k=Númerodeníveisdofator= laboratorios = 4 n=NúmerodeRepetiçõesdecada nível = 8
*= Itálico Ex.: Isaquinho Isaquinho **= Negrito ***=Itálico + Negrito Quantidade de “#” = tamanho da fonte (quanto mais menor a fonte)
pwr.anova.test(k = 4, f = 0.1, sig.level = .05, power = .8)
##
## Balanced one-way analysis of variance power calculation
##
## k = 4
## n = 273.5429
## f = 0.1
## sig.level = 0.05
## power = 0.8
##
## NOTE: n is number in each group
Isso foi pra achar o n (número de repetições)! Sempre fica de fora d função o que se quer achar.
pwr.anova.test(k = 4, f = 0.25, sig.level = .05, power = .8)
##
## Balanced one-way analysis of variance power calculation
##
## k = 4
## n = 44.59927
## f = 0.25
## sig.level = 0.05
## power = 0.8
##
## NOTE: n is number in each group
pwr.anova.test(k = 4, f = 0.4, sig.level = .05, power = .8)
##
## Balanced one-way analysis of variance power calculation
##
## k = 4
## n = 18.04262
## f = 0.4
## sig.level = 0.05
## power = 0.8
##
## NOTE: n is number in each group
pwr.anova.test(k = 4, n=8, f = 0.1, sig.level = .05)
##
## Balanced one-way analysis of variance power calculation
##
## k = 4
## n = 8
## f = 0.1
## sig.level = 0.05
## power = 0.06694612
##
## NOTE: n is number in each group
pwr.anova.test(k = 4, n=8, f = 0.25, sig.level = .05)
##
## Balanced one-way analysis of variance power calculation
##
## k = 4
## n = 8
## f = 0.25
## sig.level = 0.05
## power = 0.1720053
##
## NOTE: n is number in each group
pwr.anova.test(k = 4, n=8, f = 0.4, sig.level = .05)
##
## Balanced one-way analysis of variance power calculation
##
## k = 4
## n = 8
## f = 0.4
## sig.level = 0.05
## power = 0.3967438
##
## NOTE: n is number in each group
labs <- read.table("labs.txt", header = TRUE)
str(labs)
## 'data.frame': 32 obs. of 2 variables:
## $ Lab : Factor w/ 4 levels "Lab1","Lab2",..: 1 1 1 1 1 1 1 1 2 2 ...
## $ cromo: num 26.1 21.5 22 22.6 24.9 22.6 23.8 23.2 18.3 19.7 ...
# Header = TRUE significa que as minhas variaveis tem o nome no cabeçalho
boxplot(cromo ~ Lab, data = labs, col = "lightgray")
library(ggplot2)
ggplot(labs, aes(x=Lab, y=cromo)) + geom_boxplot()
library(summarytools)
## Registered S3 method overwritten by 'pryr':
## method from
## print.bytes Rcpp
descr(labs$cromo, style = "rmarkdown")
## ### Descriptive Statistics
## #### labs$cromo
## **N:** 32
##
## | | cromo |
## |----------------:|-------:|
## | **Mean** | 21.30 |
## | **Std.Dev** | 5.04 |
## | **Min** | 11.00 |
## | **Q1** | 18.15 |
## | **Median** | 21.20 |
## | **Q3** | 25.20 |
## | **Max** | 30.70 |
## | **MAD** | 5.11 |
## | **IQR** | 6.82 |
## | **CV** | 0.24 |
## | **Skewness** | -0.04 |
## | **SE.Skewness** | 0.41 |
## | **Kurtosis** | -0.64 |
## | **N.Valid** | 32.00 |
## | **Pct.Valid** | 100.00 |
Std. Dev = Desvio Padrão Q3 - Quartil 3 MAD = Desvio Absoluto Médio IQR = Intervalo interquartil Skewness = simetria SE. Skewness = desvio da simetria CV = Coeficiente de variação - este serve para comparar distribuição de dados para amostras simétricas (duas amostras) que é quando a mediana está no meio do boxplot, o histograma está em forma de sino. CV = desvio padrão divido pela média x 100 = distribuição simetrica CV = mediana dividida “MAD” x 100
mod1<- aov(cromo ~ Lab, data = labs)
summary(mod1)
## Df Sum Sq Mean Sq F value Pr(>F)
## Lab 3 476.1 158.69 14.21 0.00000814 ***
## Residuals 28 312.7 11.17
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
# Exibe a tabela de ANAVA
summary(mod1)
## Df Sum Sq Mean Sq F value Pr(>F)
## Lab 3 476.1 158.69 14.21 0.00000814 ***
## Residuals 28 312.7 11.17
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Estimativa dos Efeitos Principais \(\hat{\tau}_i\)
coef(mod1)
## (Intercept) LabLab2 LabLab3 LabLab4
## 23.3375 -6.5500 -4.7875 3.2000
library(agricolae)
cv.model(mod1)
## [1] 15.68622
plot(mod1)
shapiro.test(mod1$residuals)
##
## Shapiro-Wilk normality test
##
## data: mod1$residuals
## W = 0.96141, p-value = 0.3001
Assim, o valor de p é menor que o nível de significância, aceito a hipótese nula de que o resíduo atende uma distribuição normal
names(mod1)
## [1] "coefficients" "residuals" "effects" "rank"
## [5] "fitted.values" "assign" "qr" "df.residual"
## [9] "contrasts" "xlevels" "call" "terms"
## [13] "model"
# Resíduos
mod1$residuals
## 1 2 3 4 5 6 7 8 9 10
## 2.7625 -1.8375 -1.3375 -0.7375 1.5625 -0.7375 0.4625 -0.1375 1.5125 2.9125
## 11 12 13 14 15 16 17 18 19 20
## 1.2125 0.6125 5.8125 -5.1875 -5.7875 -1.0875 0.5500 -4.6500 -2.8500 0.0500
## 21 22 23 24 25 26 27 28 29 30
## 0.5500 -1.7500 6.9500 1.1500 4.1625 0.7625 -5.6375 2.4625 -5.6375 -0.4375
## 31 32
## 0.1625 4.1625
# Dados da Amostra
labs$cromo
## [1] 26.1 21.5 22.0 22.6 24.9 22.6 23.8 23.2 18.3 19.7 18.0 17.4 22.6 11.6 11.0
## [16] 15.7 19.1 13.9 15.7 18.6 19.1 16.8 25.5 19.7 30.7 27.3 20.9 29.0 20.9 26.1
## [31] 26.7 30.7
# Valores previstos pelo modelo
mod1$fitted.values
## 1 2 3 4 5 6 7 8 9 10
## 23.3375 23.3375 23.3375 23.3375 23.3375 23.3375 23.3375 23.3375 16.7875 16.7875
## 11 12 13 14 15 16 17 18 19 20
## 16.7875 16.7875 16.7875 16.7875 16.7875 16.7875 18.5500 18.5500 18.5500 18.5500
## 21 22 23 24 25 26 27 28 29 30
## 18.5500 18.5500 18.5500 18.5500 26.5375 26.5375 26.5375 26.5375 26.5375 26.5375
## 31 32
## 26.5375 26.5375
bartlett.test(cromo ~ Lab, data = labs)
##
## Bartlett test of homogeneity of variances
##
## data: cromo by Lab
## Bartlett's K-squared = 5.7637, df = 3, p-value = 0.1237
Como no teste de Barlett o valor de p está acima do nível de significância, aceito a hipótese nula de que os resíduos tem variância constante.
Como a ANAVA indicou diferenças entre as medições dos laboratórios, surgem outras perguntas. • Quais laboratórios apresentaram medições estatisticamente iguais e quais apresentaram medições estatisticamente iguais? • Necessitamos de procedimentos de comparações múltiplas de médias para responder estas questões, veremos dois; • Procedimentos de Tukey e de Fisher
LSD.test(mod1,"Lab", p.adj = "bon", console = TRUE)
##
## Study: mod1 ~ "Lab"
##
## LSD t Test for cromo
## P value adjustment method: bonferroni
##
## Mean Square Error: 11.16665
##
## Lab, means and individual ( 95 %) CI
##
## cromo std r LCL UCL Min Max
## Lab1 23.3375 1.538030 8 20.9174 25.7576 21.5 26.1
## Lab2 16.7875 3.927717 8 14.3674 19.2076 11.0 22.6
## Lab3 18.5500 3.444250 8 16.1299 20.9701 13.9 25.5
## Lab4 26.5375 3.874435 8 24.1174 28.9576 20.9 30.7
##
## Alpha: 0.05 ; DF Error: 28
## Critical Value of t: 2.838933
##
## Minimum Significant Difference: 4.743366
##
## Treatments with the same letter are not significantly different.
##
## cromo groups
## Lab4 26.5375 a
## Lab1 23.3375 a
## Lab3 18.5500 b
## Lab2 16.7875 b
# Função Interna do R
TukeyHSD(mod1)
## Tukey multiple comparisons of means
## 95% family-wise confidence level
##
## Fit: aov(formula = cromo ~ Lab, data = labs)
##
## $Lab
## diff lwr upr p adj
## Lab2-Lab1 -6.5500 -11.111878 -1.9881216 0.0027656
## Lab3-Lab1 -4.7875 -9.349378 -0.2256216 0.0369829
## Lab4-Lab1 3.2000 -1.361878 7.7618784 0.2447531
## Lab3-Lab2 1.7625 -2.799378 6.3243784 0.7190930
## Lab4-Lab2 9.7500 5.188122 14.3118784 0.0000163
## Lab4-Lab3 7.9875 3.425622 12.5493784 0.0002808
# Exibição Via Gráfico
plot(TukeyHSD(mod1))
turtles <- read.csv(file = "turtles.csv", header = TRUE)
str(turtles) #verifica a estrutura dos dados importados
## 'data.frame': 40 obs. of 2 variables:
## $ temperatura: int 15 15 15 15 15 15 15 15 15 15 ...
## $ dias : int 37 43 45 54 56 65 62 73 74 75 ...
head(turtles) # exibe as primeiras linhas dos dados importados
## temperatura dias
## 1 15 37
## 2 15 43
## 3 15 45
## 4 15 54
## 5 15 56
## 6 15 65
tail(turtles) # exibe as últimas linhas dos dados importados
## temperatura dias
## 35 30 12
## 36 30 18
## 37 30 21
## 38 30 23
## 39 30 29
## 40 30 39
turtles # exibe todos os dados importados
## temperatura dias
## 1 15 37
## 2 15 43
## 3 15 45
## 4 15 54
## 5 15 56
## 6 15 65
## 7 15 62
## 8 15 73
## 9 15 74
## 10 15 75
## 11 20 30
## 12 20 31
## 13 20 34
## 14 20 35
## 15 20 35
## 16 20 47
## 17 20 53
## 18 20 54
## 19 20 63
## 20 20 64
## 21 25 21
## 22 25 23
## 23 25 48
## 24 25 52
## 25 25 52
## 26 25 54
## 27 25 54
## 28 25 61
## 29 25 62
## 30 25 65
## 31 30 13
## 32 30 16
## 33 30 19
## 34 30 11
## 35 30 12
## 36 30 18
## 37 30 21
## 38 30 23
## 39 30 29
## 40 30 39
mean(turtles$dias)
## [1] 43.075
mean(turtles$temperatura) # Para acessar os frames usa-se o $
## [1] 22.5
turtles$temperatura <- factor(turtles$temperatura)
str(turtles)
## 'data.frame': 40 obs. of 2 variables:
## $ temperatura: Factor w/ 4 levels "15","20","25",..: 1 1 1 1 1 1 1 1 1 1 ...
## $ dias : int 37 43 45 54 56 65 62 73 74 75 ...
boxplot(dias ~ temperatura, data = turtles, col = "indianred")
### 4.4. Estimação do Modelo Linear Anava (Turtles)
turtles.aov <- aov(dias ~ temperatura, data = turtles)
summary(turtles.aov)
## Df Sum Sq Mean Sq F value Pr(>F)
## temperatura 3 8025 2675.2 15.98 0.000000908 ***
## Residuals 36 6027 167.4
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
coef(turtles.aov)
## (Intercept) temperatura20 temperatura25 temperatura30
## 58.4 -13.8 -9.2 -38.3
# Teste Tukey Pacote Agricolae
teste_tukey <- agricolae::HSD.test (turtles.aov,"temperatura", group = TRUE, console = TRUE)
##
## Study: turtles.aov ~ "temperatura"
##
## HSD Test for dias
##
## Mean Square Error: 167.425
##
## temperatura, means
##
## dias std r Min Max
## 15 58.4 13.696715 10 37 75
## 20 44.6 13.226237 10 30 64
## 25 49.2 15.266521 10 21 65
## 30 20.1 8.608136 10 11 39
##
## Alpha: 0.05 ; DF Error: 36
## Critical Value of Studentized Range: 3.808798
##
## Minimun Significant Difference: 15.58469
##
## Treatments with the same letter are not significantly different.
##
## dias groups
## 15 58.4 a
## 25 49.2 a
## 20 44.6 a
## 30 20.1 b
teste_tukey
## $statistics
## MSerror Df Mean CV MSD
## 167.425 36 43.075 30.03896 15.58469
##
## $parameters
## test name.t ntr StudentizedRange alpha
## Tukey temperatura 4 3.808798 0.05
##
## $means
## dias std r Min Max Q25 Q50 Q75
## 15 58.4 13.696715 10 37 75 47.25 59.0 71.00
## 20 44.6 13.226237 10 30 64 34.25 41.0 53.75
## 25 49.2 15.266521 10 21 65 49.00 53.0 59.25
## 30 20.1 8.608136 10 11 39 13.75 18.5 22.50
##
## $comparison
## NULL
##
## $groups
## dias groups
## 15 58.4 a
## 25 49.2 a
## 20 44.6 a
## 30 20.1 b
##
## attr(,"class")
## [1] "group"
teste2 <- agricolae::HSD.test(turtles.aov,"temperatura",
group=FALSE)
print(teste2$comparison)
## difference pvalue signif. LCL UCL
## 15 - 20 13.8 0.0983 . -1.784689 29.38469
## 15 - 25 9.2 0.3970 -6.384689 24.78469
## 15 - 30 38.3 0.0000 *** 22.715311 53.88469
## 20 - 25 -4.6 0.8563 -20.184689 10.98469
## 20 - 30 24.5 0.0008 *** 8.915311 40.08469
## 25 - 30 29.1 0.0001 *** 13.515311 44.68469
plot(teste_tukey, main = "Teste de Tukey")
### 4.8. Diagnóstico: Análise de Resíduos #### 4.8.1. Gráfico dos Resíduos x Valores Previstos do Modelo
plot(turtles.aov, 1)
plot(turtles.aov, 2)
#### 4.8.3. Teste de Shapiro-Wilks
shapiro.test(turtles.aov$residuals)
##
## Shapiro-Wilk normality test
##
## data: turtles.aov$residuals
## W = 0.97008, p-value = 0.3619
Não rejeitamos a hipótese nula, visto que nível de significância do teste de Shapiro-Wilks apresentou valor p acima e o rsíduos possui distribuição normal com média = 0.
plot(turtles.aov, 3)
Não rejeitamos a hipótese nula, visto que a variância dos resíduos é aproximadamente constante.
bartlett.test(dias ~ temperatura, data = turtles)
##
## Bartlett test of homogeneity of variances
##
## data: dias by temperatura
## Bartlett's K-squared = 2.8101, df = 3, p-value = 0.4218
turtles2 <-within(turtles, temperatura <- relevel (temperatura, ref = 4))
turtle.ref <- aov(dias ~ temperatura, data = turtles2)
coef(turtle.ref)
## (Intercept) temperatura15 temperatura20 temperatura25
## 20.1 38.3 24.5 29.1
kruskal.test(dias ~ temperatura, data = turtles)
##
## Kruskal-Wallis rank sum test
##
## data: dias by temperatura
## Kruskal-Wallis chi-squared = 21.491, df = 3, p-value = 0.00008325