sesseis <- read.csv(file = "sesseis.csv", header = TRUE)
str(sesseis)
## 'data.frame': 60 obs. of 3 variables:
## $ riqueza : int 68 64 64 63 69 63 70 68 68 62 ...
## $ cobre : Factor w/ 3 levels "alta","baixa",..: 3 3 3 3 3 3 3 3 3 3 ...
## $ orientacao: Factor w/ 2 levels "horizontal","vertical": 2 2 2 2 2 2 2 2 2 2 ...
sesseis.aov <- aov(riqueza ~ cobre*orientacao, data = sesseis)
summary(sesseis.aov)
## Df Sum Sq Mean Sq F value Pr(>F)
## cobre 2 3330 1665.0 192.53 < 2e-16 ***
## orientacao 1 240 240.0 27.75 2.46e-06 ***
## cobre:orientacao 2 571 285.4 33.00 4.34e-10 ***
## Residuals 54 467 8.6
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
TukeyHSD(sesseis.aov)
plot(sesseis.aov, 2)
shapiro.test(sesseis.aov$residuals)
##
## Shapiro-Wilk normality test
##
## data: sesseis.aov$residuals
## W = 0.93677, p-value = 0.003894
plot(sesseis.aov, 3)
fligner.test(riqueza ~ interaction(cobre,orientacao), data = sesseis)
##
## Fligner-Killeen test of homogeneity of variances
##
## data: riqueza by interaction(cobre, orientacao)
## Fligner-Killeen:med chi-squared = 24.096, df = 5, p-value = 0.0002081
Rejeitamos a hipótese nula porque o valor de p é menor que 0,05.
library(WRS2)
t2way(riqueza ~ cobre*orientacao, data = sesseis)
## Call:
## t2way(formula = riqueza ~ cobre * orientacao, data = sesseis)
##
## value p.value
## cobre 212.3893 0.001
## orientacao 19.3830 0.001
## cobre:orientacao 84.5326 0.001
mcp2atm(riqueza ~ cobre*orientacao, data = sesseis)
## Call:
## mcp2atm(formula = riqueza ~ cobre * orientacao, data = sesseis)
##
## psihat ci.lower ci.upper p-value
## cobre1 -15.00000 -19.51275 -10.48725 0.00000
## cobre2 -34.33333 -40.77738 -27.88929 0.00000
## cobre3 -19.33333 -25.29279 -13.37387 0.00000
## orientacao1 11.33333 5.94307 16.72360 0.00031
## cobre1:orientacao1 14.66667 10.15391 19.17942 0.00000
## cobre2:orientacao1 9.00000 2.55596 15.44404 0.00201
## cobre3:orientacao1 -5.66667 -11.62613 0.29279 0.02272
library(effects)
## Loading required package: carData
## lattice theme set by effectsTheme()
## See ?effectsTheme for details.
plot(allEffects(sesseis.aov))