"Tarea individual
Alejandra Arellanes"
## [1] "Tarea individual\nAlejandra Arellanes"
library(readxl)
## Warning: package 'readxl' was built under R version 3.6.1
Huatabampo <- read_excel("Huatabampo.xlsx")
View(Huatabampo)

ph = (Huatabampo$PH)
salinidad = (Huatabampo$PPM)
profundidad =(Huatabampo$SNM)
pairs(salinidad~ph) #Grafico de correlacion
library(PerformanceAnalytics) #Activar libreria
## Warning: package 'PerformanceAnalytics' was built under R version 3.6.1
## Loading required package: xts
## Warning: package 'xts' was built under R version 3.6.1
## Loading required package: zoo
## Warning: package 'zoo' was built under R version 3.6.1
## 
## Attaching package: 'zoo'
## The following objects are masked from 'package:base':
## 
##     as.Date, as.Date.numeric
## Registered S3 method overwritten by 'xts':
##   method     from
##   as.zoo.xts zoo
## 
## Attaching package: 'PerformanceAnalytics'
## The following object is masked from 'package:graphics':
## 
##     legend

#Integrar los vectores en un marco de datos

dat1 = data.frame(salinidad,ph)

chart.Correlation(dat1)

# Grafica que correlaciona dos variables

#Indice de correlacion
cor(salinidad,ph)
## [1] -0.544348
#Prueba de significancia
#t de student
cor.test(salinidad,ph)
## 
##  Pearson's product-moment correlation
## 
## data:  salinidad and ph
## t = -11.07, df = 291, p-value < 2.2e-16
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  -0.6202473 -0.4583503
## sample estimates:
##       cor 
## -0.544348
#Representa los datos catagorizados por modulo en graficos
#Anaslisis exploratorios de datos
#require(Huatabampo)

nrow(Huatabampo)
## [1] 293
ncol(Huatabampo)
## [1] 10
dim(Huatabampo)
## [1] 293  10
colnames(Huatabampo)
##  [1] "MODULO" "POZO"   "X"      "Y"      "SNM"    "DELNF"  "CE"    
##  [8] "PPM"    "PH"     "TEMP"
table(Huatabampo$SNM)
## 
## 0.9855  1.012  1.162  1.254  1.489  1.766 1.8115  1.842  2.023  2.113 
##      1      1      1      1      1      1      1      1      1      1 
## 2.1845  2.419  2.472  2.523  2.611  2.796  2.817 2.8215  2.863  3.009 
##      1      1      1      1      1      1      1      1      1      1 
##  3.059  3.088  3.297  3.316  3.383   3.43  3.454  3.473   3.49  3.525 
##      1      1      1      1      1      1      1      1      1      1 
##  3.631   3.64  3.641  3.755  3.806  3.864  3.867  3.911 3.9245  4.004 
##      1      1      1      1      1      1      1      1      1      1 
##  4.052  4.072  4.137  4.164  4.167  4.169  4.181  4.186  4.201  4.207 
##      1      1      1      1      1      1      1      1      1      1 
##  4.228 4.2635  4.279  4.319 4.3775   4.38  4.394  4.395  4.417  4.462 
##      1      1      1      1      1      1      1      1      1      1 
##  4.495   4.53 4.5435  4.562  4.582  4.609  4.705  4.721  4.733  4.808 
##      1      1      1      1      1      1      1      1      1      1 
## 4.8125  4.842   4.85  4.861  4.909 4.9245  4.958  4.988  5.011  5.014 
##      1      1      1      1      1      1      1      1      1      1 
##  5.032  5.045   5.05  5.055  5.059  5.087  5.123  5.151  5.157  5.178 
##      1      1      1      2      1      1      1      1      1      1 
##  5.183  5.186  5.245  5.285  5.302   5.35  5.366  5.394  5.405   5.43 
##      1      1      1      1      1      1      1      2      1      1 
##  5.448  5.505  5.531  5.537  5.557  5.565  5.583  5.614  5.651  5.659 
##      1      1      1      1      1      1      1      1      1      1 
##  5.674  5.702  5.753  5.792  5.855  5.901  5.921  5.936  5.974  5.981 
##      1      1      1      2      1      1      1      1      1      1 
##  6.024  6.051 6.0705  6.072  6.085   6.09  6.135  6.153  6.174  6.189 
##      1      1      1      1      1      1      1      1      1      1 
##  6.203  6.213  6.234  6.292  6.314  6.315  6.331  6.339 6.4008  6.401 
##      1      1      1      1      1      1      1      1      1      2 
##  6.427  6.476  6.507  6.544  6.578   6.62  6.648  6.658  6.671  6.691 
##      1      1      1      1      1      1      1      1      1      1 
##  6.695  6.734  6.785  6.799  6.881  6.882  6.897  6.941  6.974  7.056 
##      1      1      2      1      1      1      1      1      1      1 
##  7.142  7.152  7.179  7.225  7.315  7.395    7.4  7.405  7.454  7.508 
##      1      1      1      1      1      1      1      1      1      1 
##   7.56  7.575  7.617  7.637  7.696   7.71  7.712  7.805  7.852  7.857 
##      1      1      1      1      1      1      1      1      1      1 
##  7.873  7.876  7.889  7.914  7.936  7.956 8.0001  8.094  8.103  8.127 
##      1      1      1      1      1      1      1      1      1      1 
##  8.183  8.218  8.264  8.268   8.27  8.316  8.371  8.403  8.406  8.423 
##      1      1      1      1      1      1      1      1      1      1 
##  8.452  8.464  8.482  8.499  8.512  8.534  8.554  8.583  8.615  8.632 
##      1      1      1      1      1      1      1      1      1      1 
##   8.64  8.648  8.667  8.696  8.697  8.705  8.706  8.708  8.754  8.788 
##      2      1      1      1      1      1      1      1      1      1 
##  8.868  8.919  8.925  8.932  8.945  8.962  8.986  8.988   9.02  9.067 
##      1      1      1      1      1      1      1      1      1      1 
##    9.1  9.123  9.128  9.131   9.21  9.213  9.274  9.317  9.355  9.402 
##      1      1      1      1      1      1      1      1      1      1 
##  9.473  9.475  9.522  9.592  9.635   9.65  9.689  9.758  9.761   9.83 
##      1      1      1      1      1      1      1      1      1      1 
##  9.891  9.934  9.945  9.993 10.005 10.068 10.081 10.124 10.234 10.251 
##      1      1      1      1      2      1      1      1      1      1 
## 10.257 10.267 10.268 10.302 10.351 10.403 10.428 10.446   10.5 10.529 
##      1      1      1      1      1      1      1      1      1      1 
## 10.609 10.714 10.791 10.939 10.991 11.028 11.096 11.198 11.269 11.327 
##      1      1      1      1      1      1      1      1      1      1 
## 11.553 11.592 11.778 11.792  11.92 12.144 
##      1      1      1      1      1      1
table(Huatabampo$`DEL N.F.`)
## Warning: Unknown or uninitialised column: 'DEL N.F.'.
## < table of extent 0 >
table(Huatabampo$CE)
## 
##  0.49  0.61  0.68  0.69   0.7  0.76  0.78  0.79  0.81  0.82  0.89   0.9 
##     1     1     1     1     1     1     1     2     2     2     2     1 
##  0.91  0.92  0.95  0.96  0.97  1.04  1.05  1.06  1.08  1.09   1.1  1.12 
##     1     1     1     1     1     1     1     2     1     2     1     1 
##  1.14  1.15  1.18   1.2  1.21  1.22  1.23  1.26  1.29   1.3  1.31  1.32 
##     1     3     2     1     1     1     1     2     1     1     1     1 
##  1.34  1.36  1.38  1.39   1.4  1.41  1.42  1.43  1.44  1.45  1.48  1.52 
##     1     1     1     1     1     1     1     1     1     2     1     3 
##  1.53  1.54  1.55  1.56  1.58  1.59   1.6  1.63  1.64  1.65  1.66  1.68 
##     1     3     1     1     1     2     1     1     1     2     2     1 
##   1.7  1.71  1.72  1.74  1.76  1.78   1.8  1.82  1.84  1.85  1.87  1.88 
##     1     2     1     1     1     2     1     3     1     1     2     2 
##  1.91  1.92  1.93  1.99  2.02  2.04  2.05  2.06  2.08  2.11  2.13  2.14 
##     1     1     1     1     1     1     2     1     1     2     1     2 
##  2.16  2.17  2.19  2.21  2.28  2.32   2.4  2.43  2.47   2.5  2.54  2.66 
##     2     1     1     1     1     1     2     1     1     2     1     1 
##  2.68  2.72  2.74  2.77   2.8  2.83  2.85  2.86  3.01  3.05  3.09   3.1 
##     2     1     1     1     2     1     1     1     1     1     1     1 
##  3.12  3.15  3.19  3.23  3.25  3.29  3.39  3.47  3.49   3.5  3.56  3.59 
##     1     1     1     1     1     1     1     1     1     1     2     1 
##   3.6  3.61  3.69  3.72  3.87   3.9  3.96  3.98  4.05  4.14  4.17  4.27 
##     1     1     1     1     1     1     2     1     2     1     1     1 
##  4.28   4.3  4.32  4.33   4.4  4.44  4.48  4.49  4.73  4.78   4.8  4.83 
##     1     1     1     1     1     1     2     1     1     1     1     1 
##  4.85  4.87  4.92  4.95  4.98  4.99   5.3  5.44  5.55  5.56  5.92  6.02 
##     1     1     1     1     1     1     1     1     1     1     1     1 
##  6.05   6.1  6.13  6.15  6.19  6.21  6.22  6.23   6.3  6.48  6.57  6.62 
##     1     1     1     1     1     1     1     1     1     1     1     1 
##  6.66  6.73   6.8  6.82  6.87  7.03  7.04  7.08  7.12  7.17  7.26  7.27 
##     2     1     1     1     1     2     1     1     1     1     1     1 
##  7.35  7.44  7.58  7.62  7.65  7.68  7.71  7.82  7.88   7.9  7.92  7.98 
##     1     1     1     1     1     1     1     1     1     2     1     1 
##  8.07  8.08  8.09  8.12  8.19  8.21  8.28  8.29  8.31  8.33  8.34  8.35 
##     1     1     1     1     1     1     2     1     1     1     1     1 
##  8.42  8.43  8.46  8.48  8.49  8.54  8.61  8.63  8.65  8.66  8.76  8.79 
##     1     1     1     1     1     1     1     1     1     1     1     1 
##   8.8  8.88  8.89   8.9  8.97  8.99  9.02  9.04  9.06   9.1  9.13  9.17 
##     1     1     1     1     1     1     1     1     1     1     1     2 
##  9.18  9.22  9.28   9.3  9.47  9.52  9.55  9.58  9.64  9.66  9.67   9.7 
##     1     1     1     1     1     1     1     1     1     1     1     1 
##  9.73  9.76   9.8  9.83  9.84  9.89  9.95  9.97 10.02 10.05  10.1 10.16 
##     1     1     1     1     1     1     1     1     1     1     1     1
table(Huatabampo$PPM)
## 
##  313.6  390.4  435.2  441.6    448  486.4  499.2  505.6  518.4  524.8 
##      1      1      1      1      1      1      1      2      2      2 
##  569.6    576  582.4  588.8    608  614.4  620.8  665.6    672  678.4 
##      2      1      1      1      1      1      1      1      1      2 
##  691.2  697.6    704  716.8  729.6    736  755.2    768  774.4  780.8 
##      1      2      1      1      1      3      2      1      1      1 
##  787.2  806.4  825.6    832  838.4  844.8  857.6  870.4  883.2  889.6 
##      1      2      1      1      1      1      1      1      1      1 
##    896  902.4  908.8  915.2  921.6    928  947.2  972.8  979.2  985.6 
##      1      1      1      1      1      2      1      3      1      3 
##    992  998.4 1011.2 1017.6   1024 1043.2 1049.6   1056 1062.4 1075.2 
##      1      1      1      2      1      1      1      2      2      1 
##   1088 1094.4 1100.8 1113.6 1126.4 1139.2   1152 1164.8 1177.6   1184 
##      1      2      1      1      1      2      1      3      1      1 
## 1196.8 1203.2 1222.4 1228.8 1235.2 1273.6 1292.8 1305.6   1312 1318.4 
##      2      2      1      1      1      1      1      1      2      1 
## 1331.2 1350.4 1363.2 1369.6 1382.4 1388.8 1401.6 1414.4 1459.2 1484.8 
##      1      2      1      2      2      1      1      1      1      1 
##   1536 1555.2 1580.8   1600 1625.6 1702.4 1715.2 1740.8 1753.6 1772.8 
##      2      1      1      2      1      1      2      1      1      1 
##   1792 1811.2   1824 1830.4 1926.4   1952 1977.6   1984 1996.8   2016 
##      2      1      1      1      1      1      1      1      1      1 
## 2041.6 2067.2   2080 2105.6 2169.6 2220.8 2233.6   2240 2278.4 2297.6 
##      1      1      1      1      1      1      1      1      2      1 
##   2304 2310.4 2361.6 2380.8 2476.8   2496 2534.4 2547.2   2592 2649.6 
##      1      1      1      1      1      1      2      1      2      1 
## 2668.8 2732.8 2739.2   2752 2764.8 2771.2   2816 2841.6 2867.2 2873.6 
##      1      1      1      1      1      1      1      1      2      1 
## 3027.2 3059.2   3072 3091.2   3104 3116.8 3148.8   3168 3187.2 3193.6 
##      1      1      1      1      1      1      1      1      1      1 
##   3392 3481.6   3552 3558.4 3788.8 3852.8   3872   3904 3923.2   3936 
##      1      1      1      1      1      1      1      1      1      1 
## 3961.6 3974.4 3980.8 3987.2   4032 4147.2 4204.8 4236.8 4262.4 4307.2 
##      1      1      1      1      1      1      1      1      2      1 
##   4352 4364.8 4396.8 4499.2 4505.6 4531.2 4556.8 4588.8 4646.4 4652.8 
##      1      1      1      2      1      1      1      1      1      1 
##   4704 4761.6 4851.2 4876.8   4896 4915.2 4934.4 5004.8 5043.2   5056 
##      1      1      1      1      1      1      1      1      1      2 
## 5068.8 5107.2 5164.8 5171.2 5177.6 5196.8 5241.6 5254.4 5299.2 5305.6 
##      1      1      1      1      1      1      1      1      2      1 
## 5318.4 5331.2 5337.6   5344 5388.8 5395.2 5414.4 5427.2 5433.6 5465.6 
##      1      1      1      1      1      1      1      1      1      1 
## 5510.4 5523.2   5536 5542.4 5606.4 5625.6   5632 5683.2 5689.6   5696 
##      1      1      1      1      1      1      1      1      1      1 
## 5740.8 5753.6 5772.8 5785.6 5798.4   5824 5843.2 5868.8 5875.2 5900.8 
##      1      1      1      1      1      1      1      2      1      1 
## 5939.2   5952 6060.8 6092.8   6112 6131.2 6169.6 6182.4 6188.8   6208 
##      1      1      1      1      1      1      1      1      1      1 
## 6227.2 6246.4   6272 6291.2 6297.6 6329.6   6368 6380.8 6412.8   6432 
##      1      1      1      1      1      1      1      1      1      1 
##   6464 6502.4 
##      1      1
table(Huatabampo$PH)
## 
## 6.1 6.3 6.4 6.5 6.6 6.7 6.8 6.9   7 7.1 7.2 7.3 7.4 7.5 
##   1   1   7  17  23   9  58  44  78  30  12   6   6   1
table(Huatabampo$TEMP)
## 
## 25.6 25.8 26.2 26.3 26.4 26.8 26.9   27 27.1 27.2 27.3 27.4 27.5 27.6 27.7 
##    1    1    1    2    2    2    1    2    1    2    4    5   12    1    4 
## 27.8 27.9   28 28.1 28.2 28.3 28.4 28.5 28.6 28.7 28.8 28.9   29 29.1 29.2 
##   11   14   18    3   12    7    7    9   19   13   12   18   14   11   14 
## 29.3 29.4 29.5 29.6 29.7 29.8 29.9   30 30.1 30.2 30.3 30.4 30.5 30.6 30.8 
##    4   11    9    3    2    6    4    6    4    3    4    1    1    1    1 
## 30.9 31.1 31.2 31.4 31.5 31.7 31.9 32.1 
##    1    3    1    1    1    1    1    1
#Revisar si los datos son iguales
boxplot(Huatabampo$PPM ~ Huatabampo$PH, col = "light pink")

#Normalidad
shapiro.test(Huatabampo$PPM)
## 
##  Shapiro-Wilk normality test
## 
## data:  Huatabampo$PPM
## W = 0.87725, p-value = 1.439e-14
#Marco Muestral
Huatabampo <-(Huatabampo)
dim(Huatabampo)
## [1] 293  10
#como existen los datos
head(Huatabampo)
## # A tibble: 6 x 10
##   MODULO POZO       X       Y   SNM DELNF    CE   PPM    PH  TEMP
##    <dbl> <chr>  <dbl>   <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1      1 1     620903 2962392  3.91  2.68  2.83 1811.   6.8  28.5
## 2      1 2     620915 2963671  4.53  2.61  8.35 5344    6.9  29.2
## 3      1 3     620943 2964903  2.80  1.3   8.66 5542.   6.8  28.9
## 4      1 4     620879 2965667  3.64  2.14  8.34 5338.   7.1  29.4
## 5      1 5     620888 2966604  3.49  2.01  9.18 5875.   6.6  28.3
## 6      1 6     621213 2968060  4.81  2     7.9  5056    6.8  28.4
#MUESTREO ALEATORIO SIMPLE SIN ESTRATIFICAR
#con remplazamiento (los valores SI se repiten)
set.seed(20170704)
sample(Huatabampo$POZO,size=30, replace= TRUE)
##  [1] "140" "146" "183" "216" "11"  "247" "160" "32"  "242" "56"  "80" 
## [12] "201" "186" "222" "207" "62"  "56"  "92"  "168" "250" "19"  "216"
## [23] "59"  "41"  "23"  "124" "76"  "23"  "75"  "98"
set.seed(20170704)
sample(Huatabampo$POZO,size=30, replace= FALSE)
##  [1] "140" "146" "183" "216" "11"  "247" "160" "32"  "242" "56"  "80" 
## [12] "201" "186" "222" "207" "62"  "56"  "92"  "250" "19"  "174" "59" 
## [23] "41"  "23"  "124" "76"  "258" "75"  "98"  "265"
#MUESTREO POR CONGLOMERADOS

set.seed <-(2017071)
x <- 1:7 ; x
## [1] 1 2 3 4 5 6 7
sample (x, size=5,
        replace= TRUE )
## [1] 4 1 3 4 3
crime <- data.frame(crimtab)
dim(crime)
## [1] 924   3
head(crime)
##   Var1   Var2 Freq
## 1  9.4 142.24    0
## 2  9.5 142.24    0
## 3  9.6 142.24    0
## 4  9.7 142.24    0
## 5  9.8 142.24    0
## 6  9.9 142.24    0
n <- 35

muestramia <- sample(1:nrow(crime), size=n, replace=FALSE)
muestramia
##  [1] 647  69 569 613 298 923 165 874  42 368 763 555  99  23 363 663 617
## [18] 851  16 485 435 859 348 247 853 102 295 430 814  10 680 721 433 213
## [35] 873
#HACER UN DATA FRAME
crimemuestramia <- crime[muestramia,]
head(crimemuestramia)
##     Var1   Var2 Freq
## 647   11 180.34    0
## 69    12 144.78    0
## 569 11.6 175.26   12
## 613 11.8  177.8    5
## 298  9.7 160.02    0
## 923 13.4 195.58    0
#Activar bibloteca
library(dplyr)
## Warning: package 'dplyr' was built under R version 3.6.1
## 
## Attaching package: 'dplyr'
## The following objects are masked from 'package:xts':
## 
##     first, last
## The following objects are masked from 'package:stats':
## 
##     filter, lag
## The following objects are masked from 'package:base':
## 
##     intersect, setdiff, setequal, union
#MUESTRA SIN REEMPLAZO
crimemuestramia2 <- crime %>%
  sample_n(size=n,replace=FALSE)
head(crimemuestramia2)
##   Var1   Var2 Freq
## 1 10.5  177.8    0
## 2 11.6 160.02   13
## 3 12.8 144.78    0
## 4 11.7 142.24    0
## 5  9.6 147.32    0
## 6 11.3 154.94    5
#MUESTREO CON PESOS
crimemuestramia3 <- crime %>%
  sample_n(size=n,weight=Freq)
head(crimemuestramia3)
##   Var1   Var2 Freq
## 1 11.1 149.86    3
## 2 11.6 172.72   27
## 3   11 172.72    6
## 4 11.8 170.18   34
## 5 11.6 175.26   12
## 6 12.1 170.18   28