##Project 1 #question 1-Using Source File Function

source('~/ph251d-hwk/Project1/problem1.R')
## [1] "Hello World"

#question 2-Reading ASCII Data Set

read.table('https://raw.githubusercontent.com/taragonmd/data/master/evans.txt')
##        V1  V2  V3  V4  V5  V6  V7  V8  V9 V10 V11 V12
## 1      id chd cat age chl smk ecg dbp sbp hpt  ch  cc
## 2      21   0   0  56 270   0   0  80 138   0   0   0
## 3      31   0   0  43 159   1   0  74 128   0   0   0
## 4      51   1   1  56 201   1   1 112 164   1   1 201
## 5      71   0   1  64 179   1   0 100 200   1   1 179
## 6      74   0   0  49 243   1   0  82 145   0   0   0
## 7      91   0   0  46 252   1   0  88 142   0   0   0
## 8     111   1   0  52 179   1   1  80 128   0   0   0
## 9     131   0   0  63 217   0   0  92 135   0   0   0
## 10    141   0   0  42 176   1   0  76 114   0   0   0
## 11    191   0   0  55 250   0   1 114 182   1   0   0
## 12    201   0   0  74 293   0   0 100 166   1   0   0
## 13    241   0   0  53 179   0   0  90 158   0   0   0
## 14    251   0   0  58 201   1   0  86 142   0   0   0
## 15    261   0   0  56 206   1   0  85 120   0   0   0
## 16    271   0   0  69 225   0   0  84 168   1   0   0
## 17    283   1   1  51 259   0   1 102 135   1   1 259
## 18    291   0   0  43 193   1   0  78 118   0   0   0
## 19    311   0   1  64 185   0   1 100 180   1   1 185
## 20    312   0   0  44 150   0   0 108 160   1   0   0
## 21    331   0   0  42 211   0   1  86 122   0   0   0
## 22    351   0   0  57 216   0   0  88 130   0   0   0
## 23    381   1   1  64 247   0   1  75 130   0   0 247
## 24    401   0   0  49 200   0   0  82 130   0   0   0
## 25    411   0   1  68 205   1   0  74 152   0   0 205
## 26    431   0   0  41 225   1   0  98 135   1   0   0
## 27    441   0   0  64 263   1   0  98 162   1   0   0
## 28    451   0   0  41 205   0   0  80 120   0   0   0
## 29    481   0   0  59 253   0   0  98 154   1   0   0
## 30    501   0   0  50 282   1   0  90 142   0   0   0
## 31    521   0   0  56 230   0   0  80 118   0   0   0
## 32    541   0   1  57 203   0   0 112 182   1   1 203
## 33    561   0   0  42 211   0   0  86 144   0   0   0
## 34    571   0   0  59 234   1   0  84 164   1   0   0
## 35    581   0   0  44 202   1   1  94 174   1   0   0
## 36    611   0   0  52 162   1   0  78 134   0   0   0
## 37    621   0   0  45 191   0   0  85 135   0   0   0
## 38    641   0   0  41 220   0   0 110 178   1   0   0
## 39    651   0   0  59 240   0   0  80 130   0   0   0
## 40    671   0   0  52 189   0   0 110 168   1   0   0
## 41    681   0   0  64 247   0   0 102 170   1   0   0
## 42    731   0   0  46 181   1   1 122 176   1   0   0
## 43    741   0   0  42 168   1   0  75 104   0   0   0
## 44    751   0   0  54 187   1   0  86 146   0   0   0
## 45    761   0   0  48 196   0   0  98 130   1   0   0
## 46    811   0   0  45 155   1   0  70 142   0   0   0
## 47    851   0   1  66 173   1   0 100 160   1   1 173
## 48    861   0   0  41 138   1   0  70 115   0   0   0
## 49    871   0   0  76 269   1   0  94 175   1   0   0
## 50    881   1   0  49 266   1   0 102 152   1   0   0
## 51    921   0   1  57 200   1   0 100 160   1   1 200
## 52    941   0   0  51 188   1   0  84 124   0   0   0
## 53    961   1   0  43 218   1   1 108 136   1   0   0
## 54    971   0   0  43 212   1   1  80 108   0   0   0
## 55    981   0   0  45 212   1   0 102 150   1   0   0
## 56    991   0   0  45 180   1   0  80 122   0   0   0
## 57   1061   1   1  46 166   0   1  76 162   1   1 166
## 58   1071   0   0  40 257   0   0  84 130   0   0   0
## 59   1081   0   0  48 243   1   1  82 154   0   0   0
## 60   1091   0   1  64 179   1   1 100 148   1   1 179
## 61   1111   0   0  70 167   1   0  64 112   0   0   0
## 62   1151   0   0  52 178   1   1  84 112   0   0   0
## 63   1171   0   0  55 178   0   0  94 152   0   0   0
## 64   1181   0   0  49 211   1   0  68 114   0   0   0
## 65   1191   1   0  56 171   1   0  85 125   0   0   0
## 66   1201   1   1  66 205   1   0  80 150   0   0 205
## 67   1221   0   0  48 229   1   0 130 195   1   0   0
## 68   1231   0   0  47 238   1   1 120 160   1   0   0
## 69   1471   0   1  54 195   1   0 112 174   1   1 195
## 70   1501   0   0  44 162   0   0  82 120   0   0   0
## 71   1561   0   0  51 240   1   1  84 126   0   0   0
## 72   1691   0   0  43 177   1   1 102 138   1   0   0
## 73   1701   0   0  68 252   1   1  88 112   0   0   0
## 74   1741   0   0  49 217   0   0 105 148   1   0   0
## 75   1751   0   0  55 263   0   0  84 114   0   0   0
## 76   1761   0   0  51 229   1   0 100 162   1   0   0
## 77   1791   0   0  50 245   0   0  96 144   1   0   0
## 78   1811   0   0  65 177   0   0  74 122   0   0   0
## 79   1821   0   0  42 203   1   0  78 134   0   0   0
## 80   1851   0   0  57 194   0   1  75 114   0   0   0
## 81   1881   0   0  42 288   0   0 110 142   1   0   0
## 82   1891   0   0  53 217   1   0  70 120   0   0   0
## 83   1901   0   1  57 163   0   0  94 184   1   1 163
## 84   1911   0   0  61 180   0   0  84 136   0   0   0
## 85   1951   0   0  53 209   1   0  98 142   1   0   0
## 86   1961   0   0  45 200   0   0  80 135   0   0   0
## 87   1971   0   0  44 194   1   0  80 120   0   0   0
## 88   2241   0   0  63 227   0   1  90 135   0   0   0
## 89   2252   0   0  42 158   1   0  92 135   0   0   0
## 90   2273   0   1  73 183   0   1 120 220   1   1 183
## 91   2281   0   0  47 253   1   0 110 140   1   0   0
## 92   2311   0   0  56 198   1   0  88 122   0   0   0
## 93   2371   1   0  41 228   1   0 132 162   1   0   0
## 94   2381   0   0  58 217   0   0  86 140   0   0   0
## 95   2391   0   0  55 163   1   0  70 110   0   0   0
## 96   2401   0   0  46 212   1   0 124 184   1   0   0
## 97   2461   0   0  57 144   0   0  95 130   1   0   0
## 98   2481   0   0  44 134   1   0  74 114   0   0   0
## 99   2501   0   1  52 183   1   0  96 158   1   1 183
## 100  2511   0   0  56 212   0   0 108 144   1   0   0
## 101  2531   0   0  64 214   1   0  82 128   0   0   0
## 102  2541   0   0  54 249   1   0  92 120   0   0   0
## 103  2571   0   0  52 180   1   1  78 104   0   0   0
## 104  2591   0   0  42 212   1   0  92 125   0   0   0
## 105  2611   0   0  46 167   1   0  82 120   0   0   0
## 106  2621   0   0  46 273   0   0  94 152   0   0   0
## 107  2631   0   0  42 210   1   0  96 134   1   0   0
## 108  2641   0   1  54 173   1   0 110 170   1   1 173
## 109  2671   0   0  43 256   1   0  72 114   0   0   0
## 110  2681   0   0  53 234   0   0  80 122   0   0   0
## 111  2691   1   0  40 221   1   0 100 140   1   0   0
## 112  2711   0   0  46 261   1   0  86 128   0   0   0
## 113  2731   0   0  43 299   0   0  80 116   0   0   0
## 114  2851   0   0  43 192   1   0  75 115   0   0   0
## 115  2861   0   0  47 185   1   1  80 146   0   0   0
## 116  2871   0   0  44 283   1   0  70 108   0   0   0
## 117  2881   0   0  49 176   1   0  92 134   0   0   0
## 118  2891   1   1  56 331   1   0 110 190   1   1 331
## 119  2901   1   0  56 203   1   0  82 120   0   0   0
## 120  2911   0   1  64 217   1   0  92 166   1   1 217
## 121  2921   0   0  54 164   1   0  72 122   0   0   0
## 122  2931   0   0  54 256   0   0  98 148   1   0   0
## 123  2991   0   0  51 184   0   0  98 170   1   0   0
## 124  3001   0   0  49 165   1   0  80 114   0   0   0
## 125  3011   0   0  47 189   0   0  92 145   0   0   0
## 126  3031   0   0  58 221   1   0  88 140   0   0   0
## 127  3061   0   1  70 126   1   1  66 164   1   1 126
## 128  3601   0   0  42 169   1   1  80 122   0   0   0
## 129  3611   0   0  59 266   0   0  92 138   0   0   0
## 130  3621   0   1  57 153   1   0  92 148   0   0 153
## 131  3651   0   1  76 211   1   1 114 228   1   1 211
## 132  3661   0   0  43 113   1   0  76 114   0   0   0
## 133  3701   0   0  46 200   1   0  85 145   0   0   0
## 134  3721   0   1  75 172   1   1 114 162   1   1 172
## 135  3751   0   0  42 131   0   0  84 130   0   0   0
## 136  3761   0   0  64 214   0   0  84 120   0   0   0
## 137  3771   0   1  63 236   0   1  94 190   1   1 236
## 138  3791   0   0  54 213   0   0  90 142   0   0   0
## 139  3811   0   0  66 226   0   0  90 166   1   0   0
## 140  3813   0   0  44 200   1   0 110 160   1   0   0
## 141  3841   0   0  72 188   0   0  78 130   0   0   0
## 142  3861   0   0  50 268   0   0 102 138   1   0   0
## 143  3871   0   1  59 195   0   1 114 208   1   1 195
## 144  3881   1   0  59 216   1   0  95 140   1   0   0
## 145  3891   0   0  53 182   1   0  92 130   0   0   0
## 146  3901   0   0  48 178   1   0  95 135   1   0   0
## 147  3911   0   0  40 191   1   0  76 152   0   0   0
## 148  3941   0   0  61 255   0   0  80 120   0   0   0
## 149  3951   0   0  42 225   1   0  80 126   0   0   0
## 150  4161   0   0  42 166   0   0  90 145   0   0   0
## 151  4191   0   0  49 278   1   0  84 126   0   0   0
## 152  4202   0   0  40 235   0   0  72 116   0   0   0
## 153  4221   0   0  51 251   1   0  86 128   0   0   0
## 154  4242   0   0  44 217   0   0  90 146   0   0   0
## 155  4261   0   0  44 181   1   0  94 144   0   0   0
## 156  4271   0   0  47 208   0   0 108 178   1   0   0
## 157  4291   0   0  51 182   0   0 112 182   1   0   0
## 158  4301   0   0  69 228   1   0  75 115   0   0   0
## 159  4321   0   1  58 170   1   1  88 152   0   0 170
## 160  4331   0   1  74 147   0   1  80 200   1   1 147
## 161  4341   0   0  48 190   1   0  78 114   0   0   0
## 162  4381   0   0  64 205   0   1  98 140   1   0   0
## 163  4401   0   0  53 216   1   0  78 124   0   0   0
## 164  4411   0   0  71 170   1   0  90 140   0   0   0
## 165  4421   0   0  47 127   1   0  74 110   0   0   0
## 166  4451   0   0  56 235   1   0  92 128   0   0   0
## 167  4461   0   0  40 200   0   0  72 118   0   0   0
## 168  4491   0   0  46 283   1   0 100 148   1   0   0
## 169  4531   0   1  68 157   0   0  94 162   1   1 157
## 170  4551   1   0  54 206   0   1  76 142   0   0   0
## 171  4581   0   0  54 197   1   0  88 125   0   0   0
## 172  4591   0   0  45 163   1   0  75 115   0   0   0
## 173  4601   0   0  66 176   0   1  60 124   0   0   0
## 174  4641   0   0  58 211   1   0  88 146   0   0   0
## 175  4681   0   0  49 161   0   0  75 115   0   0   0
## 176  4711   0   0  51 244   0   0  90 128   0   0   0
## 177  4731   0   0  44 172   0   0 100 138   1   0   0
## 178  4751   0   1  61 166   1   0  86 156   0   0 166
## 179  4771   0   0  48 184   1   0  76 116   0   0   0
## 180  4781   0   0  63 143   1   0  92 122   0   0   0
## 181  4791   0   0  54 196   1   0  84 138   0   0   0
## 182  4801   0   0  52 189   1   0  88 142   0   0   0
## 183  4811   0   0  45 227   1   1  98 140   1   0   0
## 184  4821   0   0  62 236   0   0  94 160   1   0   0
## 185  4831   0   0  41 240   0   0  86 144   0   0   0
## 186  4851   0   0  41 256   1   0  90 145   0   0   0
## 187  4861   0   0  61 200   1   0  84 148   0   0   0
## 188  4871   0   0  42 199   1   0 104 166   1   0   0
## 189  4901   0   0  42 161   0   0  88 124   0   0   0
## 190  4911   0   0  72 211   0   1  80 104   0   0   0
## 191  4951   0   0  43 180   0   0  64  92   0   0   0
## 192  4961   1   0  72 200   0   1  86 138   0   0   0
## 193  4971   0   0  51 206   1   0  80 132   0   0   0
## 194  4981   0   0  58 254   1   0  94 152   0   0   0
## 195  5011   0   0  41 215   1   0  90 142   0   0   0
## 196  5061   0   1  71 162   1   1  98 184   1   1 162
## 197  5071   1   0  63 145   1   0  96 162   1   0   0
## 198  5091   0   0  44 220   1   1  90 130   0   0   0
## 199  5101   0   0  45 298   1   0 108 170   1   0   0
## 200  5111   0   0  54 300   1   0  94 148   0   0   0
## 201  5131   1   1  52 306   1   0 108 178   1   1 306
## 202  5141   0   0  55 302   1   1 134 206   1   0   0
## 203  5181   1   0  41 158   1   0  80 140   0   0   0
## 204  5191   0   0  54 194   1   1 130 170   1   0   0
## 205  5211   0   1  64 229   1   1  94 156   0   0 229
## 206  5251   0   0  61 259   0   0  82 118   0   0   0
## 207  5281   0   0  40 214   0   0  94 130   0   0   0
## 208  5301   0   0  51 168   1   0 106 156   1   0   0
## 209  5361   0   0  51 265   1   0  90 158   0   0   0
## 210  5391   0   0  75 225   0   0  80 125   0   0   0
## 211  5421   1   0  40 219   1   0  80 115   0   0   0
## 212  5451   1   0  63 202   0   0 110 160   1   0   0
## 213  5461   0   1  42 217   0   1  94 138   0   0 217
## 214  5471   1   0  64 231   1   0  85 120   0   0   0
## 215  5521   1   0  50 215   1   0 114 170   1   0   0
## 216  5601   0   0  49 146   1   1  98 145   1   0   0
## 217  5621   0   0  48 198   1   0  75 120   0   0   0
## 218  5631   0   0  58 206   0   0  92 154   0   0   0
## 219  5641   0   0  46 227   1   0  98 168   1   0   0
## 220  5671   0   0  46 214   1   1  92 166   1   0   0
## 221  6341   0   0  42 225   1   1 100 162   1   0   0
## 222  6351   0   0  57 193   0   0  86 124   0   0   0
## 223  6371   0   0  50 186   0   0 102 160   1   0   0
## 224  6391   0   0  46 147   1   0  85 122   0   0   0
## 225  6411   0   0  45 205   0   0 100 166   1   0   0
## 226  6421   0   1  57 196   1   1  98 196   1   1 196
## 227  6441   0   0  46 195   0   0  96 138   1   0   0
## 228  6451   0   1  45 153   1   1 108 212   1   1 153
## 229  6461   0   1  58 172   0   1  96 168   1   1 172
## 230  6482   0   0  42 293   1   0 110 176   1   0   0
## 231  6491   0   0  53 274   1   0 106 158   1   0   0
## 232  6501   0   0  55 221   0   0 106 162   1   0   0
## 233  6511   0   0  53 197   0   0  70 112   0   0   0
## 234  6531   0   1  69 194   0   1 100 150   1   1 194
## 235  6551   0   0  58 204   1   0  74 122   0   0   0
## 236  6561   0   0  46 203   1   0  84 114   0   0   0
## 237  6591   0   0  62 293   1   1  90 142   0   0   0
## 238  6631   0   0  61 197   0   1  72 110   0   0   0
## 239  6641   0   0  49 195   1   0  82 138   0   0   0
## 240  6651   0   0  48 184   1   0  96 144   1   0   0
## 241  6661   1   0  55 209   1   0  85 130   0   0   0
## 242  6681   0   1  52 209   0   1  98 170   1   1 209
## 243  6691   0   0  61 214   0   0 100 158   1   0   0
## 244  6721   0   1  68 130   0   1 106 200   1   1 130
## 245  6731   0   0  55 196   0   0  70 125   0   0   0
## 246  6741   0   1  52 237   0   1 126 224   1   1 237
## 247  6751   0   0  43 185   1   1  85 140   0   0   0
## 248  6761   1   0  47 248   1   1 104 132   1   0   0
## 249  6781   0   0  57 252   0   0 106 166   1   0   0
## 250  6791   0   0  55 198   1   0  96 144   1   0   0
## 251  6801   0   0  71 176   0   0  62 138   0   0   0
## 252  6811   0   1  74 193   0   1  98 202   1   1 193
## 253  6821   1   0  65 185   0   0 105 156   1   0   0
## 254  6831   0   0  65 241   0   1 102 146   1   0   0
## 255  6871   0   0  44 231   0   0  70 108   0   0   0
## 256  6881   0   0  40 157   0   1  78 122   0   0   0
## 257  6891   0   0  45 152   1   1 106 148   1   0   0
## 258  6911   0   0  50 237   1   0 102 156   1   0   0
## 259  6921   0   1  64 175   0   1 110 142   1   1 175
## 260  6931   1   0  56 195   0   1  94 150   0   0   0
## 261  6941   0   1  62 151   0   0  88 165   1   1 151
## 262  6961   0   0  44 205   1   0  80 128   0   0   0
## 263  6981   0   0  73 190   0   0  75 115   0   0   0
## 264  7001   0   0  46 239   1   0 100 160   1   0   0
## 265  7021   0   0  51 232   0   0  80 120   0   0   0
## 266  7031   0   1  59 170   1   0 100 180   1   1 170
## 267  7051   1   1  67 319   0   0 104 182   1   1 319
## 268  7091   0   0  54 225   0   0  86 122   0   0   0
## 269  7101   0   0  49 252   1   0  90 128   0   0   0
## 270  7121   0   0  46 224   1   0  84 130   0   0   0
## 271  7131   0   1  42 229   0   1  90 145   0   0 229
## 272  8641   0   0  68 195   1   1  76 116   0   0   0
## 273  8651   0   0  43 230   1   1  85 135   0   0   0
## 274  8671   0   1  56 186   0   1  98 154   1   1 186
## 275  8682   0   1  68 192   1   0  94 154   0   0 192
## 276  8711   0   0  46 184   1   0  78 110   0   0   0
## 277  8721   1   1  64 233   1   0  94 140   0   0 233
## 278  8731   0   0  54 175   1   0  96 156   1   0   0
## 279  8751   0   0  48 188   1   0 106 148   1   0   0
## 280  8771   0   0  41 232   1   0  82 126   0   0   0
## 281  8811   0   1  65 178   0   1 106 194   1   1 178
## 282  8841   0   0  41 187   0   0 108 154   1   0   0
## 283  8851   1   0  42 207   1   1  86 128   0   0   0
## 284  8971   0   0  66  94   0   0  86 134   0   0   0
## 285  8981   0   0  44 211   1   0  90 142   0   0   0
## 286  9011   0   0  42 275   1   1 100 150   1   0   0
## 287  9021   0   0  51 165   1   0  85 130   0   0   0
## 288  9031   0   0  56 282   1   0  94 134   0   0   0
## 289  9051   1   1  64 239   1   0  94 162   1   1 239
## 290  9061   0   0  44 256   1   0 106 162   1   0   0
## 291  9071   1   0  55 175   1   0 108 160   1   0   0
## 292  9091   0   0  55 306   1   0  82 160   1   0   0
## 293  9101   1   0  67 188   0   1 102 168   1   0   0
## 294  9191   1   1  56 221   1   1  78 154   0   0 221
## 295  9201   1   1  63 213   0   1 156 256   1   1 213
## 296  9261   1   0  67 250   0   0 100 158   1   0   0
## 297  9471   0   0  48 268   1   0 120 172   1   0   0
## 298  9601   1   0  45 263   0   0  86 132   0   0   0
## 299  9631   0   0  49 150   1   1  98 120   1   0   0
## 300  9651   1   1  70 251   1   1 108 174   1   1 251
## 301  9671   0   0  45 180   1   0 102 156   1   0   0
## 302  9681   0   0  48 336   1   0 110 174   1   0   0
## 303  9711   1   0  42 210   1   0  70 124   0   0   0
## 304  9721   0   1  69 179   1   0 110 175   1   1 179
## 305  9731   0   0  44 177   0   0  75 120   0   0   0
## 306  9751   0   0  48 227   1   0  92 158   0   0   0
## 307  9791   0   0  46 195   1   0  72 120   0   0   0
## 308  9801   0   0  52 227   1   0  76 116   0   0   0
## 309  9811   0   0  73 250   0   0  84 154   0   0   0
## 310  9831   0   0  67 218   0   1  96 148   1   0   0
## 311  9841   0   0  63 229   1   0 100 168   1   0   0
## 312  9871   0   1  45 197   0   1  80 134   0   0 197
## 313  9881   0   0  46 190   1   0  86 122   0   0   0
## 314  9891   0   1  68 189   1   1 104 202   1   1 189
## 315  9901   0   0  49 185   1   0  80 120   0   0   0
## 316  9911   1   0  63 194   1   0  90 190   1   0   0
## 317  9931   0   0  59 192   0   0  66 134   0   0   0
## 318  9941   0   1  67 261   1   1  80 160   1   1 261
## 319  9951   0   0  49 174   0   1  78 108   0   0   0
## 320  9961   0   1  65 189   1   1 114 168   1   1 189
## 321  9981   0   0  44 248   1   0 100 145   1   0   0
## 322 10011   0   0  45 214   0   0  94 122   0   0   0
## 323 10041   0   0  47 275   1   0  76 114   0   0   0
## 324 10051   0   0  46 259   1   0  92 130   0   0   0
## 325 10071   0   0  52 230   0   0  68 100   0   0   0
## 326 10091   0   0  60 206   1   0  84 138   0   0   0
## 327 10121   0   0  45 275   1   0  95 125   1   0   0
## 328 10151   1   1  67 237   1   1 100 170   1   1 237
## 329 10181   0   0  60 289   0   1  80 118   0   0   0
## 330 10201   0   1  65 176   1   0  82 200   1   1 176
## 331 10221   0   1  72 232   1   1  80 210   1   1 232
## 332 10231   1   0  71 184   1   0  90 160   1   0   0
## 333 10241   0   0  55 283   1   1 108 178   1   0   0
## 334 10271   0   0  54 214   1   0 110 170   1   0   0
## 335 10401   0   1  52 161   1   0  76 162   1   1 161
## 336 10402   0   0  48 232   1   0  98 154   1   0   0
## 337 10921   0   0  66 228   1   0  72 120   0   0   0
## 338 10951   0   1  52 206   0   1 120 206   1   1 206
## 339 10971   0   0  64 218   1   0  80 110   0   0   0
## 340 11011   0   0  42 262   1   0  92 142   0   0   0
## 341 11081   0   0  52 227   0   0  66  98   0   0   0
## 342 11101   0   0  51 215   0   0  60 100   0   0   0
## 343 11141   0   0  54 146   0   0  70 115   0   0   0
## 344 11151   0   0  51 268   1   0  85 140   0   0   0
## 345 11161   0   0  60 211   0   0  94 166   1   0   0
## 346 11221   0   0  48 213   1   1  90 145   0   0   0
## 347 11281   0   0  73 249   1   0 108 206   1   0   0
## 348 11291   0   0  50 218   1   0  92 130   0   0   0
## 349 11321   0   0  45 221   0   0  92 128   0   0   0
## 350 11341   1   1  56 228   1   0  92 152   0   0 228
## 351 11351   1   0  46 240   1   0 104 142   1   0   0
## 352 11361   1   1  76 279   1   0  96 136   1   1 279
## 353 11391   0   0  52 186   0   0  70 118   0   0   0
## 354 11441   0   0  54 160   1   1 110 200   1   0   0
## 355 11461   0   1  53 222   0   1 104 154   1   1 222
## 356 11481   0   0  43 211   1   0  65 112   0   0   0
## 357 11491   0   0  46 195   1   1 132 230   1   0   0
## 358 11501   0   0  63 290   0   0  90 150   0   0   0
## 359 11511   0   0  44 220   0   0  95 138   1   0   0
## 360 11531   0   0  42 161   1   0  80 124   0   0   0
## 361 11553   0   1  74 212   1   0  98 164   1   1 212
## 362 11611   0   0  53 182   1   0  86 136   0   0   0
## 363 11651   0   1  56 223   1   1 110 208   1   1 223
## 364 11661   0   0  47 290   1   0  92 136   0   0   0
## 365 11711   0   0  43 249   1   1  90 162   1   0   0
## 366 11721   0   0  51 174   1   0  92 124   0   0   0
## 367 11731   0   1  63 204   1   1  92 190   1   1 204
## 368 11781   0   0  49 245   1   0  62 124   0   0   0
## 369 11791   0   1  57 216   1   0 114 174   1   1 216
## 370 11811   0   0  43 245   0   1 120 145   1   0   0
## 371 11831   0   0  58 151   1   0  98 138   1   0   0
## 372 11851   0   1  49 178   1   0 102 166   1   1 178
## 373 11891   0   0  47 227   1   0  88 132   0   0   0
## 374 11911   0   0  45 253   1   0 104 152   1   0   0
## 375 11941   1   1  65 222   0   1  88 162   1   1 222
## 376 11971   0   0  51 258   1   1  94 178   1   0   0
## 377 11981   0   0  49 182   1   1  84 124   0   0   0
## 378 11991   0   0  51 184   1   0  96 150   1   0   0
## 379 12051   1   0  67 357   0   0  90 129   0   0   0
## 380 12111   0   0  47 193   1   0  90 135   0   0   0
## 381 12121   0   0  50 198   1   1  82 136   0   0   0
## 382 12141   0   0  48 263   0   0  76 102   0   0   0
## 383 12151   0   0  48 254   0   0  74 124   0   0   0
## 384 12181   0   0  64 248   1   0  74 126   0   0   0
## 385 12221   0   0  43 197   1   0  84 122   0   0   0
## 386 12231   0   0  41 282   0   0  98 132   1   0   0
## 387 12241   0   0  48 238   1   0 106 144   1   0   0
## 388 12251   0   0  50 156   1   0  74 122   0   0   0
## 389 12271   0   0  46 234   1   0  70 120   0   0   0
## 390 12281   0   0  44 203   1   0  82 110   0   0   0
## 391 12291   1   0  65 200   1   0  90 160   1   0   0
## 392 12293   0   0  44 209   1   0  84 132   0   0   0
## 393 12311   0   0  40 245   0   0  94 142   0   0   0
## 394 12351   0   0  56 124   0   0  86 142   0   0   0
## 395 12371   0   1  56 199   1   1  86 154   0   0 199
## 396 12381   1   0  47 148   1   1  85 145   0   0   0
## 397 12391   0   0  48 246   1   0  92 122   0   0   0
## 398 12401   0   0  46 233   0   0  96 138   1   0   0
## 399 12431   0   0  48 265   1   1 100 142   1   0   0
## 400 12461   0   0  50 207   1   1  86 142   0   0   0
## 401 12471   0   0  69 227   1   1  72 108   0   0   0
## 402 12481   0   0  45 205   1   1 130 182   1   0   0
## 403 12641   0   0  57 189   1   1 102 128   1   0   0
## 404 12681   1   0  69 191   1   0 102 164   1   0   0
## 405 12741   0   0  45 171   1   0  91 145   0   0   0
## 406 12742   0   0  52 178   1   1  91 145   0   0   0
## 407 12751   0   0  63 229   1   0  94 148   0   0   0
## 408 12761   0   1  61 169   1   0  90 140   0   0 169
## 409 12801   0   0  48 238   1   0  88 134   0   0   0
## 410 12831   1   0  45 216   1   0  94 138   0   0   0
## 411 12861   0   1  66 178   0   0 110 198   1   1 178
## 412 12891   0   0  54 173   0   0  92 162   1   0   0
## 413 12901   0   0  45 173   1   0  64 120   0   0   0
## 414 12911   1   0  66 180   1   1 104 162   1   0   0
## 415 12921   0   0  53 168   1   0 110 154   1   0   0
## 416 12941   0   0  40 277   0   0  80 120   0   0   0
## 417 13021   0   0  55 181   1   0  78 132   0   0   0
## 418 13041   0   0  48 272   1   1  98 156   1   0   0
## 419 13051   0   0  49 307   0   0  88 130   0   0   0
## 420 13101   0   0  61 203   0   1  94 146   0   0   0
## 421 13111   0   0  41 212   1   0  90 120   0   0   0
## 422 13121   0   0  43 248   1   0 118 142   1   0   0
## 423 13131   0   0  47 208   1   0 110 160   1   0   0
## 424 13321   0   0  46 218   1   0  86 126   0   0   0
## 425 13351   0   1  63 163   1   0  76 175   1   1 163
## 426 13391   0   0  62 261   1   0  88 130   0   0   0
## 427 13421   0   0  72 224   0   1 100 190   1   0   0
## 428 13431   0   0  50 292   1   1  80 128   0   0   0
## 429 13451   0   0  46 202   1   1 100 172   1   0   0
## 430 13461   0   0  44 145   1   0  72 114   0   0   0
## 431 13471   0   1  46 183   1   1  88 162   1   1 183
## 432 13481   0   0  47 188   1   0  88 126   0   0   0
## 433 13511   0   1  51 209   1   0 106 180   1   1 209
## 434 13521   0   0  46 217   1   0  84 144   0   0   0
## 435 13531   0   0  47 180   1   0  78 126   0   0   0
## 436 13541   0   0  44 190   0   0  90 140   0   0   0
## 437 13551   0   0  55 211   1   0  80 115   0   0   0
## 438 13571   0   0  56 204   1   0  76 124   0   0   0
## 439 13591   0   0  54 185   0   0  98 170   1   0   0
## 440 13611   1   0  50 206   1   0  70 108   0   0   0
## 441 13641   0   0  59 265   1   0  96 150   1   0   0
## 442 13651   0   0  47 246   0   0  80 130   0   0   0
## 443 13661   0   1  65 171   0   0 102 166   1   1 171
## 444 13662   0   0  41 211   0   0  91 145   0   0   0
## 445 13671   0   0  47 139   1   1  96 192   1   0   0
## 446 13691   0   0  49 155   0   0  84 124   0   0   0
## 447 13721   0   0  50 229   0   0  90 134   0   0   0
## 448 13731   0   1  56 148   1   0 110 168   1   1 148
## 449 13751   0   0  50 198   1   0  86 134   0   0   0
## 450 13761   0   1  55 186   1   0 120 172   1   1 186
## 451 13771   0   0  52 211   1   0  70 112   0   0   0
## 452 13811   0   0  57 210   1   0  80 120   0   0   0
## 453 13841   1   1  47 212   1   1 122 220   1   1 212
## 454 13861   0   0  59 227   0   0  70 122   0   0   0
## 455 13901   0   0  47 232   0   0  90 142   0   0   0
## 456 13911   0   0  42 176   1   0  88 122   0   0   0
## 457 13931   0   0  56 166   0   0  86 126   0   0   0
## 458 13941   1   0  43 268   1   1  88 132   0   0   0
## 459 13951   0   0  55 178   1   0  80 104   0   0   0
## 460 13961   0   1  49 147   1   1 134 300   1   1 147
## 461 13971   0   1  71 164   0   0  94 174   1   1 164
## 462 14041   0   1  71 187   0   1 114 172   1   1 187
## 463 14071   0   1  69 165   0   1  96 140   1   1 165
## 464 14691   0   0  47 250   1   1  88 122   0   0   0
## 465 14701   0   0  44 199   1   0  70 120   0   0   0
## 466 14711   1   1  65 233   1   1 116 180   1   1 233
## 467 14731   0   0  65 182   0   0  74 124   0   0   0
## 468 14741   0   0  40 210   0   0  94 128   0   0   0
## 469 14751   0   0  47 235   1   0  86 128   0   0   0
## 470 14761   0   0  54 172   1   0  92 144   0   0   0
## 471 14771   0   1  64 198   0   0 100 178   1   1 198
## 472 14781   0   1  59 212   0   1  90 198   1   1 212
## 473 14801   0   0  72 285   1   1  90 150   0   0   0
## 474 14811   0   0  52 194   0   0  82 132   0   0   0
## 475 14861   0   0  56 237   0   0  70 106   0   0   0
## 476 14871   0   0  56 153   0   1  66  96   0   0   0
## 477 14881   0   0  54 219   1   0  92 152   0   0   0
## 478 14901   0   1  60 188   1   1 114 210   1   1 188
## 479 14911   0   0  63 276   0   1  95 145   1   0   0
## 480 14931   0   0  73 203   1   0  68 130   0   0   0
## 481 14941   1   0  49 228   1   0  98 140   1   0   0
## 482 14981   0   0  57 199   0   0  80 134   0   0   0
## 483 15001   0   1  53 162   1   0  90 158   0   0 162
## 484 15011   0   0  43 221   1   0  94 125   0   0   0
## 485 15021   0   0  68 150   0   0  78 145   0   0   0
## 486 15031   0   0  53 140   1   0  80 120   0   0   0
## 487 15041   0   0  50 162   0   1  65 110   0   0   0
## 488 15061   0   0  49 171   1   1  86 125   0   0   0
## 489 15091   0   0  62 206   0   0  94 144   0   0   0
## 490 15111   0   0  52 226   1   0  76 130   0   0   0
## 491 15121   0   1  57 113   1   1  94 146   0   0 113
## 492 15141   0   0  45 197   0   0  78 118   0   0   0
## 493 15161   0   0  50 180   1   0  88 132   0   0   0
## 494 15171   0   1  50 180   1   1 118 214   1   1 180
## 495 15191   0   0  53 196   1   0  86 144   0   0   0
## 496 15201   0   0  51 211   0   0  98 135   1   0   0
## 497 15211   0   1  58 164   1   1  96 155   1   1 164
## 498 15221   0   0  64 218   0   0  85 154   0   0   0
## 499 15251   1   0  49 191   1   0  76 132   0   0   0
## 500 15271   0   0  55 189   0   0  64 110   0   0   0
## 501 15311   0   0  50 156   1   0  82 114   0   0   0
## 502 15321   0   0  50 223   1   0  80 130   0   0   0
## 503 15361   0   0  57 165   1   0  76 132   0   0   0
## 504 15401   0   1  55 200   1   1  94 188   1   1 200
## 505 15421   0   1  48 162   1   1 135 250   1   1 162
## 506 15431   0   1  56 207   1   0 110 172   1   1 207
## 507 15441   0   0  72 262   1   0  84 172   1   0   0
## 508 15511   1   1  67 236   0   1 106 200   1   1 236
## 509 15541   0   1  70 192   0   1  90 162   1   1 192
## 510 15562   0   1  57 203   1   0 100 170   1   1 203
## 511 15611   0   1  67 200   0   1 160 224   1   1 200
## 512 15641   0   0  62 280   1   0  86 124   0   0   0
## 513 15651   0   1  72 229   1   1 140 270   1   1 229
## 514 15661   0   0  70 290   0   0  84 138   0   0   0
## 515 15671   0   0  65 222   0   0  88 146   0   0   0
## 516 15691   0   0  58 259   0   1 100 154   1   0   0
## 517 15711   0   0  64 205   0   0  80 140   0   0   0
## 518 15761   0   0  44 276   1   0  74 112   0   0   0
## 519 15791   0   0  55 171   0   0  68 110   0   0   0
## 520 15831   0   0  71 287   0   0  90 130   0   0   0
## 521 15851   1   0  72 174   1   1  78 192   1   0   0
## 522 15882   0   0  71 277   0   1 110 200   1   0   0
## 523 15891   0   0  54 192   0   0  85 130   0   0   0
## 524 15911   0   0  51 196   1   0  90 128   0   0   0
## 525 15921   0   0  68 203   1   0  74 138   0   0   0
## 526 15931   0   0  47 271   1   0  85 145   0   0   0
## 527 15941   0   1  49 169   0   1  85 145   0   0 169
## 528 15951   0   0  48 201   1   0  98 150   1   0   0
## 529 15981   0   0  74 244   0   0  94 164   1   0   0
## 530 15991   0   0  49 161   0   0  92 120   0   0   0
## 531 16321   1   0  53 192   1   0 106 164   1   0   0
## 532 16431   0   0  46 192   1   1  86 116   0   0   0
## 533 16441   0   0  59 230   1   0  84 158   0   0   0
## 534 16461   0   0  50 312   0   1  98 138   1   0   0
## 535 16481   1   1  69 230   0   1 100 170   1   1 230
## 536 16501   1   1  75 233   1   1  90 222   1   1 233
## 537 16531   0   0  42 207   1   0  72 106   0   0   0
## 538 16541   0   0  50 317   0   1  90 138   0   0   0
## 539 16571   0   0  44 213   1   0  84 118   0   0   0
## 540 16581   0   0  44 220   0   0  98 140   1   0   0
## 541 16591   0   0  42 225   0   0  95 140   1   0   0
## 542 16622   0   0  42 288   1   0 104 150   1   0   0
## 543 16691   0   0  44 168   1   1  94 134   0   0   0
## 544 16701   0   1  57 182   1   1  96 138   1   1 182
## 545 16711   1   1  68 242   1   0  84 128   0   0 242
## 546 16752   0   0  69 258   1   0  82 145   0   0   0
## 547 16761   0   1  74 172   1   0 100 190   1   1 172
## 548 16841   0   1  56 239   1   1 140 220   1   1 239
## 549 16871   1   1  58 209   1   1  94 140   0   0 209
## 550 16891   0   0  46 181   0   0  84 124   0   0   0
## 551 16911   0   1  60 199   0   0 100 162   1   1 199
## 552 16931   0   0  62 217   1   0  90 144   0   0   0
## 553 16971   0   0  74 200   1   0  78 118   0   0   0
## 554 17071   0   0  44 268   1   0  80 126   0   0   0
## 555 17111   0   0  54 202   0   0  86 134   0   0   0
## 556 17121   0   0  49 224   1   1  86 134   0   0   0
## 557 17131   0   0  46 302   1   0 102 160   1   0   0
## 558 17151   0   0  45 239   0   0  90 128   0   0   0
## 559 17161   0   0  57 205   0   0  88 140   0   0   0
## 560 17171   0   1  56 192   0   1 170 270   1   1 192
## 561 17181   0   0  42 282   1   0 114 170   1   0   0
## 562 17191   0   0  52 232   1   0  94 144   0   0   0
## 563 17211   0   0  49 229   1   0  92 162   1   0   0
## 564 17231   0   0  51 336   1   0  86 130   0   0   0
## 565 17251   0   0  40 146   0   0  84 125   0   0   0
## 566 17271   0   0  43 224   0   0  72 115   0   0   0
## 567 17291   0   0  45 228   1   1  76 136   0   0   0
## 568 17361   0   0  63 211   1   0 108 144   1   0   0
## 569 17401   0   0  52 212   0   0  76 118   0   0   0
## 570 17481   1   1  67 243   1   1 118 220   1   1 243
## 571 17961   0   1  72 208   1   1  94 174   1   1 208
## 572 17991   0   0  54 284   1   0  98 146   1   0   0
## 573 18061   0   0  52 190   1   1  88 130   0   0   0
## 574 18071   0   0  49 264   0   0  92 162   1   0   0
## 575 18101   0   0  42 288   0   0 108 146   1   0   0
## 576 18121   0   0  41 181   1   0  94 136   0   0   0
## 577 18131   1   1  56 283   1   0 100 188   1   1 283
## 578 18141   0   0  46 217   1   0  66 120   0   0   0
## 579 18151   1   0  52 250   1   0  80 132   0   0   0
## 580 18161   0   0  44 209   1   0  70 116   0   0   0
## 581 18171   1   0  43 189   1   0 106 154   1   0   0
## 582 18201   0   0  73 190   0   0  78 138   0   0   0
## 583 18401   0   0  54 223   1   0  82 122   0   0   0
## 584 18411   0   0  46 241   1   0  84 120   0   0   0
## 585 18421   0   0  44 214   1   1  96 142   1   0   0
## 586 18441   0   0  43 207   0   0  86 122   0   0   0
## 587 18481   0   0  46 186   0   0  86 130   0   0   0
## 588 18491   1   1  74 212   1   1  70 144   0   0 212
## 589 18511   0   1  54 211   0   1  94 152   0   0 211
## 590 18521   0   0  63 223   1   0  86 158   0   0   0
## 591 18551   0   1  58 206   0   1 108 192   1   1 206
## 592 18581   0   0  50 194   1   0  92 134   0   0   0
## 593 18631   0   0  71 193   1   0  82 115   0   0   0
## 594 18661   0   0  52 213   1   0  90 140   0   0   0
## 595 18681   0   0  63 318   0   1  82 126   0   0   0
## 596 18711   0   0  66 216   0   1 104 154   1   0   0
## 597 18731   0   0  60 211   1   0  66 128   0   0   0
## 598 18752   0   0  47 219   1   0  88 128   0   0   0
## 599 18771   0   0  57 322   1   0  98 144   1   0   0
## 600 18801   0   1  66 239   1   1 100 184   1   1 239
## 601 18841   0   1  66 195   1   0 104 158   1   1 195
## 602 18871   0   0  47 243   1   0  78 118   0   0   0
## 603 18921   0   0  60 223   1   1  92 122   0   0   0
## 604 18971   0   0  48 174   1   0 102 160   1   0   0
## 605 19003   0   1  61 163   1   1  86 144   0   0 163
## 606 19011   0   0  64 225   1   0  90 160   1   0   0
## 607 19061   1   0  46 252   1   0 122 158   1   0   0
## 608 19091   0   0  49 261   1   0 102 166   1   0   0
## 609 19121   0   0  51 184   1   0  88 118   0   0   0
## 610 19161   0   0  64 206   0   0  82 152   0   0   0
Evans <- read.table('https://raw.githubusercontent.com/taragonmd/data/master/evans.txt', sep = '', header = TRUE, na.strings = '.')
Evans[1:6, 1:9]
##   id chd cat age chl smk ecg dbp sbp
## 1 21   0   0  56 270   0   0  80 138
## 2 31   0   0  43 159   1   0  74 128
## 3 51   1   1  56 201   1   1 112 164
## 4 71   0   1  64 179   1   0 100 200
## 5 74   0   0  49 243   1   0  82 145
## 6 91   0   0  46 252   1   0  88 142
str(Evans)
## 'data.frame':    609 obs. of  12 variables:
##  $ id : int  21 31 51 71 74 91 111 131 141 191 ...
##  $ chd: int  0 0 1 0 0 0 1 0 0 0 ...
##  $ cat: int  0 0 1 1 0 0 0 0 0 0 ...
##  $ age: int  56 43 56 64 49 46 52 63 42 55 ...
##  $ chl: int  270 159 201 179 243 252 179 217 176 250 ...
##  $ smk: int  0 1 1 1 1 1 1 0 1 0 ...
##  $ ecg: int  0 0 1 0 0 0 1 0 0 1 ...
##  $ dbp: int  80 74 112 100 82 88 80 92 76 114 ...
##  $ sbp: int  138 128 164 200 145 142 128 135 114 182 ...
##  $ hpt: int  0 0 1 1 0 0 0 0 0 1 ...
##  $ ch : int  0 0 1 1 0 0 0 0 0 0 ...
##  $ cc : int  0 0 201 179 0 0 0 0 0 0 ...

#question 3-Discretizing Continuous Variable into a Categorical Variable

age.cat <- function(x, lower = 0, upper, by = 10,
                    sep = "-", above.char = "+") {
  
  labs <- c(paste(seq(lower, upper - by, by = by),
                  seq(lower + by - 1, upper - 1, by = by),
                  sep = sep),
            paste(upper, above.char, sep = ""))
  
  cut(floor(x), breaks = c(seq(lower, upper, by = by), Inf),
      right = FALSE, labels = labs)
}
table(age.cat(Evans$age, upper = 70))
## 
##   0-9 10-19 20-29 30-39 40-49 50-59 60-69   70+ 
##     0     0     0     0   247   203   115    44
table(age.cat(Evans$age, lower = 30, upper = 70))
## 
## 30-39 40-49 50-59 60-69   70+ 
##     0   247   203   115    44

##Dates and Times #question 4 #R object

trump<- c("11/8/2016")
trump
## [1] "11/8/2016"

#Q.4(a)-As a Julian Date

trump.julian <- as.Date(trump, format = "%m/%d/%Y")
trump.julian
## [1] "2016-11-08"

#Q.4(b)-As day of the week

trumpdate<- c("2019-11-08")
trumpdate<- as.Date(trumpdate)
weekdays(trumpdate)
## [1] "Friday"

#Q.4(c)

format(as.Date("2019-11-08"), "%U")
## [1] "44"

#Question 5-2X2 Table

table(Evans$chd, Evans$smk)
##    
##       0   1
##   0 205 333
##   1  17  54
ct <- matrix( c(205, 333, 17, 54), 2, 2)
rownames(ct) <- c('chd', 'no chd')
colnames(ct) <- c('Yes smk', 'No smk')
coltot <- apply(ct, 2, sum)
risks <- ct['chd', ]/coltot
odds<- risks/(1-risks)
odds.ratio <- odds/odds[2]
ct
##        Yes smk No smk
## chd        205     17
## no chd     333     54
fisher.test(Evans$smk, Evans$chd)
## 
##  Fisher's Exact Test for Count Data
## 
## data:  Evans$smk and Evans$chd
## p-value = 0.02512
## alternative hypothesis: true odds ratio is not equal to 1
## 95 percent confidence interval:
##  1.079813 3.697097
## sample estimates:
## odds ratio 
##   1.953491

#The contingency table results are statistically signification with a p-value of 0.025, assuming the alpha significance is set at 0.05. Also, since the 95% confidence interval does not include the numeric 1, one can reject the null hypothesis that the odds ratio is 1. Hence, given the table, the odds ratio of having coronary heart disease is 1.95 times that for non-smokers.

#Question 6-risk ratio

risk.ratio<- risks/risks[2]
risk.ratio
##  Yes smk   No smk 
## 1.591406 1.000000

#Question 7-xtabs

xtabs(~chd + smk, data = Evans)
##    smk
## chd   0   1
##   0 205 333
##   1  17  54
xtab3way <- xtabs(~chd + hpt + smk, data = Evans)
addmargins(xtab3way)
## , , smk = 0
## 
##      hpt
## chd     0   1 Sum
##   0   122  83 205
##   1     6  11  17
##   Sum 128  94 222
## 
## , , smk = 1
## 
##      hpt
## chd     0   1 Sum
##   0   204 129 333
##   1    22  32  54
##   Sum 226 161 387
## 
## , , smk = Sum
## 
##      hpt
## chd     0   1 Sum
##   0   326 212 538
##   1    28  43  71
##   Sum 354 255 609

#Question 8 & 9

library(png)
myplot.png<- hist(Evans$age, main = "Evans Data", xlab = "Age")

myplot.png
## $breaks
## [1] 40 45 50 55 60 65 70 75 80
## 
## $counts
## [1] 134 135 108  80  68  45  36   3
## 
## $density
## [1] 0.0440065681 0.0443349754 0.0354679803 0.0262725780 0.0223316913
## [6] 0.0147783251 0.0118226601 0.0009852217
## 
## $mids
## [1] 42.5 47.5 52.5 57.5 62.5 67.5 72.5 77.5
## 
## $xname
## [1] "Evans$age"
## 
## $equidist
## [1] TRUE
## 
## attr(,"class")
## [1] "histogram"

#Question 9-Display PNG

knitr::include_graphics("Age Hist.png")

##Question 10 Using Regular Expressions #Read in data using Scan Function

cac<- scan('https://raw.githubusercontent.com/taragonmd/data/master/calcounty.txt', what = "" )

#remove “california”

cac1 = cac[1:58]
cac1
##  [1] "Alameda"         "Alpine"          "Amador"         
##  [4] "Butte"           "Calaveras"       "Colusa"         
##  [7] "Contra Costa"    "Del Norte"       "El Dorado"      
## [10] "Fresno"          "Glenn"           "Humboldt"       
## [13] "Imperial"        "Inyo"            "Kern"           
## [16] "Kings"           "Lake"            "Lassen"         
## [19] "Los Angeles"     "Madera"          "Marin"          
## [22] "Mariposa"        "Mendocino"       "Merced"         
## [25] "Modoc"           "Mono"            "Monterey"       
## [28] "Napa"            "Nevada"          "Orange"         
## [31] "Placer"          "Plumas"          "Riverside"      
## [34] "Sacramento"      "San Benito"      "San Bernardino" 
## [37] "San Diego"       "San Francisco"   "San Joaquin"    
## [40] "San Luis Obispo" "San Mateo"       "Santa Barbara"  
## [43] "Santa Clara"     "Santa Cruz"      "Shasta"         
## [46] "Sierra"          "Siskiyou"        "Solano"         
## [49] "Sonoma"          "Stanislaus"      "Sutter"         
## [52] "Tehama"          "Trinity"         "Tulare"         
## [55] "Tuolumne"        "Ventura"         "Yolo"           
## [58] "Yuba"

#Use regular expressions to identify and display the County names that start with "San " and end with "o".

grep("San", cac1)
##  [1] 35 36 37 38 39 40 41 42 43 44
grep("^San|o", cac1)
##  [1]  3  6  7  8  9 10 12 14 19 22 23 25 26 27 34 35 36 37 38 39 40 41 42
## [24] 43 44 47 48 49 55 57
t<-grep("^San|o$", cac1)
cac1[t]
##  [1] "El Dorado"       "Fresno"          "Inyo"           
##  [4] "Mendocino"       "Mono"            "Sacramento"     
##  [7] "San Benito"      "San Bernardino"  "San Diego"      
## [10] "San Francisco"   "San Joaquin"     "San Luis Obispo"
## [13] "San Mateo"       "Santa Barbara"   "Santa Clara"    
## [16] "Santa Cruz"      "Solano"          "Yolo"