Initial Visualization

ggplot(diamonds, aes(cut,price)) + geom_boxplot()

ggplot(diamonds, aes(color,price)) + geom_boxplot()

ggplot(diamonds, aes(clarity,price)) + geom_boxplot()

ggplot(diamonds, aes(carat, price)) +
  geom_hex(bins=50)
## Warning: Computation failed in `stat_binhex()`:
## Package `hexbin` required for `stat_binhex`.
## Please install and try again.

Subset Data and replot

diamonds2 <- diamonds %>%
  filter(carat <= 2.5)  %>%
  mutate(lprice = log2(price), lcarat = log2(carat))

ggplot(diamonds2, aes(lcarat, lprice)) +
  geom_hex(bins=50)
## Warning: Computation failed in `stat_binhex()`:
## Package `hexbin` required for `stat_binhex`.
## Please install and try again.

Simple model and visualization

mod_diamond <- lm(lprice ~ lcarat, data = diamonds2, na.action = na.warn)

grid <- diamonds2 %>%
  data_grid(carat = seq_range(carat, 20)) %>%
  mutate(lcarat = log2(carat)) %>%
  add_predictions(mod_diamond, "lprice") %>%
  mutate(price = 2 ^ lprice)

ggplot(diamonds2, aes(carat, price)) +
  geom_hex(bins = 50) +
  geom_line(data = grid, color = "green", size = 1)
## Warning: Computation failed in `stat_binhex()`:
## Package `hexbin` required for `stat_binhex`.
## Please install and try again.

Add residuals and plot

diamonds2 <- diamonds2 %>%
  add_residuals(mod_diamond, "lresid")

ggplot(diamonds2, aes(lcarat, lresid)) +
  geom_hex(bins = 50)
## Warning: Computation failed in `stat_binhex()`:
## Package `hexbin` required for `stat_binhex`.
## Please install and try again.

ggplot(diamonds2, aes(cut,lresid)) + geom_boxplot()

ggplot(diamonds2, aes(color,lresid)) + geom_boxplot()

ggplot(diamonds2, aes(clarity,lresid)) + geom_boxplot()

Four parameter model and visualization

mod_diamond2 <- lm(
  lprice ~ lcarat + color + cut + clarity, diamonds2, na.action = na.warn
)

grid <- diamonds2 %>%
  data_grid(cut, .model = mod_diamond2) %>%
  add_predictions(mod_diamond2)
grid
## # A tibble: 5 x 5
##   cut       lcarat color clarity  pred
##   <ord>      <dbl> <chr> <chr>   <dbl>
## 1 Fair      -0.515 G     VS2      11.2
## 2 Good      -0.515 G     VS2      11.3
## 3 Very Good -0.515 G     VS2      11.4
## 4 Premium   -0.515 G     VS2      11.4
## 5 Ideal     -0.515 G     VS2      11.4
ggplot(grid, aes(cut, pred)) +
  geom_point()

Plot residuals of four parameter model

diamonds2 <- diamonds2 %>%
  add_residuals(mod_diamond2, "lresid2")

ggplot(diamonds2, aes(lcarat, lresid2)) +
  geom_hex(bins = 50)
## Warning: Computation failed in `stat_binhex()`:
## Package `hexbin` required for `stat_binhex`.
## Please install and try again.

diamonds2 %>%
  filter(abs(lresid2) > 1) %>%
  add_predictions(mod_diamond2) %>%
  mutate(pred = round(2^pred)) %>%
  select(price, pred, carat:table, x:z) %>%
  arrange(price)
## # A tibble: 16 x 11
##    price  pred carat cut       color clarity depth table     x     y     z
##    <int> <dbl> <dbl> <ord>     <ord> <ord>   <dbl> <dbl> <dbl> <dbl> <dbl>
##  1  1013   264 0.25  Fair      F     SI2      54.4    64  4.3   4.23  2.32
##  2  1186   284 0.25  Premium   G     SI2      59      60  5.33  5.28  3.12
##  3  1186   284 0.25  Premium   G     SI2      58.8    60  5.33  5.28  3.12
##  4  1262  2644 1.03  Fair      E     I1       78.2    54  5.72  5.59  4.42
##  5  1415   639 0.35  Fair      G     VS2      65.9    54  5.57  5.53  3.66
##  6  1415   639 0.35  Fair      G     VS2      65.9    54  5.57  5.53  3.66
##  7  1715   576 0.32  Fair      F     VS2      59.6    60  4.42  4.34  2.61
##  8  1776   412 0.290 Fair      F     SI1      55.8    60  4.48  4.41  2.48
##  9  2160   314 0.34  Fair      F     I1       55.8    62  4.72  4.6   2.6 
## 10  2366   774 0.3   Very Good D     VVS2     60.6    58  4.33  4.35  2.63
## 11  3360  1373 0.51  Premium   F     SI1      62.7    62  5.09  4.96  3.15
## 12  3807  1540 0.61  Good      F     SI2      62.5    65  5.36  5.29  3.33
## 13  3920  1705 0.51  Fair      F     VVS2     65.4    60  4.98  4.9   3.23
## 14  4368  1705 0.51  Fair      F     VVS2     60.7    66  5.21  5.11  3.13
## 15 10011  4048 1.01  Fair      D     SI2      64.6    58  6.25  6.2   4.02
## 16 10470 23622 2.46  Premium   E     SI2      59.7    59  8.82  8.76  5.25

Question #1

In the plot of lcarat vs. lprice, there are some bright vertical strips. What do they represent?

# Use this chunk to answer question 1

Those bright strips represent a high density of population is aggregated at some specific weights that are deemed to be the popular choices when people buying diamonds. Other factors causing diamonds with the same weights having different price.

Question #2

If log(price) = a_0 + a_1 * log(carat), what does that say about the relationship between price and carat?

# Use this chunk to answer question 2

This means that the log of price is linear dependent on the log of carat. Each unit increase in the log of carat means a increase of in log prince

Question #3

Extract the diamonds that have very high and very low residuals. Is there anything unusual about these diamonds? Are they particularly bad or good, or do you think these are pricing errors?

# Use this chunk to place your code for extracting the high and low residuals and answer question 3
diamonds2<-diamonds %>%
  filter(carat<=2.5) %>%
  mutate(lprice=log2(price), lcarat=log2(carat))

mod_diamond<-lm(lprice~lcarat, data=diamonds2)

diamonds2<-diamonds2 %>%
  add_residuals(mod_diamond,"lresid")

resid_quants<-quantile(diamonds2$lresid)

filtered<-diamonds2 %>%
  filter(
    !((lresid<resid_quants[["25%"]])&(lresid>resid_quants[["75%"]]))
  )

ggplot(filtered,aes(cut,price))+geom_boxplot()

ggplot(filtered,aes(color,price))+geom_boxplot()

ggplot(filtered,aes(clarity,price))+geom_boxplot()

According to three plots, they don’t show strong relation between cut, color and clarity with price.

Question #4

Does the final model, mod_diamonds2, do a good job of predicting diamond prices? Would you trust it to tell you how much to spend if you were buying a diamond and why?

# Use this chunk to place your code for assessing how well the model predicts diamond prices and answer question 4
diamonds2 %>%
  add_predictions(mod_diamond2) %>%
  add_residuals(mod_diamond2) %>%
  summarise(sq_err=sqrt(mean(resid^2)),
            abs_err=mean(abs(resid)),
            p975_err=quantile(resid,0.975),
            p025_err=quantile(resid,0.025))
## # A tibble: 1 x 4
##   sq_err abs_err p975_err p025_err
##    <dbl>   <dbl>    <dbl>    <dbl>
## 1  0.192   0.149    0.384   -0.369

the average squared is 2^0.19, and absolute error is 2^0.14. the error is less than 15%. Also, the 95% rangeof residuals is between 2^0.37 to 2^0.38. The model is acceptable.