##Project 1 #question 1-Using Source File Function
source('~/ph251d-hwk/Project1/problem1.R')
## [1] "Hello World"
#question 2-Reading ASCII Data Set
read.table('https://raw.githubusercontent.com/taragonmd/data/master/evans.txt')
## V1 V2 V3 V4 V5 V6 V7 V8 V9 V10 V11 V12
## 1 id chd cat age chl smk ecg dbp sbp hpt ch cc
## 2 21 0 0 56 270 0 0 80 138 0 0 0
## 3 31 0 0 43 159 1 0 74 128 0 0 0
## 4 51 1 1 56 201 1 1 112 164 1 1 201
## 5 71 0 1 64 179 1 0 100 200 1 1 179
## 6 74 0 0 49 243 1 0 82 145 0 0 0
## 7 91 0 0 46 252 1 0 88 142 0 0 0
## 8 111 1 0 52 179 1 1 80 128 0 0 0
## 9 131 0 0 63 217 0 0 92 135 0 0 0
## 10 141 0 0 42 176 1 0 76 114 0 0 0
## 11 191 0 0 55 250 0 1 114 182 1 0 0
## 12 201 0 0 74 293 0 0 100 166 1 0 0
## 13 241 0 0 53 179 0 0 90 158 0 0 0
## 14 251 0 0 58 201 1 0 86 142 0 0 0
## 15 261 0 0 56 206 1 0 85 120 0 0 0
## 16 271 0 0 69 225 0 0 84 168 1 0 0
## 17 283 1 1 51 259 0 1 102 135 1 1 259
## 18 291 0 0 43 193 1 0 78 118 0 0 0
## 19 311 0 1 64 185 0 1 100 180 1 1 185
## 20 312 0 0 44 150 0 0 108 160 1 0 0
## 21 331 0 0 42 211 0 1 86 122 0 0 0
## 22 351 0 0 57 216 0 0 88 130 0 0 0
## 23 381 1 1 64 247 0 1 75 130 0 0 247
## 24 401 0 0 49 200 0 0 82 130 0 0 0
## 25 411 0 1 68 205 1 0 74 152 0 0 205
## 26 431 0 0 41 225 1 0 98 135 1 0 0
## 27 441 0 0 64 263 1 0 98 162 1 0 0
## 28 451 0 0 41 205 0 0 80 120 0 0 0
## 29 481 0 0 59 253 0 0 98 154 1 0 0
## 30 501 0 0 50 282 1 0 90 142 0 0 0
## 31 521 0 0 56 230 0 0 80 118 0 0 0
## 32 541 0 1 57 203 0 0 112 182 1 1 203
## 33 561 0 0 42 211 0 0 86 144 0 0 0
## 34 571 0 0 59 234 1 0 84 164 1 0 0
## 35 581 0 0 44 202 1 1 94 174 1 0 0
## 36 611 0 0 52 162 1 0 78 134 0 0 0
## 37 621 0 0 45 191 0 0 85 135 0 0 0
## 38 641 0 0 41 220 0 0 110 178 1 0 0
## 39 651 0 0 59 240 0 0 80 130 0 0 0
## 40 671 0 0 52 189 0 0 110 168 1 0 0
## 41 681 0 0 64 247 0 0 102 170 1 0 0
## 42 731 0 0 46 181 1 1 122 176 1 0 0
## 43 741 0 0 42 168 1 0 75 104 0 0 0
## 44 751 0 0 54 187 1 0 86 146 0 0 0
## 45 761 0 0 48 196 0 0 98 130 1 0 0
## 46 811 0 0 45 155 1 0 70 142 0 0 0
## 47 851 0 1 66 173 1 0 100 160 1 1 173
## 48 861 0 0 41 138 1 0 70 115 0 0 0
## 49 871 0 0 76 269 1 0 94 175 1 0 0
## 50 881 1 0 49 266 1 0 102 152 1 0 0
## 51 921 0 1 57 200 1 0 100 160 1 1 200
## 52 941 0 0 51 188 1 0 84 124 0 0 0
## 53 961 1 0 43 218 1 1 108 136 1 0 0
## 54 971 0 0 43 212 1 1 80 108 0 0 0
## 55 981 0 0 45 212 1 0 102 150 1 0 0
## 56 991 0 0 45 180 1 0 80 122 0 0 0
## 57 1061 1 1 46 166 0 1 76 162 1 1 166
## 58 1071 0 0 40 257 0 0 84 130 0 0 0
## 59 1081 0 0 48 243 1 1 82 154 0 0 0
## 60 1091 0 1 64 179 1 1 100 148 1 1 179
## 61 1111 0 0 70 167 1 0 64 112 0 0 0
## 62 1151 0 0 52 178 1 1 84 112 0 0 0
## 63 1171 0 0 55 178 0 0 94 152 0 0 0
## 64 1181 0 0 49 211 1 0 68 114 0 0 0
## 65 1191 1 0 56 171 1 0 85 125 0 0 0
## 66 1201 1 1 66 205 1 0 80 150 0 0 205
## 67 1221 0 0 48 229 1 0 130 195 1 0 0
## 68 1231 0 0 47 238 1 1 120 160 1 0 0
## 69 1471 0 1 54 195 1 0 112 174 1 1 195
## 70 1501 0 0 44 162 0 0 82 120 0 0 0
## 71 1561 0 0 51 240 1 1 84 126 0 0 0
## 72 1691 0 0 43 177 1 1 102 138 1 0 0
## 73 1701 0 0 68 252 1 1 88 112 0 0 0
## 74 1741 0 0 49 217 0 0 105 148 1 0 0
## 75 1751 0 0 55 263 0 0 84 114 0 0 0
## 76 1761 0 0 51 229 1 0 100 162 1 0 0
## 77 1791 0 0 50 245 0 0 96 144 1 0 0
## 78 1811 0 0 65 177 0 0 74 122 0 0 0
## 79 1821 0 0 42 203 1 0 78 134 0 0 0
## 80 1851 0 0 57 194 0 1 75 114 0 0 0
## 81 1881 0 0 42 288 0 0 110 142 1 0 0
## 82 1891 0 0 53 217 1 0 70 120 0 0 0
## 83 1901 0 1 57 163 0 0 94 184 1 1 163
## 84 1911 0 0 61 180 0 0 84 136 0 0 0
## 85 1951 0 0 53 209 1 0 98 142 1 0 0
## 86 1961 0 0 45 200 0 0 80 135 0 0 0
## 87 1971 0 0 44 194 1 0 80 120 0 0 0
## 88 2241 0 0 63 227 0 1 90 135 0 0 0
## 89 2252 0 0 42 158 1 0 92 135 0 0 0
## 90 2273 0 1 73 183 0 1 120 220 1 1 183
## 91 2281 0 0 47 253 1 0 110 140 1 0 0
## 92 2311 0 0 56 198 1 0 88 122 0 0 0
## 93 2371 1 0 41 228 1 0 132 162 1 0 0
## 94 2381 0 0 58 217 0 0 86 140 0 0 0
## 95 2391 0 0 55 163 1 0 70 110 0 0 0
## 96 2401 0 0 46 212 1 0 124 184 1 0 0
## 97 2461 0 0 57 144 0 0 95 130 1 0 0
## 98 2481 0 0 44 134 1 0 74 114 0 0 0
## 99 2501 0 1 52 183 1 0 96 158 1 1 183
## 100 2511 0 0 56 212 0 0 108 144 1 0 0
## 101 2531 0 0 64 214 1 0 82 128 0 0 0
## 102 2541 0 0 54 249 1 0 92 120 0 0 0
## 103 2571 0 0 52 180 1 1 78 104 0 0 0
## 104 2591 0 0 42 212 1 0 92 125 0 0 0
## 105 2611 0 0 46 167 1 0 82 120 0 0 0
## 106 2621 0 0 46 273 0 0 94 152 0 0 0
## 107 2631 0 0 42 210 1 0 96 134 1 0 0
## 108 2641 0 1 54 173 1 0 110 170 1 1 173
## 109 2671 0 0 43 256 1 0 72 114 0 0 0
## 110 2681 0 0 53 234 0 0 80 122 0 0 0
## 111 2691 1 0 40 221 1 0 100 140 1 0 0
## 112 2711 0 0 46 261 1 0 86 128 0 0 0
## 113 2731 0 0 43 299 0 0 80 116 0 0 0
## 114 2851 0 0 43 192 1 0 75 115 0 0 0
## 115 2861 0 0 47 185 1 1 80 146 0 0 0
## 116 2871 0 0 44 283 1 0 70 108 0 0 0
## 117 2881 0 0 49 176 1 0 92 134 0 0 0
## 118 2891 1 1 56 331 1 0 110 190 1 1 331
## 119 2901 1 0 56 203 1 0 82 120 0 0 0
## 120 2911 0 1 64 217 1 0 92 166 1 1 217
## 121 2921 0 0 54 164 1 0 72 122 0 0 0
## 122 2931 0 0 54 256 0 0 98 148 1 0 0
## 123 2991 0 0 51 184 0 0 98 170 1 0 0
## 124 3001 0 0 49 165 1 0 80 114 0 0 0
## 125 3011 0 0 47 189 0 0 92 145 0 0 0
## 126 3031 0 0 58 221 1 0 88 140 0 0 0
## 127 3061 0 1 70 126 1 1 66 164 1 1 126
## 128 3601 0 0 42 169 1 1 80 122 0 0 0
## 129 3611 0 0 59 266 0 0 92 138 0 0 0
## 130 3621 0 1 57 153 1 0 92 148 0 0 153
## 131 3651 0 1 76 211 1 1 114 228 1 1 211
## 132 3661 0 0 43 113 1 0 76 114 0 0 0
## 133 3701 0 0 46 200 1 0 85 145 0 0 0
## 134 3721 0 1 75 172 1 1 114 162 1 1 172
## 135 3751 0 0 42 131 0 0 84 130 0 0 0
## 136 3761 0 0 64 214 0 0 84 120 0 0 0
## 137 3771 0 1 63 236 0 1 94 190 1 1 236
## 138 3791 0 0 54 213 0 0 90 142 0 0 0
## 139 3811 0 0 66 226 0 0 90 166 1 0 0
## 140 3813 0 0 44 200 1 0 110 160 1 0 0
## 141 3841 0 0 72 188 0 0 78 130 0 0 0
## 142 3861 0 0 50 268 0 0 102 138 1 0 0
## 143 3871 0 1 59 195 0 1 114 208 1 1 195
## 144 3881 1 0 59 216 1 0 95 140 1 0 0
## 145 3891 0 0 53 182 1 0 92 130 0 0 0
## 146 3901 0 0 48 178 1 0 95 135 1 0 0
## 147 3911 0 0 40 191 1 0 76 152 0 0 0
## 148 3941 0 0 61 255 0 0 80 120 0 0 0
## 149 3951 0 0 42 225 1 0 80 126 0 0 0
## 150 4161 0 0 42 166 0 0 90 145 0 0 0
## 151 4191 0 0 49 278 1 0 84 126 0 0 0
## 152 4202 0 0 40 235 0 0 72 116 0 0 0
## 153 4221 0 0 51 251 1 0 86 128 0 0 0
## 154 4242 0 0 44 217 0 0 90 146 0 0 0
## 155 4261 0 0 44 181 1 0 94 144 0 0 0
## 156 4271 0 0 47 208 0 0 108 178 1 0 0
## 157 4291 0 0 51 182 0 0 112 182 1 0 0
## 158 4301 0 0 69 228 1 0 75 115 0 0 0
## 159 4321 0 1 58 170 1 1 88 152 0 0 170
## 160 4331 0 1 74 147 0 1 80 200 1 1 147
## 161 4341 0 0 48 190 1 0 78 114 0 0 0
## 162 4381 0 0 64 205 0 1 98 140 1 0 0
## 163 4401 0 0 53 216 1 0 78 124 0 0 0
## 164 4411 0 0 71 170 1 0 90 140 0 0 0
## 165 4421 0 0 47 127 1 0 74 110 0 0 0
## 166 4451 0 0 56 235 1 0 92 128 0 0 0
## 167 4461 0 0 40 200 0 0 72 118 0 0 0
## 168 4491 0 0 46 283 1 0 100 148 1 0 0
## 169 4531 0 1 68 157 0 0 94 162 1 1 157
## 170 4551 1 0 54 206 0 1 76 142 0 0 0
## 171 4581 0 0 54 197 1 0 88 125 0 0 0
## 172 4591 0 0 45 163 1 0 75 115 0 0 0
## 173 4601 0 0 66 176 0 1 60 124 0 0 0
## 174 4641 0 0 58 211 1 0 88 146 0 0 0
## 175 4681 0 0 49 161 0 0 75 115 0 0 0
## 176 4711 0 0 51 244 0 0 90 128 0 0 0
## 177 4731 0 0 44 172 0 0 100 138 1 0 0
## 178 4751 0 1 61 166 1 0 86 156 0 0 166
## 179 4771 0 0 48 184 1 0 76 116 0 0 0
## 180 4781 0 0 63 143 1 0 92 122 0 0 0
## 181 4791 0 0 54 196 1 0 84 138 0 0 0
## 182 4801 0 0 52 189 1 0 88 142 0 0 0
## 183 4811 0 0 45 227 1 1 98 140 1 0 0
## 184 4821 0 0 62 236 0 0 94 160 1 0 0
## 185 4831 0 0 41 240 0 0 86 144 0 0 0
## 186 4851 0 0 41 256 1 0 90 145 0 0 0
## 187 4861 0 0 61 200 1 0 84 148 0 0 0
## 188 4871 0 0 42 199 1 0 104 166 1 0 0
## 189 4901 0 0 42 161 0 0 88 124 0 0 0
## 190 4911 0 0 72 211 0 1 80 104 0 0 0
## 191 4951 0 0 43 180 0 0 64 92 0 0 0
## 192 4961 1 0 72 200 0 1 86 138 0 0 0
## 193 4971 0 0 51 206 1 0 80 132 0 0 0
## 194 4981 0 0 58 254 1 0 94 152 0 0 0
## 195 5011 0 0 41 215 1 0 90 142 0 0 0
## 196 5061 0 1 71 162 1 1 98 184 1 1 162
## 197 5071 1 0 63 145 1 0 96 162 1 0 0
## 198 5091 0 0 44 220 1 1 90 130 0 0 0
## 199 5101 0 0 45 298 1 0 108 170 1 0 0
## 200 5111 0 0 54 300 1 0 94 148 0 0 0
## 201 5131 1 1 52 306 1 0 108 178 1 1 306
## 202 5141 0 0 55 302 1 1 134 206 1 0 0
## 203 5181 1 0 41 158 1 0 80 140 0 0 0
## 204 5191 0 0 54 194 1 1 130 170 1 0 0
## 205 5211 0 1 64 229 1 1 94 156 0 0 229
## 206 5251 0 0 61 259 0 0 82 118 0 0 0
## 207 5281 0 0 40 214 0 0 94 130 0 0 0
## 208 5301 0 0 51 168 1 0 106 156 1 0 0
## 209 5361 0 0 51 265 1 0 90 158 0 0 0
## 210 5391 0 0 75 225 0 0 80 125 0 0 0
## 211 5421 1 0 40 219 1 0 80 115 0 0 0
## 212 5451 1 0 63 202 0 0 110 160 1 0 0
## 213 5461 0 1 42 217 0 1 94 138 0 0 217
## 214 5471 1 0 64 231 1 0 85 120 0 0 0
## 215 5521 1 0 50 215 1 0 114 170 1 0 0
## 216 5601 0 0 49 146 1 1 98 145 1 0 0
## 217 5621 0 0 48 198 1 0 75 120 0 0 0
## 218 5631 0 0 58 206 0 0 92 154 0 0 0
## 219 5641 0 0 46 227 1 0 98 168 1 0 0
## 220 5671 0 0 46 214 1 1 92 166 1 0 0
## 221 6341 0 0 42 225 1 1 100 162 1 0 0
## 222 6351 0 0 57 193 0 0 86 124 0 0 0
## 223 6371 0 0 50 186 0 0 102 160 1 0 0
## 224 6391 0 0 46 147 1 0 85 122 0 0 0
## 225 6411 0 0 45 205 0 0 100 166 1 0 0
## 226 6421 0 1 57 196 1 1 98 196 1 1 196
## 227 6441 0 0 46 195 0 0 96 138 1 0 0
## 228 6451 0 1 45 153 1 1 108 212 1 1 153
## 229 6461 0 1 58 172 0 1 96 168 1 1 172
## 230 6482 0 0 42 293 1 0 110 176 1 0 0
## 231 6491 0 0 53 274 1 0 106 158 1 0 0
## 232 6501 0 0 55 221 0 0 106 162 1 0 0
## 233 6511 0 0 53 197 0 0 70 112 0 0 0
## 234 6531 0 1 69 194 0 1 100 150 1 1 194
## 235 6551 0 0 58 204 1 0 74 122 0 0 0
## 236 6561 0 0 46 203 1 0 84 114 0 0 0
## 237 6591 0 0 62 293 1 1 90 142 0 0 0
## 238 6631 0 0 61 197 0 1 72 110 0 0 0
## 239 6641 0 0 49 195 1 0 82 138 0 0 0
## 240 6651 0 0 48 184 1 0 96 144 1 0 0
## 241 6661 1 0 55 209 1 0 85 130 0 0 0
## 242 6681 0 1 52 209 0 1 98 170 1 1 209
## 243 6691 0 0 61 214 0 0 100 158 1 0 0
## 244 6721 0 1 68 130 0 1 106 200 1 1 130
## 245 6731 0 0 55 196 0 0 70 125 0 0 0
## 246 6741 0 1 52 237 0 1 126 224 1 1 237
## 247 6751 0 0 43 185 1 1 85 140 0 0 0
## 248 6761 1 0 47 248 1 1 104 132 1 0 0
## 249 6781 0 0 57 252 0 0 106 166 1 0 0
## 250 6791 0 0 55 198 1 0 96 144 1 0 0
## 251 6801 0 0 71 176 0 0 62 138 0 0 0
## 252 6811 0 1 74 193 0 1 98 202 1 1 193
## 253 6821 1 0 65 185 0 0 105 156 1 0 0
## 254 6831 0 0 65 241 0 1 102 146 1 0 0
## 255 6871 0 0 44 231 0 0 70 108 0 0 0
## 256 6881 0 0 40 157 0 1 78 122 0 0 0
## 257 6891 0 0 45 152 1 1 106 148 1 0 0
## 258 6911 0 0 50 237 1 0 102 156 1 0 0
## 259 6921 0 1 64 175 0 1 110 142 1 1 175
## 260 6931 1 0 56 195 0 1 94 150 0 0 0
## 261 6941 0 1 62 151 0 0 88 165 1 1 151
## 262 6961 0 0 44 205 1 0 80 128 0 0 0
## 263 6981 0 0 73 190 0 0 75 115 0 0 0
## 264 7001 0 0 46 239 1 0 100 160 1 0 0
## 265 7021 0 0 51 232 0 0 80 120 0 0 0
## 266 7031 0 1 59 170 1 0 100 180 1 1 170
## 267 7051 1 1 67 319 0 0 104 182 1 1 319
## 268 7091 0 0 54 225 0 0 86 122 0 0 0
## 269 7101 0 0 49 252 1 0 90 128 0 0 0
## 270 7121 0 0 46 224 1 0 84 130 0 0 0
## 271 7131 0 1 42 229 0 1 90 145 0 0 229
## 272 8641 0 0 68 195 1 1 76 116 0 0 0
## 273 8651 0 0 43 230 1 1 85 135 0 0 0
## 274 8671 0 1 56 186 0 1 98 154 1 1 186
## 275 8682 0 1 68 192 1 0 94 154 0 0 192
## 276 8711 0 0 46 184 1 0 78 110 0 0 0
## 277 8721 1 1 64 233 1 0 94 140 0 0 233
## 278 8731 0 0 54 175 1 0 96 156 1 0 0
## 279 8751 0 0 48 188 1 0 106 148 1 0 0
## 280 8771 0 0 41 232 1 0 82 126 0 0 0
## 281 8811 0 1 65 178 0 1 106 194 1 1 178
## 282 8841 0 0 41 187 0 0 108 154 1 0 0
## 283 8851 1 0 42 207 1 1 86 128 0 0 0
## 284 8971 0 0 66 94 0 0 86 134 0 0 0
## 285 8981 0 0 44 211 1 0 90 142 0 0 0
## 286 9011 0 0 42 275 1 1 100 150 1 0 0
## 287 9021 0 0 51 165 1 0 85 130 0 0 0
## 288 9031 0 0 56 282 1 0 94 134 0 0 0
## 289 9051 1 1 64 239 1 0 94 162 1 1 239
## 290 9061 0 0 44 256 1 0 106 162 1 0 0
## 291 9071 1 0 55 175 1 0 108 160 1 0 0
## 292 9091 0 0 55 306 1 0 82 160 1 0 0
## 293 9101 1 0 67 188 0 1 102 168 1 0 0
## 294 9191 1 1 56 221 1 1 78 154 0 0 221
## 295 9201 1 1 63 213 0 1 156 256 1 1 213
## 296 9261 1 0 67 250 0 0 100 158 1 0 0
## 297 9471 0 0 48 268 1 0 120 172 1 0 0
## 298 9601 1 0 45 263 0 0 86 132 0 0 0
## 299 9631 0 0 49 150 1 1 98 120 1 0 0
## 300 9651 1 1 70 251 1 1 108 174 1 1 251
## 301 9671 0 0 45 180 1 0 102 156 1 0 0
## 302 9681 0 0 48 336 1 0 110 174 1 0 0
## 303 9711 1 0 42 210 1 0 70 124 0 0 0
## 304 9721 0 1 69 179 1 0 110 175 1 1 179
## 305 9731 0 0 44 177 0 0 75 120 0 0 0
## 306 9751 0 0 48 227 1 0 92 158 0 0 0
## 307 9791 0 0 46 195 1 0 72 120 0 0 0
## 308 9801 0 0 52 227 1 0 76 116 0 0 0
## 309 9811 0 0 73 250 0 0 84 154 0 0 0
## 310 9831 0 0 67 218 0 1 96 148 1 0 0
## 311 9841 0 0 63 229 1 0 100 168 1 0 0
## 312 9871 0 1 45 197 0 1 80 134 0 0 197
## 313 9881 0 0 46 190 1 0 86 122 0 0 0
## 314 9891 0 1 68 189 1 1 104 202 1 1 189
## 315 9901 0 0 49 185 1 0 80 120 0 0 0
## 316 9911 1 0 63 194 1 0 90 190 1 0 0
## 317 9931 0 0 59 192 0 0 66 134 0 0 0
## 318 9941 0 1 67 261 1 1 80 160 1 1 261
## 319 9951 0 0 49 174 0 1 78 108 0 0 0
## 320 9961 0 1 65 189 1 1 114 168 1 1 189
## 321 9981 0 0 44 248 1 0 100 145 1 0 0
## 322 10011 0 0 45 214 0 0 94 122 0 0 0
## 323 10041 0 0 47 275 1 0 76 114 0 0 0
## 324 10051 0 0 46 259 1 0 92 130 0 0 0
## 325 10071 0 0 52 230 0 0 68 100 0 0 0
## 326 10091 0 0 60 206 1 0 84 138 0 0 0
## 327 10121 0 0 45 275 1 0 95 125 1 0 0
## 328 10151 1 1 67 237 1 1 100 170 1 1 237
## 329 10181 0 0 60 289 0 1 80 118 0 0 0
## 330 10201 0 1 65 176 1 0 82 200 1 1 176
## 331 10221 0 1 72 232 1 1 80 210 1 1 232
## 332 10231 1 0 71 184 1 0 90 160 1 0 0
## 333 10241 0 0 55 283 1 1 108 178 1 0 0
## 334 10271 0 0 54 214 1 0 110 170 1 0 0
## 335 10401 0 1 52 161 1 0 76 162 1 1 161
## 336 10402 0 0 48 232 1 0 98 154 1 0 0
## 337 10921 0 0 66 228 1 0 72 120 0 0 0
## 338 10951 0 1 52 206 0 1 120 206 1 1 206
## 339 10971 0 0 64 218 1 0 80 110 0 0 0
## 340 11011 0 0 42 262 1 0 92 142 0 0 0
## 341 11081 0 0 52 227 0 0 66 98 0 0 0
## 342 11101 0 0 51 215 0 0 60 100 0 0 0
## 343 11141 0 0 54 146 0 0 70 115 0 0 0
## 344 11151 0 0 51 268 1 0 85 140 0 0 0
## 345 11161 0 0 60 211 0 0 94 166 1 0 0
## 346 11221 0 0 48 213 1 1 90 145 0 0 0
## 347 11281 0 0 73 249 1 0 108 206 1 0 0
## 348 11291 0 0 50 218 1 0 92 130 0 0 0
## 349 11321 0 0 45 221 0 0 92 128 0 0 0
## 350 11341 1 1 56 228 1 0 92 152 0 0 228
## 351 11351 1 0 46 240 1 0 104 142 1 0 0
## 352 11361 1 1 76 279 1 0 96 136 1 1 279
## 353 11391 0 0 52 186 0 0 70 118 0 0 0
## 354 11441 0 0 54 160 1 1 110 200 1 0 0
## 355 11461 0 1 53 222 0 1 104 154 1 1 222
## 356 11481 0 0 43 211 1 0 65 112 0 0 0
## 357 11491 0 0 46 195 1 1 132 230 1 0 0
## 358 11501 0 0 63 290 0 0 90 150 0 0 0
## 359 11511 0 0 44 220 0 0 95 138 1 0 0
## 360 11531 0 0 42 161 1 0 80 124 0 0 0
## 361 11553 0 1 74 212 1 0 98 164 1 1 212
## 362 11611 0 0 53 182 1 0 86 136 0 0 0
## 363 11651 0 1 56 223 1 1 110 208 1 1 223
## 364 11661 0 0 47 290 1 0 92 136 0 0 0
## 365 11711 0 0 43 249 1 1 90 162 1 0 0
## 366 11721 0 0 51 174 1 0 92 124 0 0 0
## 367 11731 0 1 63 204 1 1 92 190 1 1 204
## 368 11781 0 0 49 245 1 0 62 124 0 0 0
## 369 11791 0 1 57 216 1 0 114 174 1 1 216
## 370 11811 0 0 43 245 0 1 120 145 1 0 0
## 371 11831 0 0 58 151 1 0 98 138 1 0 0
## 372 11851 0 1 49 178 1 0 102 166 1 1 178
## 373 11891 0 0 47 227 1 0 88 132 0 0 0
## 374 11911 0 0 45 253 1 0 104 152 1 0 0
## 375 11941 1 1 65 222 0 1 88 162 1 1 222
## 376 11971 0 0 51 258 1 1 94 178 1 0 0
## 377 11981 0 0 49 182 1 1 84 124 0 0 0
## 378 11991 0 0 51 184 1 0 96 150 1 0 0
## 379 12051 1 0 67 357 0 0 90 129 0 0 0
## 380 12111 0 0 47 193 1 0 90 135 0 0 0
## 381 12121 0 0 50 198 1 1 82 136 0 0 0
## 382 12141 0 0 48 263 0 0 76 102 0 0 0
## 383 12151 0 0 48 254 0 0 74 124 0 0 0
## 384 12181 0 0 64 248 1 0 74 126 0 0 0
## 385 12221 0 0 43 197 1 0 84 122 0 0 0
## 386 12231 0 0 41 282 0 0 98 132 1 0 0
## 387 12241 0 0 48 238 1 0 106 144 1 0 0
## 388 12251 0 0 50 156 1 0 74 122 0 0 0
## 389 12271 0 0 46 234 1 0 70 120 0 0 0
## 390 12281 0 0 44 203 1 0 82 110 0 0 0
## 391 12291 1 0 65 200 1 0 90 160 1 0 0
## 392 12293 0 0 44 209 1 0 84 132 0 0 0
## 393 12311 0 0 40 245 0 0 94 142 0 0 0
## 394 12351 0 0 56 124 0 0 86 142 0 0 0
## 395 12371 0 1 56 199 1 1 86 154 0 0 199
## 396 12381 1 0 47 148 1 1 85 145 0 0 0
## 397 12391 0 0 48 246 1 0 92 122 0 0 0
## 398 12401 0 0 46 233 0 0 96 138 1 0 0
## 399 12431 0 0 48 265 1 1 100 142 1 0 0
## 400 12461 0 0 50 207 1 1 86 142 0 0 0
## 401 12471 0 0 69 227 1 1 72 108 0 0 0
## 402 12481 0 0 45 205 1 1 130 182 1 0 0
## 403 12641 0 0 57 189 1 1 102 128 1 0 0
## 404 12681 1 0 69 191 1 0 102 164 1 0 0
## 405 12741 0 0 45 171 1 0 91 145 0 0 0
## 406 12742 0 0 52 178 1 1 91 145 0 0 0
## 407 12751 0 0 63 229 1 0 94 148 0 0 0
## 408 12761 0 1 61 169 1 0 90 140 0 0 169
## 409 12801 0 0 48 238 1 0 88 134 0 0 0
## 410 12831 1 0 45 216 1 0 94 138 0 0 0
## 411 12861 0 1 66 178 0 0 110 198 1 1 178
## 412 12891 0 0 54 173 0 0 92 162 1 0 0
## 413 12901 0 0 45 173 1 0 64 120 0 0 0
## 414 12911 1 0 66 180 1 1 104 162 1 0 0
## 415 12921 0 0 53 168 1 0 110 154 1 0 0
## 416 12941 0 0 40 277 0 0 80 120 0 0 0
## 417 13021 0 0 55 181 1 0 78 132 0 0 0
## 418 13041 0 0 48 272 1 1 98 156 1 0 0
## 419 13051 0 0 49 307 0 0 88 130 0 0 0
## 420 13101 0 0 61 203 0 1 94 146 0 0 0
## 421 13111 0 0 41 212 1 0 90 120 0 0 0
## 422 13121 0 0 43 248 1 0 118 142 1 0 0
## 423 13131 0 0 47 208 1 0 110 160 1 0 0
## 424 13321 0 0 46 218 1 0 86 126 0 0 0
## 425 13351 0 1 63 163 1 0 76 175 1 1 163
## 426 13391 0 0 62 261 1 0 88 130 0 0 0
## 427 13421 0 0 72 224 0 1 100 190 1 0 0
## 428 13431 0 0 50 292 1 1 80 128 0 0 0
## 429 13451 0 0 46 202 1 1 100 172 1 0 0
## 430 13461 0 0 44 145 1 0 72 114 0 0 0
## 431 13471 0 1 46 183 1 1 88 162 1 1 183
## 432 13481 0 0 47 188 1 0 88 126 0 0 0
## 433 13511 0 1 51 209 1 0 106 180 1 1 209
## 434 13521 0 0 46 217 1 0 84 144 0 0 0
## 435 13531 0 0 47 180 1 0 78 126 0 0 0
## 436 13541 0 0 44 190 0 0 90 140 0 0 0
## 437 13551 0 0 55 211 1 0 80 115 0 0 0
## 438 13571 0 0 56 204 1 0 76 124 0 0 0
## 439 13591 0 0 54 185 0 0 98 170 1 0 0
## 440 13611 1 0 50 206 1 0 70 108 0 0 0
## 441 13641 0 0 59 265 1 0 96 150 1 0 0
## 442 13651 0 0 47 246 0 0 80 130 0 0 0
## 443 13661 0 1 65 171 0 0 102 166 1 1 171
## 444 13662 0 0 41 211 0 0 91 145 0 0 0
## 445 13671 0 0 47 139 1 1 96 192 1 0 0
## 446 13691 0 0 49 155 0 0 84 124 0 0 0
## 447 13721 0 0 50 229 0 0 90 134 0 0 0
## 448 13731 0 1 56 148 1 0 110 168 1 1 148
## 449 13751 0 0 50 198 1 0 86 134 0 0 0
## 450 13761 0 1 55 186 1 0 120 172 1 1 186
## 451 13771 0 0 52 211 1 0 70 112 0 0 0
## 452 13811 0 0 57 210 1 0 80 120 0 0 0
## 453 13841 1 1 47 212 1 1 122 220 1 1 212
## 454 13861 0 0 59 227 0 0 70 122 0 0 0
## 455 13901 0 0 47 232 0 0 90 142 0 0 0
## 456 13911 0 0 42 176 1 0 88 122 0 0 0
## 457 13931 0 0 56 166 0 0 86 126 0 0 0
## 458 13941 1 0 43 268 1 1 88 132 0 0 0
## 459 13951 0 0 55 178 1 0 80 104 0 0 0
## 460 13961 0 1 49 147 1 1 134 300 1 1 147
## 461 13971 0 1 71 164 0 0 94 174 1 1 164
## 462 14041 0 1 71 187 0 1 114 172 1 1 187
## 463 14071 0 1 69 165 0 1 96 140 1 1 165
## 464 14691 0 0 47 250 1 1 88 122 0 0 0
## 465 14701 0 0 44 199 1 0 70 120 0 0 0
## 466 14711 1 1 65 233 1 1 116 180 1 1 233
## 467 14731 0 0 65 182 0 0 74 124 0 0 0
## 468 14741 0 0 40 210 0 0 94 128 0 0 0
## 469 14751 0 0 47 235 1 0 86 128 0 0 0
## 470 14761 0 0 54 172 1 0 92 144 0 0 0
## 471 14771 0 1 64 198 0 0 100 178 1 1 198
## 472 14781 0 1 59 212 0 1 90 198 1 1 212
## 473 14801 0 0 72 285 1 1 90 150 0 0 0
## 474 14811 0 0 52 194 0 0 82 132 0 0 0
## 475 14861 0 0 56 237 0 0 70 106 0 0 0
## 476 14871 0 0 56 153 0 1 66 96 0 0 0
## 477 14881 0 0 54 219 1 0 92 152 0 0 0
## 478 14901 0 1 60 188 1 1 114 210 1 1 188
## 479 14911 0 0 63 276 0 1 95 145 1 0 0
## 480 14931 0 0 73 203 1 0 68 130 0 0 0
## 481 14941 1 0 49 228 1 0 98 140 1 0 0
## 482 14981 0 0 57 199 0 0 80 134 0 0 0
## 483 15001 0 1 53 162 1 0 90 158 0 0 162
## 484 15011 0 0 43 221 1 0 94 125 0 0 0
## 485 15021 0 0 68 150 0 0 78 145 0 0 0
## 486 15031 0 0 53 140 1 0 80 120 0 0 0
## 487 15041 0 0 50 162 0 1 65 110 0 0 0
## 488 15061 0 0 49 171 1 1 86 125 0 0 0
## 489 15091 0 0 62 206 0 0 94 144 0 0 0
## 490 15111 0 0 52 226 1 0 76 130 0 0 0
## 491 15121 0 1 57 113 1 1 94 146 0 0 113
## 492 15141 0 0 45 197 0 0 78 118 0 0 0
## 493 15161 0 0 50 180 1 0 88 132 0 0 0
## 494 15171 0 1 50 180 1 1 118 214 1 1 180
## 495 15191 0 0 53 196 1 0 86 144 0 0 0
## 496 15201 0 0 51 211 0 0 98 135 1 0 0
## 497 15211 0 1 58 164 1 1 96 155 1 1 164
## 498 15221 0 0 64 218 0 0 85 154 0 0 0
## 499 15251 1 0 49 191 1 0 76 132 0 0 0
## 500 15271 0 0 55 189 0 0 64 110 0 0 0
## 501 15311 0 0 50 156 1 0 82 114 0 0 0
## 502 15321 0 0 50 223 1 0 80 130 0 0 0
## 503 15361 0 0 57 165 1 0 76 132 0 0 0
## 504 15401 0 1 55 200 1 1 94 188 1 1 200
## 505 15421 0 1 48 162 1 1 135 250 1 1 162
## 506 15431 0 1 56 207 1 0 110 172 1 1 207
## 507 15441 0 0 72 262 1 0 84 172 1 0 0
## 508 15511 1 1 67 236 0 1 106 200 1 1 236
## 509 15541 0 1 70 192 0 1 90 162 1 1 192
## 510 15562 0 1 57 203 1 0 100 170 1 1 203
## 511 15611 0 1 67 200 0 1 160 224 1 1 200
## 512 15641 0 0 62 280 1 0 86 124 0 0 0
## 513 15651 0 1 72 229 1 1 140 270 1 1 229
## 514 15661 0 0 70 290 0 0 84 138 0 0 0
## 515 15671 0 0 65 222 0 0 88 146 0 0 0
## 516 15691 0 0 58 259 0 1 100 154 1 0 0
## 517 15711 0 0 64 205 0 0 80 140 0 0 0
## 518 15761 0 0 44 276 1 0 74 112 0 0 0
## 519 15791 0 0 55 171 0 0 68 110 0 0 0
## 520 15831 0 0 71 287 0 0 90 130 0 0 0
## 521 15851 1 0 72 174 1 1 78 192 1 0 0
## 522 15882 0 0 71 277 0 1 110 200 1 0 0
## 523 15891 0 0 54 192 0 0 85 130 0 0 0
## 524 15911 0 0 51 196 1 0 90 128 0 0 0
## 525 15921 0 0 68 203 1 0 74 138 0 0 0
## 526 15931 0 0 47 271 1 0 85 145 0 0 0
## 527 15941 0 1 49 169 0 1 85 145 0 0 169
## 528 15951 0 0 48 201 1 0 98 150 1 0 0
## 529 15981 0 0 74 244 0 0 94 164 1 0 0
## 530 15991 0 0 49 161 0 0 92 120 0 0 0
## 531 16321 1 0 53 192 1 0 106 164 1 0 0
## 532 16431 0 0 46 192 1 1 86 116 0 0 0
## 533 16441 0 0 59 230 1 0 84 158 0 0 0
## 534 16461 0 0 50 312 0 1 98 138 1 0 0
## 535 16481 1 1 69 230 0 1 100 170 1 1 230
## 536 16501 1 1 75 233 1 1 90 222 1 1 233
## 537 16531 0 0 42 207 1 0 72 106 0 0 0
## 538 16541 0 0 50 317 0 1 90 138 0 0 0
## 539 16571 0 0 44 213 1 0 84 118 0 0 0
## 540 16581 0 0 44 220 0 0 98 140 1 0 0
## 541 16591 0 0 42 225 0 0 95 140 1 0 0
## 542 16622 0 0 42 288 1 0 104 150 1 0 0
## 543 16691 0 0 44 168 1 1 94 134 0 0 0
## 544 16701 0 1 57 182 1 1 96 138 1 1 182
## 545 16711 1 1 68 242 1 0 84 128 0 0 242
## 546 16752 0 0 69 258 1 0 82 145 0 0 0
## 547 16761 0 1 74 172 1 0 100 190 1 1 172
## 548 16841 0 1 56 239 1 1 140 220 1 1 239
## 549 16871 1 1 58 209 1 1 94 140 0 0 209
## 550 16891 0 0 46 181 0 0 84 124 0 0 0
## 551 16911 0 1 60 199 0 0 100 162 1 1 199
## 552 16931 0 0 62 217 1 0 90 144 0 0 0
## 553 16971 0 0 74 200 1 0 78 118 0 0 0
## 554 17071 0 0 44 268 1 0 80 126 0 0 0
## 555 17111 0 0 54 202 0 0 86 134 0 0 0
## 556 17121 0 0 49 224 1 1 86 134 0 0 0
## 557 17131 0 0 46 302 1 0 102 160 1 0 0
## 558 17151 0 0 45 239 0 0 90 128 0 0 0
## 559 17161 0 0 57 205 0 0 88 140 0 0 0
## 560 17171 0 1 56 192 0 1 170 270 1 1 192
## 561 17181 0 0 42 282 1 0 114 170 1 0 0
## 562 17191 0 0 52 232 1 0 94 144 0 0 0
## 563 17211 0 0 49 229 1 0 92 162 1 0 0
## 564 17231 0 0 51 336 1 0 86 130 0 0 0
## 565 17251 0 0 40 146 0 0 84 125 0 0 0
## 566 17271 0 0 43 224 0 0 72 115 0 0 0
## 567 17291 0 0 45 228 1 1 76 136 0 0 0
## 568 17361 0 0 63 211 1 0 108 144 1 0 0
## 569 17401 0 0 52 212 0 0 76 118 0 0 0
## 570 17481 1 1 67 243 1 1 118 220 1 1 243
## 571 17961 0 1 72 208 1 1 94 174 1 1 208
## 572 17991 0 0 54 284 1 0 98 146 1 0 0
## 573 18061 0 0 52 190 1 1 88 130 0 0 0
## 574 18071 0 0 49 264 0 0 92 162 1 0 0
## 575 18101 0 0 42 288 0 0 108 146 1 0 0
## 576 18121 0 0 41 181 1 0 94 136 0 0 0
## 577 18131 1 1 56 283 1 0 100 188 1 1 283
## 578 18141 0 0 46 217 1 0 66 120 0 0 0
## 579 18151 1 0 52 250 1 0 80 132 0 0 0
## 580 18161 0 0 44 209 1 0 70 116 0 0 0
## 581 18171 1 0 43 189 1 0 106 154 1 0 0
## 582 18201 0 0 73 190 0 0 78 138 0 0 0
## 583 18401 0 0 54 223 1 0 82 122 0 0 0
## 584 18411 0 0 46 241 1 0 84 120 0 0 0
## 585 18421 0 0 44 214 1 1 96 142 1 0 0
## 586 18441 0 0 43 207 0 0 86 122 0 0 0
## 587 18481 0 0 46 186 0 0 86 130 0 0 0
## 588 18491 1 1 74 212 1 1 70 144 0 0 212
## 589 18511 0 1 54 211 0 1 94 152 0 0 211
## 590 18521 0 0 63 223 1 0 86 158 0 0 0
## 591 18551 0 1 58 206 0 1 108 192 1 1 206
## 592 18581 0 0 50 194 1 0 92 134 0 0 0
## 593 18631 0 0 71 193 1 0 82 115 0 0 0
## 594 18661 0 0 52 213 1 0 90 140 0 0 0
## 595 18681 0 0 63 318 0 1 82 126 0 0 0
## 596 18711 0 0 66 216 0 1 104 154 1 0 0
## 597 18731 0 0 60 211 1 0 66 128 0 0 0
## 598 18752 0 0 47 219 1 0 88 128 0 0 0
## 599 18771 0 0 57 322 1 0 98 144 1 0 0
## 600 18801 0 1 66 239 1 1 100 184 1 1 239
## 601 18841 0 1 66 195 1 0 104 158 1 1 195
## 602 18871 0 0 47 243 1 0 78 118 0 0 0
## 603 18921 0 0 60 223 1 1 92 122 0 0 0
## 604 18971 0 0 48 174 1 0 102 160 1 0 0
## 605 19003 0 1 61 163 1 1 86 144 0 0 163
## 606 19011 0 0 64 225 1 0 90 160 1 0 0
## 607 19061 1 0 46 252 1 0 122 158 1 0 0
## 608 19091 0 0 49 261 1 0 102 166 1 0 0
## 609 19121 0 0 51 184 1 0 88 118 0 0 0
## 610 19161 0 0 64 206 0 0 82 152 0 0 0
Evans <- read.table('https://raw.githubusercontent.com/taragonmd/data/master/evans.txt', sep = '', header = TRUE, na.strings = '.')
Evans[1:6, 1:9]
## id chd cat age chl smk ecg dbp sbp
## 1 21 0 0 56 270 0 0 80 138
## 2 31 0 0 43 159 1 0 74 128
## 3 51 1 1 56 201 1 1 112 164
## 4 71 0 1 64 179 1 0 100 200
## 5 74 0 0 49 243 1 0 82 145
## 6 91 0 0 46 252 1 0 88 142
str(Evans)
## 'data.frame': 609 obs. of 12 variables:
## $ id : int 21 31 51 71 74 91 111 131 141 191 ...
## $ chd: int 0 0 1 0 0 0 1 0 0 0 ...
## $ cat: int 0 0 1 1 0 0 0 0 0 0 ...
## $ age: int 56 43 56 64 49 46 52 63 42 55 ...
## $ chl: int 270 159 201 179 243 252 179 217 176 250 ...
## $ smk: int 0 1 1 1 1 1 1 0 1 0 ...
## $ ecg: int 0 0 1 0 0 0 1 0 0 1 ...
## $ dbp: int 80 74 112 100 82 88 80 92 76 114 ...
## $ sbp: int 138 128 164 200 145 142 128 135 114 182 ...
## $ hpt: int 0 0 1 1 0 0 0 0 0 1 ...
## $ ch : int 0 0 1 1 0 0 0 0 0 0 ...
## $ cc : int 0 0 201 179 0 0 0 0 0 0 ...
#question 3-Discretizing Continuous Variable into a Categorical Variable
age.cat <- function(x, lower = 0, upper, by = 10,
sep = "-", above.char = "+") {
labs <- c(paste(seq(lower, upper - by, by = by),
seq(lower + by - 1, upper - 1, by = by),
sep = sep),
paste(upper, above.char, sep = ""))
cut(floor(x), breaks = c(seq(lower, upper, by = by), Inf),
right = FALSE, labels = labs)
}
table(age.cat(Evans$age, upper = 70))
##
## 0-9 10-19 20-29 30-39 40-49 50-59 60-69 70+
## 0 0 0 0 247 203 115 44
table(age.cat(Evans$age, lower = 30, upper = 70))
##
## 30-39 40-49 50-59 60-69 70+
## 0 247 203 115 44
##Dates and Times #question 4 #R object
trump<- c("11/8/2016")
trump
## [1] "11/8/2016"
#Q.4(a)-As a Julian Date
trump.julian <- as.Date(trump, format = "%m/%d/%Y")
trump.julian
## [1] "2016-11-08"
#Q.4(b)-As day of the week
trumpdate<- c("2019-11-08")
trumpdate<- as.Date(trumpdate)
weekdays(trumpdate)
## [1] "Friday"
#Q.4(c)
format(as.Date("2019-11-08"), "%U")
## [1] "44"
#Question 5-2X2 Table
table(Evans$chd, Evans$smk)
##
## 0 1
## 0 205 333
## 1 17 54
ct <- matrix( c(205, 333, 17, 54), 2, 2)
rownames(ct) <- c('chd', 'no chd')
colnames(ct) <- c('Yes smk', 'No smk')
coltot <- apply(ct, 2, sum)
risks <- ct['chd', ]/coltot
odds<- risks/(1-risks)
odds.ratio <- odds/odds[2]
ct
## Yes smk No smk
## chd 205 17
## no chd 333 54
fisher.test(Evans$smk, Evans$chd)
##
## Fisher's Exact Test for Count Data
##
## data: Evans$smk and Evans$chd
## p-value = 0.02512
## alternative hypothesis: true odds ratio is not equal to 1
## 95 percent confidence interval:
## 1.079813 3.697097
## sample estimates:
## odds ratio
## 1.953491
#The contingency table results are statistically signification with a p-value of 0.025, assuming the alpha significance is set at 0.05. Also, since the 95% confidence interval does not include the numeric 1, one can reject the null hypothesis that the odds ratio is 1. Hence, given the table, the odds ratio of having coronary heart disease is 1.95 times that for non-smokers.
#Question 6-risk ratio
risk.ratio<- risks/risks[2]
risk.ratio
## Yes smk No smk
## 1.591406 1.000000
#Question 7-xtabs
xtabs(~chd + smk, data = Evans)
## smk
## chd 0 1
## 0 205 333
## 1 17 54
xtab3way <- xtabs(~chd + hpt + smk, data = Evans)
addmargins(xtab3way)
## , , smk = 0
##
## hpt
## chd 0 1 Sum
## 0 122 83 205
## 1 6 11 17
## Sum 128 94 222
##
## , , smk = 1
##
## hpt
## chd 0 1 Sum
## 0 204 129 333
## 1 22 32 54
## Sum 226 161 387
##
## , , smk = Sum
##
## hpt
## chd 0 1 Sum
## 0 326 212 538
## 1 28 43 71
## Sum 354 255 609
#Question 8 & 9
library(png)
myplot.png<- hist(Evans$age, main = "Evans Data", xlab = "Age")
myplot.png
## $breaks
## [1] 40 45 50 55 60 65 70 75 80
##
## $counts
## [1] 134 135 108 80 68 45 36 3
##
## $density
## [1] 0.0440065681 0.0443349754 0.0354679803 0.0262725780 0.0223316913
## [6] 0.0147783251 0.0118226601 0.0009852217
##
## $mids
## [1] 42.5 47.5 52.5 57.5 62.5 67.5 72.5 77.5
##
## $xname
## [1] "Evans$age"
##
## $equidist
## [1] TRUE
##
## attr(,"class")
## [1] "histogram"
#Question 9-Display PNG
knitr::include_graphics("Age Hist.png")
##Question 10 Using Regular Expressions #Read in data using Scan Function
cac<- scan('https://raw.githubusercontent.com/taragonmd/data/master/calcounty.txt', what = "" )
#remove “california”
cac1 = cac[1:58]
cac1
## [1] "Alameda" "Alpine" "Amador"
## [4] "Butte" "Calaveras" "Colusa"
## [7] "Contra Costa" "Del Norte" "El Dorado"
## [10] "Fresno" "Glenn" "Humboldt"
## [13] "Imperial" "Inyo" "Kern"
## [16] "Kings" "Lake" "Lassen"
## [19] "Los Angeles" "Madera" "Marin"
## [22] "Mariposa" "Mendocino" "Merced"
## [25] "Modoc" "Mono" "Monterey"
## [28] "Napa" "Nevada" "Orange"
## [31] "Placer" "Plumas" "Riverside"
## [34] "Sacramento" "San Benito" "San Bernardino"
## [37] "San Diego" "San Francisco" "San Joaquin"
## [40] "San Luis Obispo" "San Mateo" "Santa Barbara"
## [43] "Santa Clara" "Santa Cruz" "Shasta"
## [46] "Sierra" "Siskiyou" "Solano"
## [49] "Sonoma" "Stanislaus" "Sutter"
## [52] "Tehama" "Trinity" "Tulare"
## [55] "Tuolumne" "Ventura" "Yolo"
## [58] "Yuba"
#Use regular expressions to identify and display the County names that start with "San " and end with "o".
grep("San", cac1)
## [1] 35 36 37 38 39 40 41 42 43 44
grep("^San|o", cac1)
## [1] 3 6 7 8 9 10 12 14 19 22 23 25 26 27 34 35 36 37 38 39 40 41 42
## [24] 43 44 47 48 49 55 57
t<-grep("^San|o$", cac1)
cac1[t]
## [1] "El Dorado" "Fresno" "Inyo"
## [4] "Mendocino" "Mono" "Sacramento"
## [7] "San Benito" "San Bernardino" "San Diego"
## [10] "San Francisco" "San Joaquin" "San Luis Obispo"
## [13] "San Mateo" "Santa Barbara" "Santa Clara"
## [16] "Santa Cruz" "Solano" "Yolo"