\(\int{4e^{-7x}dx}\)
solution let U = −7x
\(dU = −7dx\)
\(dx = \frac{dU}{−7}\)
\(4\int{e^U\frac{dU}{−7}}\)
\(-\frac{4}{7}∫e^UdU\)
\(\frac{-4}{7}e^U+C\)
\(-\frac{4}{7}e^{−7x}+C\)
\(\frac{dN}{dt}=-\frac{3150}{t^4} - 220\) bacteria per cubic centimeter per day, where t is the number of days since treatment began. Find a function N(t) to estimate the level of contamination if the level after 1 day was 6530 bacteria per cubic centimeter
solution
\(\frac{dN}{dt}=-\frac{3150}{t^4} - 220\)
\(dN =(\frac{3150}{t^4}−220)dt\)
\(N=\int{\frac{3150}{t^4}dt} −\int{220dt}\)
\(N = N_0 − \frac{3150}{3t^3}− 220t\)
\(N(_1) = N_0 −\frac{1050}{1^3}−220(1)\)
\(N_0 = 6530 + 1050 + 220\)
\(N_0 = 7800\)
\(N = 7800−\frac{1050}{t^3}−220t\)
solution
fn = function(x) {2*x -9}
a <- integrate(fn, 4.5, 8.5)$value
(a <- round(as.numeric(a)))
## [1] 16
\(y = x2 - 2x - 2, y = x + 2\)
solution
X = function(x) {x + 2}
Y = function(x) {x^2 -2*x -2}
ax <- integrate(X, -1, 4)
yx <- integrate(Y, -1, 4)
(Area <- round((ax$value - yx$value),4))
## [1] 20.8333
solution
\(f′(x) = 1.875−\frac{907.5}{x^2} = 0\)
\(1.875 − \frac{907.5}{x^2} = 0\)
\(1.875 = \frac{907.5}{x^2}\)
\(1.875* x^2 = 907.5\)
\(x^2 = \frac{907.5}{1.875}\)
\(x = \sqrt{\frac{907.5}{1.875}}\)
\(x = 22\)
\(\int{ln(9x).x^6 dx}\)
solution
\(=\frac{1}{7}x^7 * ln(9x) − \int{\frac{1}{7}x^7 * \frac{1}{x}dx}\)
\(=\frac{1}{7}x^7 * ln(9x) - \int{\frac{1}{7}x^6dx}\)
\(= \frac{7}{49}x^7 * in(9x) - \frac{1}{49} x^7dx + C\)
\(= \frac{1}{49}x^7*(7ln(9x) - 1) + C\)
\(f(x) = \frac{1}{6x}\)
solution
\(F(x)=\int_1^{e^6}{f(x)dx}=1\)
where \(f(x) = \frac{1}{6x}\)
=> \(F(x) = \int{_1^{e^6}\frac{1}{6x}dx}\)
\(= \frac{1}{6}\int_1^{e^6}{\frac{1}{x}dx}\)
\(= \frac{1}{6}ln(x)|_1^{e^6}\)
\(= \frac{1}{6}[ln(e^6) - ln(1)]\)
\(= \frac{1}{6}[6-0]\)
=> \(F(x) = 1\)