 1443.5 6530.5 1393.4 3205.7 2461.5
## 14 2 14 江西 5667.5 1472.2 3915.9 1028.6 2310.6 1963.9
## 15 2 15 山东 5929.4 1977.7 4473.1 1576.5 3002.5 2399.3
## 16 2 16 河南 5067.7 1746.6 3753.4 1430.2 1993.8 2078.8
## 17 2 17 湖北 6294.3 1557.4 4176.7 1163.8 2391.9 2228.4
## 18 2 18 湖南 6407.7 1666.4 3918.7 1384.1 2837.1 3406.1
## 19 2 20 广西 5937.2 886.3 3784.3 1032.8 2259.8 2003.0
## 20 2 21 海南 7419.7 859.6 3527.7 954.0 2582.3 1931.3
## 21 2 22 重庆 6883.9 1939.2 3801.1 1466.0 2573.9 2232.4
## 22 2 23 四川 7118.4 1767.5 3756.5 1311.1 2697.6 2008.4
## 23 2 24 贵州 6010.3 1525.4 3793.1 1270.2 2684.4 2493.5
## 24 2 25 云南 5528.2 1195.5 3814.4 1135.1 2791.2 2217.0
## 25 2 27 陕西 5422.0 1542.2 3681.5 1367.7 2455.7 2474.0
## 26 2 28 甘肃 5777.3 1776.9 3752.6 1329.1 2517.9 2322.1
## 27 2 29 青海 5975.7 1963.5 3809.4 1322.1 3064.3 2352.9
## 28 2 30 宁夏 4889.2 1726.7 3770.5 1245.1 3896.5 2415.7
## 29 2 31 新疆 6179.4 1966.1 3543.9 1543.8 3074.1 2404.9
## x7 x8
## 1 2629.8 1140.6
## 2 2839.9 1102.1
## 3 2172.2 892.2
## 4 1549.9 460.4
## 5 1651.6 450.1
## 6 1840.2 699.9
## 7 2313.6 802.8
## 8 2059.2 534.9
## 9 2007.5 468.3
## 10 1624.5 736.6
## 11 1691.9 645.3
## 12 1269.3 432.9
## 13 1178.5 492.8
## 14 887.4 449.6
## 15 1610.0 526.9
## 16 1524.5 492.8
## 17 1792.0 435.6
## 18 1362.6 437.4
## 19 1065.9 299.3
## 20 1399.8 341.0
## 21 1700.0 434.4
## 22 1423.4 577.1
## 23 1050.1 374.6
## 24 1526.7 414.3
## 25 2016.7 409.0
## 26 1583.4 479.9
## 27 1750.4 614.9
## 28 1874.0 546.6
## 29 1934.8 581.5
## Call:
## lda(genre ~ x1 + x2 + x3 + x4 + x5 + x6 + x7 + x8, data = train_sample)
##
## Prior probabilities of groups:
## 1 2
## 0.06896552 0.93103448
##
## Group means:
## x1 x2 x3 x4 x5 x6 x7 x8
## 1 9042.600 2238.900 12672.000 2189.600 4762.700 4294.1 2734.850 1121.3500
## 2 6219.337 1705.056 4265.485 1308.322 2920.152 2419.0 1624.448 519.6704
##
## Coefficients of linear discriminants:
## LD1
## x1 0.0006388214
## x2 0.0013250299
## x3 -0.0015453976
## x4 -0.0019589553
## x5 0.0014962902
## x6 -0.0003410774
## x7 -0.0011726981
## x8 -0.0020388069
## LD1
## 1 1 -10.98538469 1
## 2 1 -12.51078456 1
## 3 2 -0.55739557 2
## 4 2 -0.48343902 2
## 5 2 0.23097937 2
## 6 2 1.52871713 2
## 7 2 0.26389623 2
## 8 2 0.76463092 2
## 9 2 1.32363596 2
## 10 2 -0.89682690 2
## 11 2 0.10345994 2
## 12 2 1.97870916 2
## 13 2 -0.82392271 2
## 14 2 1.54772684 2
## 15 2 0.33221626 2
## 16 2 -0.35585638 2
## 17 2 0.39229619 2
## 18 2 1.34066979 2
## 19 2 1.14658710 2
## 20 2 2.63960296 2
## 21 2 1.64459206 2
## 22 2 2.23417796 2
## 23 2 1.89448886 2
## 24 2 0.99538672 2
## 25 2 -0.01681659 2
## 26 2 0.99533667 2
## 27 2 1.63125178 2
## 28 2 2.05245883 2
## 29 2 1.58960569 2
## LD1
## 1 -0.03072896 2
## 2 4.75081654 2