After screening for inversions, we can view a table of groups.

Genoform Count Representative
A 427 AP020315.1
B 2 NC_021670.1
C 1 NZ_AP017377.1
D 2 NZ_AP017891.1
E 1 NZ_AP019306.1
F 1 NZ_AP020320.1
G 1 NZ_CP009681.1
H 3 NZ_CP015817.1
I 1 NZ_CP018629.1
J 1 NZ_CP020656.1
K 1 NZ_CP020713.1
L 1 NZ_CP020714.1
M 1 NZ_CP020960.1
N 1 NZ_CP022893.1
O 1 NZ_CP022894.1
P 2 NZ_CP022903.1
Q 1 NZ_CP022905.1
R 3 NZ_CP026961.1
S 1 NZ_CP029629.1
T 1 NZ_CP029663.1
U 2 NZ_CP030136.1
V 1 NZ_CP031673.1
W 1 NZ_CP031838.1
X 1 NZ_CP043389.1
Y 1 NZ_LN626917.1
Z 1 NZ_LR134090.1
AA 1 NZ_LT992462.1

Visualize the relationship between the first genoform and the rest to spot missassemblies or false positives

Remove D, J, K, L and M then Generate the inversion matrix

id A B C E F G H I N O P Q R S T U V W X Y Z AA
A 0 1 1 1 1 1 1 2 1 1 2 1 1 1 1 1 1 1 1 1 1 1
B 1 0 2 2 2 2 2 3 2 2 3 2 1 2 2 2 2 2 2 1 1 1
C 1 2 0 2 2 2 1 3 1 1 2 1 1 2 1 2 2 2 1 2 1 1
E 1 2 2 0 2 2 2 2 2 2 2 2 2 2 2 1 1 1 2 2 2 2
F 1 2 2 2 0 1 1 2 1 1 2 1 2 1 2 2 2 2 1 2 2 1
G 1 2 2 2 1 0 1 1 1 1 2 1 1 1 2 2 1 2 2 2 2 1
H 1 2 1 2 1 1 0 2 1 1 2 1 2 2 1 2 2 2 1 1 2 1
I 2 3 3 2 2 1 2 0 2 2 3 2 3 2 3 2 2 1 3 3 3 2
N 1 2 1 2 1 1 1 2 0 1 1 1 2 2 1 2 2 2 1 2 2 1
O 1 2 1 2 1 1 1 2 1 0 1 1 2 2 1 2 2 2 1 2 2 1
P 2 3 2 2 2 2 2 3 1 1 0 1 3 3 2 3 2 3 2 3 3 2
Q 1 2 1 2 1 1 1 2 1 1 1 0 2 2 1 2 2 2 1 2 2 1
R 1 1 1 2 2 1 2 3 2 2 3 2 0 2 1 2 2 2 1 1 1 1
S 1 2 2 2 1 1 2 2 2 2 3 2 2 0 2 2 2 2 1 2 2 1
T 1 2 1 2 2 2 1 3 1 1 2 1 1 2 0 2 2 2 1 2 1 1
U 1 2 2 1 2 2 2 2 2 2 3 2 2 2 2 0 2 1 2 2 2 2
V 1 2 2 1 2 1 2 2 2 2 2 2 2 2 2 2 0 2 2 2 2 1
W 1 2 2 1 2 2 2 1 2 2 3 2 2 2 2 1 2 0 2 2 2 2
X 1 2 1 2 1 2 1 3 1 1 2 1 1 1 1 2 2 2 0 2 1 1
Y 1 1 2 2 2 2 1 3 2 2 3 2 1 2 2 2 2 2 2 0 1 1
Z 1 1 1 2 2 2 2 3 2 2 3 2 1 2 1 2 2 2 1 1 0 1
AA 1 1 1 2 1 1 1 2 1 1 2 1 1 1 1 2 1 2 1 1 1 0

Here are the distances rooted at genoform A

To show this relationship, we can also view this matrix as a dendrogram

Groups with fewer inversions cluster together

The same graph is a bit nicer to visualize as a circle