2. proyección a Seis meses
library(forecast)
modelo<-auto.arima(y = inf)
summary(modelo)
## Series: inf
## ARIMA(3,0,0)(2,1,0)[12]
##
## Coefficients:
## ar1 ar2 ar3 sar1 sar2
## 0.5022 0.3728 -0.1131 -0.4699 -0.1542
## s.e. 0.0816 0.0853 0.0798 0.0843 0.0875
##
## sigma^2 estimated as 24.96: log likelihood=-495.76
## AIC=1003.52 AICc=1004.05 BIC=1022.12
##
## Training set error measures:
## ME RMSE MAE MPE MAPE MASE
## Training set 0.414756 4.748196 3.357522 0.2245014 3.29099 0.5139
## ACF1
## Training set 0.008647958
pronosticos<-forecast(modelo,h = 6)
autoplot(pronosticos)+xlab("Años")+ylab("indice")+theme_bw()

library(forecast)
autoplot(pronosticos$x,series = "INF")+autolayer(pronosticos$fitted,series = "Pronóstico")+ggtitle("Ajuste SARIMA")

3. Serie ampliada
inf_h<-ts(as.numeric(rbind(as.matrix(pronosticos$x),as.matrix(pronosticos$mean))),start = c(2005,1),frequency = 12)
print(inf_h)
## Jan Feb Mar Apr May Jun Jul
## 2005 84.9400 82.7000 84.6400 90.6300 91.1800 90.9100 101.3000
## 2006 97.7000 79.5100 85.6300 91.3300 97.9000 95.4300 93.2900
## 2007 92.1700 74.4400 81.5200 83.0000 95.4100 106.1600 101.8800
## 2008 105.1100 93.0500 96.0900 100.7300 106.4900 97.8900 92.1500
## 2009 94.6300 76.8700 81.8600 81.0100 92.3000 91.8600 96.9300
## 2010 105.5200 86.4300 92.3900 94.7300 101.7200 100.6500 98.9900
## 2011 105.5500 91.7600 101.2900 99.5300 106.4700 102.2800 104.8500
## 2012 106.4900 98.9800 102.5300 99.9400 106.3400 105.5500 93.3300
## 2013 100.3900 87.2300 90.1000 95.2200 98.5800 96.9800 98.9100
## 2014 103.0800 91.0300 94.6000 93.0800 99.0200 96.7600 97.3300
## 2015 107.5500 101.2800 99.6200 100.0200 103.1900 99.0700 99.3100
## 2016 107.4500 112.1600 110.3400 112.0700 105.2000 104.4900 105.3100
## 2017 113.1000 114.5400 117.2500 110.4400 105.1400 103.6700 103.1000
## 2018 117.7900 121.1700 113.6100 110.5600 105.7200 104.9200 104.7300
## 2019 118.4500 123.8300 113.7200 112.3800 107.1700 105.5700 108.5000
## 2020 118.4968 122.3881
## Aug Sep Oct Nov Dec
## 2005 93.7400 98.0800 109.0400 119.5600 106.3500
## 2006 90.0400 93.0900 111.9200 109.2500 113.3000
## 2007 103.8700 110.6500 125.6900 123.7700 133.1400
## 2008 89.9400 96.9400 106.1900 108.9500 119.5500
## 2009 81.3400 104.1700 111.1300 122.1000 126.2900
## 2010 96.1600 95.7100 116.4300 114.5300 124.8800
## 2011 105.4000 107.6000 114.6300 121.8200 128.1300
## 2012 92.7600 92.3500 100.0300 106.9900 111.8800
## 2013 99.9000 101.6000 107.9300 108.6500 120.6500
## 2014 97.1100 95.6800 102.2700 108.9400 121.1000
## 2015 96.1500 97.7300 102.8200 111.4100 113.7500
## 2016 103.9700 103.5000 101.4700 107.6700 116.0600
## 2017 101.6500 101.2100 102.5900 108.0200 119.1700
## 2018 105.8500 105.4700 107.3000 112.3600 124.2000
## 2019 107.0400 106.6687 106.9157 112.0160 122.6596
## 2020
4. Descomposición de la serie temporal
library(stats)
fit<-stl(inf_h,"periodic")
autoplot(fit)+theme_bw()

TC<-fit$time.series[,2]
print(TC)
## Jan Feb Mar Apr May Jun Jul
## 2005 89.38671 90.56610 91.74550 92.76693 93.78837 94.66286 95.53735
## 2006 97.16367 96.79160 96.41953 96.31536 96.21119 96.32083 96.43046
## 2007 95.18690 96.03456 96.88223 98.37211 99.86199 101.76018 103.65837
## 2008 107.77524 106.56359 105.35194 104.00307 102.65420 101.62529 100.59639
## 2009 94.37796 94.17716 93.97636 94.42462 94.87287 95.98335 97.09383
## 2010 102.30245 102.41325 102.52405 102.40184 102.27963 102.40145 102.52327
## 2011 104.87358 105.33857 105.80357 106.28067 106.75777 107.21691 107.67604
## 2012 107.80556 106.89182 105.97807 104.74897 103.51987 102.37904 101.23821
## 2013 97.49115 97.95524 98.41932 99.05487 99.69042 100.23665 100.78289
## 2014 101.03889 100.75255 100.46622 100.24224 100.01827 100.14631 100.27436
## 2015 102.94335 103.10965 103.27595 103.22367 103.17138 103.01238 102.85339
## 2016 106.55287 107.18069 107.80850 107.97788 108.14726 107.92527 107.70328
## 2017 108.55152 108.68405 108.81657 108.76794 108.71930 108.46588 108.21246
## 2018 109.59025 110.05317 110.51609 110.74187 110.96766 110.83583 110.70401
## 2019 112.26319 112.52740 112.79161 112.70208 112.61254 112.30858 112.00462
## 2020 112.16910 112.30321
## Aug Sep Oct Nov Dec
## 2005 96.31252 97.08769 97.33762 97.58754 97.37560
## 2006 96.21031 95.99016 95.51795 95.04574 95.11632
## 2007 105.30451 106.95065 107.73845 108.52626 108.15075
## 2008 99.50002 98.40366 97.17552 95.94739 95.16268
## 2009 98.30560 99.51737 100.39967 101.28196 101.79220
## 2010 102.94834 103.37341 103.76022 104.14704 104.51031
## 2011 108.01720 108.35836 108.41946 108.48055 108.14306
## 2012 100.26880 99.29940 98.57195 97.84450 97.66783
## 2013 101.10043 101.41798 101.43098 101.44399 101.24144
## 2014 100.75277 101.23118 101.75026 102.26934 102.60635
## 2015 103.17708 103.50077 104.25470 105.00863 105.78075
## 2016 107.65854 107.61381 107.84262 108.07144 108.31148
## 2017 108.14327 108.07407 108.37254 108.67101 109.13063
## 2018 110.69609 110.68817 111.06307 111.43798 111.85058
## 2019 112.03130 112.05798 112.07151 112.08503 112.12707
## 2020
5. Cálculo de las tasas (sin centrar)
library(dplyr)
library(zoo)
TC %>% as.numeric() %>% as.data.frame()->TC_df
names(TC_df)<-c("TC")
TC_df %>% mutate(T_1_1=(TC/dplyr::lag(TC,n=1)-1)*100,
T_1_12=(TC/dplyr::lag(TC,n=12)-1)*100,
T_12_12=(rollapply(TC,12,mean,align='right',fill=NA)
/rollapply(dplyr::lag(TC,n=12),12,mean,align='right',fill=NA)-1)*100) %>%
#Aquí se realiza el centrado
mutate(T_1_12C=dplyr::lead(T_1_12,n = 6),
T_12_12C=dplyr::lead(T_12_12,n = 12)) %>% ts(start = c(2005,1),frequency = 12)->tabla_coyuntura
print(tail(tabla_coyuntura,n=12))
## TC T_1_1 T_1_12 T_12_12 T_1_12C T_12_12C
## Mar 2019 112.7916 0.23479778 2.05899638 2.2844166 1.23754020 NA
## Apr 2019 112.7021 -0.07938355 1.77006375 2.2799215 0.90798347 NA
## May 2019 112.6125 -0.07944662 1.48230688 2.2299777 0.58064415 NA
## Jun 2019 112.3086 -0.26991520 1.32876215 2.1576370 0.24718970 NA
## Jul 2019 112.0046 -0.27064571 1.17485176 2.0630403 -0.08381362 NA
## Aug 2019 112.0313 0.02382130 1.20619374 1.9666866 -0.19923694 NA
## Sep 2019 112.0580 0.02381563 1.23754020 1.8685995 NA NA
## Oct 2019 112.0715 0.01206969 0.90798347 1.7377218 NA NA
## Nov 2019 112.0850 0.01206824 0.58064415 1.5742758 NA NA
## Dec 2019 112.1271 0.03750061 0.24718970 1.3872167 NA NA
## Jan 2020 112.1691 0.03748655 -0.08381362 1.1766693 NA NA
## Feb 2020 112.3032 0.11955836 -0.19923694 0.9722509 NA NA
6. Gráfico de las tasas (centradas)
library(dplyr)
library(forecast)
library(ggplot2)
tabla_coyuntura %>% as.data.frame() %>% select(T_1_12C,T_12_12C) %>% ts(start = c(2005,1),frequency = 12)->tabla_coyuntura_graficos
autoplot(tabla_coyuntura_graficos)+theme_bw()

tabla_coyuntura %>% as.data.frame() %>% select(T_1_1) %>% ts(start = c(2005,1),frequency = 12) %>% autoplot()
