Michigan Loading raw Michigan data, dropping previously acquired environmental covariates and summing trial successes.
MI.df = read.csv("./Data_102418/mi_data10-24-18.csv",
header = TRUE, stringsAsFactors = FALSE, sep=",")
MI.df = MI.df %>%
mutate(Long = Lat, #these appear reversed in original data
Lat = Lon,
State = "Michigan", #transect state
Spp = "Hare",
OBS = Hare, #overall presence (at any trial)
Counts = T.1 + T.2 + T.3 + T.4 + T.5 + T.6 + T.7 + T.8 + T.9, #Sum across trials
Trials = 9, #No NAs in this dataset all have 9 trials
Data = "Fit",
Site2 = paste("M", 1:nrow(MI.df), sep=".")) %>%
select(Site2, Long, Lat, State, OBS, Counts, Trials, Data, Spp)
dim(MI.df) #Check data
## [1] 125 9
head(MI.df)
## Site2 Long Lat State OBS Counts Trials Data Spp
## 1 M.1 -88.24388 47.41681 Michigan 1 6 9 Fit Hare
## 2 M.2 -84.58309 45.53829 Michigan 1 6 9 Fit Hare
## 3 M.3 -84.14892 45.46854 Michigan 1 6 9 Fit Hare
## 4 M.4 -90.07851 46.35078 Michigan 1 1 9 Fit Hare
## 5 M.5 -86.56820 46.37911 Michigan 1 1 9 Fit Hare
## 6 M.6 -86.75846 46.25573 Michigan 1 9 9 Fit Hare
Wisconsin Loading data as above, but trials vary by transect, therefore, they are individually summed.
WI.df = read.csv("./Data_102418/wi_data10-24-18.csv",
header = TRUE, stringsAsFactors = FALSE, sep=",")
WI.Trial.df = WI.df[2:21] #pull-out transects
WI.Trial.df[WI.Trial.df >= 1] = 1 #set track counts to 1
WI.Trial.df$Counts = rowSums(WI.Trial.df, na.rm=T) #sum total successes by transect
WI.Trial.df$Trials = rowSums(is.na(WI.df[2:21])==FALSE) #count number of trials
WI.df = WI.df %>% #Basically the same as MI above
mutate(Long = Lat,
Lat = Lon,
State = "Wisconsin",
OBS = Hare,
Spp = "Hare",
Data = "Fit",
Counts = WI.Trial.df$Counts, #Sum across trials
Trials = WI.Trial.df$Trials, #trials vary by transect
Site2 = paste("W", 1:nrow(WI.df), sep=".")) %>% #Site identifier
select(Site2, Long, Lat, State, OBS, Counts, Trials, Data, Spp)
dim(WI.df)
## [1] 195 9
head(WI.df)
## Site2 Long Lat State OBS Counts Trials Data Spp
## 1 W.1 -90.72816 44.36486 Wisconsin 1 0 8 Fit Hare
## 2 W.2 -90.84052 44.27223 Wisconsin 0 0 6 Fit Hare
## 3 W.3 -90.82058 44.45853 Wisconsin 1 5 8 Fit Hare
## 4 W.4 -92.11831 45.44736 Wisconsin 0 0 6 Fit Hare
## 5 W.5 -91.22783 45.02406 Wisconsin 0 0 6 Fit Hare
## 6 W.6 -90.01462 44.21396 Wisconsin 0 0 8 Fit Hare
Combine & Convert to Points
Fit.df = rbind(MI.df, WI.df)
Fit.pnt = SpatialPointsDataFrame(Fit.df[, c("Long","Lat")], Fit.df)
proj4string(Fit.pnt) = "+proj=longlat +datum=NAD83 +no_defs +ellps=GRS80 +towgs84=0,0,0"
Defining domain extent, downloading state boundaries, and then creating raster versions for later plotting. Note that the “Lakes” file is used to better identify lake boundaries. A copy of this shapefile is in the folder with this script. The adress to the shapefile will need to be updated in this chunk.
World = map("world",
fill = TRUE,
plot = FALSE)
IDs = sapply(strsplit(World$names, ":"), function(x) x[1])
LL84 = "+proj=longlat +datum=WGS84 +no_defs +ellps=WGS84 +towgs84=0,0,0"
WorldP = map2SpatialPolygons(World, IDs = IDs,
proj4string = CRS(projection(LL84)))
#Add a dataframe
pid = sapply(slot(WorldP, "polygons"),
function(x) slot(x, "ID"))
p.df = data.frame( ID=1:length(WorldP),
row.names = pid)
World = SpatialPolygonsDataFrame(WorldP, p.df)
World = spTransform(World, LL84)
World = gBuffer(World, width = 0, byid = F)
#States
States = map("state",
fill = TRUE,
plot = FALSE)
IDs = sapply(strsplit(States$names, ":"), function(x) x[1])
LL84 = "+proj=longlat +datum=WGS84 +no_defs +ellps=WGS84 +towgs84=0,0,0"
StatesP = map2SpatialPolygons(States, IDs = IDs,
proj4string = CRS(projection(LL84)))
#Add a dataframe
pid = sapply(slot(StatesP, "polygons"),
function(x) slot(x, "ID"))
p.df = data.frame( ID=1:length(StatesP),
row.names = pid)
States = SpatialPolygonsDataFrame(StatesP, p.df)
States = spTransform(States, LL84)
Lakes = readOGR(dsn = "C:/Users/humph173/Documents/Michigan_State/Marten/ArcWork/Lakes",
layer = "Lake_2ks",
stringsAsFactors = FALSE)
## OGR data source with driver: ESRI Shapefile
## Source: "C:\Users\humph173\Documents\Michigan_State\Marten\ArcWork\Lakes", layer: "Lake_2ks"
## with 1 features
## It has 15 fields
## Integer64 fields read as strings: OBJECTID Id area InPoly_FID SimPgnFlag
LakesLL = spTransform(Lakes, proj4string(States))
Ext = c(-93.173415, -81.932841, 41.217132, 47.740649)
Domain = crop(States, Ext)
Domain$Name = str_cap_words(rownames(Domain@data))
Water0 = as(extent(Domain), "SpatialPolygons")
p.df = data.frame(ID=1:length(Water0))
Water0 = SpatialPolygonsDataFrame(Water0, p.df, match.ID = F)
proj4string(Water0) = proj4string(Domain)
Water1 = gDifference(Water0, spTransform(Lakes, proj4string(Water0)))
DomLLU = gUnaryUnion(Domain)
#Rasterized version
Ras = raster(res = 0.02, ext = extent(DomLLU),
crs = proj4string(DomLLU))
Domain.r = rasterize(DomLLU, Ras,
field = 0,
background = NA)
#Point grid version
Grd.pnt = rasterToPoints(Domain.r, spatial = TRUE)
Grd.pnt@data = Grd.pnt@data %>%
mutate(Long = Grd.pnt@coords[,1],
Lat = Grd.pnt@coords[,2],
Spp = "Grid") %>%
select(-layer)
#Dense for hi-res prediction
Zext = as(raster::extent(-92, -91, 45, 46), "SpatialPolygons")
proj4string(Zext) = proj4string(States)
Z_samp = disaggregate(crop(Domain.r, Zext), fact=6)
zPred.pnts = rasterToPoints(Z_samp, sp=T)
zPred.pnts@data = zPred.pnts@data %>%
mutate(Long = zPred.pnts@coords[,1],
Lat = zPred.pnts@coords[,2],
Spp = "Zoom") %>%
select(-layer)
Grd.pnt.df = rbind(Grd.pnt@data, zPred.pnts@data)
Grd.pnt = SpatialPointsDataFrame(Grd.pnt.df[,c("Long","Lat")], Grd.pnt.df)
proj4string(Grd.pnt) = proj4string(States)
Quick Plot to Check Data Locations used to fit Model.
rng = seq(0, 255, 1)
mCols = brewer.pal(11, "RdYlBu")[-6]
cr0 = rev(colorRampPalette((mCols))(n = 256))
cr = colorRampPalette(c("tan", cr0),
bias = 1, space = "rgb")
MyMatrix = matrix(nrow=7, ncol=2)
rownames(MyMatrix) = rownames(coordinates(Domain))
MyMatrix[,1] = c(-89.07686, -86.11260, -91.91021, -83.82014, -91.31258, -83.46125, -89.51171)
MyMatrix[,2] = c(41.80000, 41.36514, 42.28710, 43.0, 47.5041, 41.61285, 43.63285)
Hare.LLpnt = spTransform(Fit.pnt, proj4string(States))
levelplot(Domain.r,
margin = FALSE,
xlab = NULL,
ylab = NULL,
maxpixels = 1e5,
col.regions = cr, at = rng,
colorkey = FALSE, par.strip.text = list(fontface='bold', cex=1.5),
par.settings = list(axis.line = list(col = "black"),
strip.background = list(col = 'transparent'),
strip.border = list(col = 'transparent')),
scales = list(cex = 1.25)) +
latticeExtra::layer(sp.polygons(Domain, col = "black", lwd = 0.5)) +
latticeExtra::layer(sp.polygons(LakesLL, fill = "lightblue", col = "transparent", lwd = 0.5)) +
latticeExtra::layer(sp.polygons(Hare.LLpnt , col = "red", pch=factor(Hare.LLpnt$OBS), cex = 1)) +
latticeExtra::layer(sp.text(MyMatrix, txt = Domain$Name,
pos =c(1,3,3,2,2,1,1),
col="black",font=list(face="bold"), cex=1)) +
latticeExtra::layer({SpatialPolygonsRescale(layout.north.arrow(),
offset = c(-83, 45.5),
scale = 2)})
Project Everything to KM
nProj = "+proj=utm +zone=16 +datum=NAD83 +units=km +no_defs +ellps=GRS80 +towgs84=0,0,0"
LakesKM = spTransform(Lakes, nProj)
FocalKM = spTransform(Water1, nProj)
DomP = spTransform(Domain, nProj)
DomPU = gUnaryUnion(DomP)
Fit.pntP = spTransform(Fit.pnt, nProj)
Grd.pntP = spTransform(Grd.pnt, nProj)
These values are scaled to correspond to the geographic projection (kilometers)
max.edge = 8 #Make the outer edge length 8km
bound.outer = 75 #Outer extension can be 75km
Fit.pntPX = subset(Fit.pntP, Spp == "Hare" & Data == "Fit") #Only training data
bdry = inla.sp2segment(DomPU) #Formatting boundary for r-INLA
mesh = inla.mesh.2d(boundary = bdry, #Boundary
loc = Fit.pntPX, #Fit to point locations
max.edge = c(1, 5)*max.edge, #mesh size specifications
cutoff = 10,#8
min.angle = 25,
offset = c(max.edge, bound.outer))
mesh$n #number of nodes
## [1] 3792
plot(mesh, lwd=0.5)
Wisconsin
WIV.df = read.csv("./WI_HareValid2000-18.csv",
header = TRUE, stringsAsFactors = FALSE, sep=",")
WIV.df = WIV.df %>%
select(X, Y, HARESA_12_, HARESA_13_, HARESA_14_)
WIV.df[is.na(WIV.df)] = 0
WIV.df = WIV.df %>%
mutate(Site2 = paste("WIV_", 1:dim(WIV.df)[1]),
Long = X,
Lat = Y,
Source = "WI",
Spp = "Valid",
State = "Wisconsin",
Data = "Valid",
Counts = (HARESA_12_ + HARESA_13_ + HARESA_14_),
OBS = ifelse(Counts >= 1, 1, 0),
Trials = 1) %>%
select(Site2, Long, Lat, State, OBS, Counts, Trials, Data, Spp, Source)
dim(WIV.df)
## [1] 51 10
head(WIV.df)
## Site2 Long Lat State OBS Counts Trials Data Spp Source
## 1 WIV_ 1 459786.6 640333.1 Wisconsin 0 0 1 Valid Valid WI
## 2 WIV_ 2 459119.3 623022.5 Wisconsin 0 0 1 Valid Valid WI
## 3 WIV_ 3 448003.0 645595.7 Wisconsin 1 20 1 Valid Valid WI
## 4 WIV_ 4 544112.4 409977.9 Wisconsin 1 40 1 Valid Valid WI
## 5 WIV_ 5 429676.8 692700.4 Wisconsin 1 16 1 Valid Valid WI
## 6 WIV_ 6 323853.0 603638.8 Wisconsin 1 58 1 Valid Valid WI
#NAD_1983_HARN_Wisconsin_TM
WIval.nproj = "+proj=tmerc +lat_0=0 +lon_0=-90 +k=0.9996 +x_0=520000 +y_0=-4480000 +ellps=GRS80 +towgs84=0,0,0,0,0,0,0 +units=m +no_defs"
WIv.pnt = SpatialPointsDataFrame(WIV.df[, c("Long","Lat")], WIV.df)
proj4string(WIv.pnt) = WIval.nproj
WIv.pnt = spTransform(WIv.pnt, nProj)
Hare (Sault Tribe)
library("readxl")
files = list.files(path="C:/Users/humph173/Documents/Michigan_State/Eric/Pellets",
pattern="*.xlsx", full.names=T, recursive=FALSE)
for(i in 1:length(files)) {
tmp.ex = as.data.frame(read_excel(files[i]))[,1:2]
names(tmp.ex) = c("X", "Y")
if(i == 1){Pellet.df = tmp.ex}
else{Pellet.df = rbind(Pellet.df, tmp.ex)}
}
## New names:
## * `` -> ...3
## New names:
## * `` -> ...3
STV.df = Pellet.df %>%
mutate(Site2 = paste("STV_", 1:dim(Pellet.df)[1]),
Long = X,
Lat = Y,
Source = "ST",
Spp = "Valid",
State = "Michigan",
Data = "Valid",
Counts = 1,
OBS = 1,
Trials = 1) %>%
select(Site2, Long, Lat, State, OBS, Counts, Trials, Data, Spp, Source)
head(STV.df)
## Site2 Long Lat State OBS Counts Trials Data Spp Source
## 1 STV_ 1 649079.4 5120467 Michigan 1 1 1 Valid Valid ST
## 2 STV_ 2 661239.2 5135238 Michigan 1 1 1 Valid Valid ST
## 3 STV_ 3 661243.7 5135231 Michigan 1 1 1 Valid Valid ST
## 4 STV_ 4 661246.0 5135232 Michigan 1 1 1 Valid Valid ST
## 5 STV_ 5 661253.6 5135214 Michigan 1 1 1 Valid Valid ST
## 6 STV_ 6 661249.1 5135212 Michigan 1 1 1 Valid Valid ST
dim(STV.df)
## [1] 847 10
MnProj = "+proj=utm +zone=16 +datum=NAD83 +units=m +no_defs +ellps=GRS80 +towgs84=0,0,0"
STV.pnt = SpatialPointsDataFrame(STV.df[, c("Long","Lat")], STV.df)
proj4string(STV.pnt) = MnProj
STV.pnt = spTransform(STV.pnt, nProj)
Predator Prey Data
PPV.df = read.csv("C:/Users/humph173/Documents/Michigan_State/Marten/Data/PredPrey/Pred_prey_Comb_121218.csv",
header = TRUE, sep=",")
PPV.df = PPV.df %>%
mutate(Site2 = paste("PPV_", 1:dim(PPV.df)[1]),
Long = Easting,
Lat = Northing,
Source = "PP",
Spp = "Valid",
State = "Michigan",
Data = "Valid",
Counts = 1,
OBS = 1,
Trials = 1) %>%
select(Site2, Long, Lat, State, OBS, Counts, Trials, Data, Spp, Source)
head(PPV.df)
## Site2 Long Lat State OBS Counts Trials Data Spp Source
## 1 PPV_ 1 399299 5117030 Michigan 1 1 1 Valid Valid PP
## 2 PPV_ 2 399299 5117030 Michigan 1 1 1 Valid Valid PP
## 3 PPV_ 3 411292 5117450 Michigan 1 1 1 Valid Valid PP
## 4 PPV_ 4 400838 5119454 Michigan 1 1 1 Valid Valid PP
## 5 PPV_ 5 400838 5119454 Michigan 1 1 1 Valid Valid PP
## 6 PPV_ 6 396858 5127841 Michigan 1 1 1 Valid Valid PP
dim(PPV.df)
## [1] 25939 10
PPV.pnt = SpatialPointsDataFrame(PPV.df[, c("Long","Lat")], PPV.df)
proj4string(PPV.pnt) = MnProj
PPV.pnt = spTransform(PPV.pnt, nProj)
Lower Survey (Pellet )
LPS.df = read.csv("./2019_pellet_sites.csv",
header = TRUE, sep=",")
LPS.df = LPS.df %>%
mutate(Site2 = paste("PPV_", 1:dim(LPS.df)[1]),
Long = Latitude, #Reversed in data
Lat = Longitude,
Source = "LPP",
Spp = "Valid",
State = "Michigan",
Data = "Valid",
Counts = 1,
OBS = CurrentOcc,
Trials = 1) %>%
filter(plot_ID != "main") %>% #Remove Original Surveys
select(Site2, Long, Lat, State, OBS, Counts, Trials, Data, Spp, Source)
head(LPS.df)
## Site2 Long Lat State OBS Counts Trials Data Spp Source
## 1 PPV_ 1 619035.8 519897.4 Michigan 1 1 1 Valid Valid LPP
## 2 PPV_ 2 617098.3 528769.7 Michigan 1 1 1 Valid Valid LPP
## 3 PPV_ 4 620157.4 513569.1 Michigan 1 1 1 Valid Valid LPP
## 4 PPV_ 5 609769.3 522842.3 Michigan 0 1 1 Valid Valid LPP
## 5 PPV_ 6 608475.4 518285.8 Michigan 1 1 1 Valid Valid LPP
## 6 PPV_ 7 613170.1 511702.0 Michigan 0 1 1 Valid Valid LPP
dim(LPS.df)
## [1] 31 10
#Long & Lat Reversed & not UTM
#NAD_1983_2011_Michigan_GeoRef_Meters
StateGeoref.Proj = "+proj=omerc +lat_0=45.30916666666666 +lonc=-86 +alpha=337.25556 +k=0.9996 +x_0=2546731.496 +y_0=-4354009.816 +no_uoff +ellps=GRS80 +towgs84=0,0,0,0,0,0,0 +units=m +no_defs"
LPS.pnt = SpatialPointsDataFrame(LPS.df[, c("Long","Lat")], LPS.df)
proj4string(LPS.pnt) =StateGeoref.Proj
LPS.pnt = spTransform(LPS.pnt, nProj)
Update Coordinates and Combine
Fit.pnt.tab = Fit.pntP@data %>%
mutate(Source = "Fit",
Long = Fit.pntP@coords[,1],
Lat = Fit.pntP@coords[,2])
WIv.pnt.tab = WIv.pnt@data %>%
mutate(Long = WIv.pnt@coords[,1],
Lat = WIv.pnt@coords[,2])
PPV.pnt.tab = PPV.pnt@data %>%
mutate(Long = PPV.pnt@coords[,1],
Lat = PPV.pnt@coords[,2])
STV.pnt.tab = STV.pnt@data %>%
mutate(Long = STV.pnt@coords[,1],
Lat = STV.pnt@coords[,2])
LPS.pnt.tab = LPS.pnt@data %>%
mutate(Long = LPS.pnt@coords[,1],
Lat = LPS.pnt@coords[,2])
Combine All Data Join data to common dataframe.
hare.df = rbind(Fit.pnt.tab, WIv.pnt.tab, STV.pnt.tab, PPV.pnt.tab, LPS.pnt.tab)
dim(hare.df)
## [1] 27188 10
hare.df %>%
group_by(State, Data) %>%
summarise(Count = length(Data))
## # A tibble: 4 x 3
## # Groups: State [2]
## State Data Count
## <chr> <chr> <int>
## 1 Michigan Fit 125
## 2 Michigan Valid 26817
## 3 Wisconsin Fit 195
## 4 Wisconsin Valid 51
Convert to Points
Hare.pnt = SpatialPointsDataFrame(hare.df[, c("Long","Lat")], hare.df)
proj4string(Hare.pnt) = nProj
Quick Plot to Check Validation Data Locations used for model validation.
rng = seq(0, 255, 1)
mCols = brewer.pal(11, "RdYlBu")[-6]
cr0 = rev(colorRampPalette((mCols))(n = 256))
cr = colorRampPalette(c("tan", cr0),
bias = 1, space = "rgb")
MyMatrix = matrix(nrow=7, ncol=2)
rownames(MyMatrix) = rownames(coordinates(Domain))
MyMatrix[,1] = c(-89.07686, -86.11260, -91.91021, -83.82014, -91.31258, -83.46125, -89.51171)
MyMatrix[,2] = c(41.80000, 41.36514, 42.28710, 43.0, 47.5041, 41.61285, 43.63285)
Hare.LLpnt = spTransform(Hare.pnt, proj4string(States))
Hare.LLpnt = subset(Hare.LLpnt, Data == "Valid")
levelplot(Domain.r,
margin = FALSE,
xlab = NULL,
ylab = NULL,
maxpixels = 1e5,
col.regions = cr, at = rng,
colorkey = FALSE, par.strip.text = list(fontface='bold', cex=1.5),
par.settings = list(axis.line = list(col = "black"),
strip.background = list(col = 'transparent'),
strip.border = list(col = 'transparent')),
scales = list(cex = 1.25)) +
latticeExtra::layer(sp.polygons(Domain, col = "black", lwd = 0.5)) +
latticeExtra::layer(sp.polygons(LakesLL, fill = "lightblue", col = "transparent", lwd = 0.5)) +
latticeExtra::layer(sp.polygons(Hare.LLpnt , col = "red", pch=factor(Hare.pnt$Data), cex = 1)) +
latticeExtra::layer(sp.text(MyMatrix, txt = Domain$Name,
pos =c(1,3,3,2,2,1,1),
col="black",font=list(face="bold"), cex=1)) +
latticeExtra::layer({SpatialPolygonsRescale(layout.north.arrow(),
offset = c(-83, 45.5),
scale = 2)})
Combine Observations, Mesh Nodes, and Grid Points
#Node coordinates
dd = as.data.frame(cbind(mesh$loc[,1],
mesh$loc[,2]))
names(dd) = c("Long", "Lat") #name coordinates
dd$OBS = 0 #no hare at these locations
dd$Site2 = paste("N", 1:nrow(dd), sep = ".") #to match with observation data
dd$State = "All"
dd$Spp = "Mesh"
dd$Counts = 0
dd$Trials = 0
dd$Source = "Mesh"
dd$Data = "Fit"
#Hare Obs
hare.set = Hare.pnt@data %>%
mutate(Long = Hare.pnt@coords[,1],
Lat = Hare.pnt@coords[,2])
#Grid
grid.set = Grd.pntP@data %>%
mutate(Long = Grd.pntP@coords[,1],
Lat = Grd.pntP@coords[,2],
Spp = Spp,
OBS = 0,
State = "All",
Counts = 0,
Trials = 0,
Data = "grid",
Source = "Grid",
Site2 = paste("G", 1:nrow(Grd.pntP@data), sep = "."))
All.pnts = rbind(hare.set, dd, grid.set)
All.pnts = SpatialPointsDataFrame(All.pnts[, c("Long","Lat")], All.pnts)
proj4string(All.pnts) = nProj
Forest1km = raster("C:/Users/humph173/Documents/Michigan_State/Sean/Loop_020819/Forest1km.grd")
mSnow5Yr = raster("./Hare1/Mean5yrSnow.tif")
mxTemp = raster("./Hare1/meanTMAX.tif")
All.pnts$mSnow5yrE = extract(mSnow5Yr,
spTransform(All.pnts,
CRS(proj4string(mSnow5Yr))),
method="simple")
All.pnts$mSnow5yrE[is.na(All.pnts$mSnow5yrE)] = mean(All.pnts$mSnow5yrE, na.rm=T)
All.pnts$mxTempE = extract(mxTemp,
spTransform(All.pnts,
CRS(proj4string(mxTemp))),
method="simple")
All.pnts$mxTempE[is.na(All.pnts$mxTempE)] = mean(All.pnts$mxTempE, na.rm=T)
All.pnts$Forest1kmE = extract(Forest1km,
spTransform(All.pnts,
CRS(proj4string(Forest1km))),
method="simple")
All.pnts$Forest1kmE[is.na(All.pnts$Forest1kmE)] = mean(All.pnts$Forest1kmE, na.rm=T)
All.pnts$Forest1kmE = round(All.pnts$Forest1kmE/100, 1)
# 2019 Lower ###################
mSnow5Yr2019 = raster("./Mean5yrlp2019.tif")
mxTemp2019 = raster("./meanTMAXLP2019.tif")
All.pnts$mSnow5yrE2 = extract(mSnow5Yr2019,
spTransform(All.pnts,
CRS(proj4string(mSnow5Yr2019))),
method="simple")
All.pnts$mSnow5yrE2[is.na(All.pnts$mSnow5yrE2)] = mean(All.pnts$mSnow5yrE2, na.rm=T)
All.pnts$mxTempE2 = extract(mxTemp2019,
spTransform(All.pnts,
CRS(proj4string(mxTemp2019))),
method="simple")
All.pnts$mxTempE2[is.na(All.pnts$mxTempE2)] = mean(All.pnts$mxTempE2, na.rm=T)
#Select Variable Year
All.pnts$mSnow5yrE = ifelse(All.pnts$Source == "LPP", All.pnts$mSnow5yrE2, All.pnts$mSnow5yrE)
All.pnts$mxTempE2 = ifelse(All.pnts$Source == "LPP", All.pnts$mxTempE2, All.pnts$mxTempE)
#Clean up frame
All.pnts@data = All.pnts@data %>% select(-c(mSnow5yrE2, mxTempE2))
Land Cover, Full Conncensus verision: http://www.earthenv.org/landcover
EE.files = list.files(path="E:/EarthEnv",
pattern="*.tif", full.names=T, recursive=T)
EE.stack = stack(EE.files)
EE.df = as.data.frame(
extract(EE.stack,
spTransform(All.pnts,
proj4string(EE.stack)),
method = "simple"))
names(EE.df) = paste("Type", 1:12, sep=".")
EE.dfs = cbind(All.pnts@data %>% select(mSnow5yrE, mxTempE), EE.df)
for(i in 1:dim(EE.dfs)[2]){
EE.dfs[,i] = scale(EE.dfs[,i], scale=T, center=T)
}
names(EE.dfs) = paste("s", names(EE.dfs), sep=".")
All.pnts@data = cbind(All.pnts@data, EE.dfs)
#Lables
EE.names = read.csv("E:/EarthEnv/EE_lables.csv",
header = TRUE, sep=",")
EE.names
## Type NAME
## 1 1 Evergreen/Deciduous Needleleaf Trees
## 2 2 Evergreen Broadleaf Trees
## 3 3 Deciduous Broadleaf Trees
## 4 4 Mixed/Other Trees
## 5 5 Shrubs
## 6 6 Herbaceous Vegetation
## 7 7 Cultivated and Managed Vegetation
## 8 8 Regularly Flooded Vegetation
## 9 9 Urban/Built-up
## 10 10 Snow/Ice
## 11 11 Barren
## 12 12 Open Water
Identify the UP Identify locations from the U.P. based on a well-defined county boundaries
UP = readOGR(dsn = "C:/Users/humph173/Documents/Michigan_State/SLP_Beam_Diam/Counties_v17a",
layer = "MI_UP",
stringsAsFactors = FALSE)
## OGR data source with driver: ESRI Shapefile
## Source: "C:\Users\humph173\Documents\Michigan_State\SLP_Beam_Diam\Counties_v17a", layer: "MI_UP"
## with 15 features
## It has 15 fields
## Integer64 fields read as strings: OBJECTID FIPSNUM
XX = readOGR(dsn = "C:/Users/humph173/Documents/Michigan_State/Sean/Hare1/CoordTest",
layer = "Test7b",
stringsAsFactors = FALSE)
## OGR data source with driver: ESRI Shapefile
## Source: "C:\Users\humph173\Documents\Michigan_State\Sean\Hare1\CoordTest", layer: "Test7b"
## with 35 features
## It has 13 fields
## Integer64 fields read as strings: FID_1 Site CurrentOcc Site_ID BUFF_DIST
UPp = gUnaryUnion(spTransform(UP, proj4string(All.pnts)))
All.pnts$UP = is.na(over(All.pnts, UPp))
Update State Designation to Include UP Cleaning up labels
All.pnts$StateUP = ifelse(All.pnts$UP == FALSE & All.pnts$Spp == "Hare", "Mich.UP", All.pnts$State)
All.pnts$StateUPW = ifelse(All.pnts$StateUP == "Mich.UP", "Wisconsin", All.pnts$StateUP)
All.pnts$Domain = over(All.pnts, DomPU)
levels(factor(All.pnts$StateUP))
## [1] "All" "Mich.UP" "Michigan" "Wisconsin"
levels(factor(All.pnts$StateUPW))
## [1] "All" "Michigan" "Wisconsin"
Hare.mod = subset(All.pnts, Spp == "Hare") #Observations only
OneTier.mod = subset(All.pnts, Spp == "Hare" | Spp == "Mesh" & is.na(Domain) == FALSE)
Mesh.mod = subset(All.pnts, Spp == "Mesh" & is.na(Domain) == FALSE) #Mesh locations excluding buffer extension
HareMesh.mod = subset(All.pnts, Data == "Fit") #Observations excluding Grid points for prediction/plotting
HareMesh.mod$ID = 1:nrow(HareMesh.mod@data)
Validation.set = subset(All.pnts, Data == "Valid")
Grd.pnts = subset(All.pnts, Spp == "Grid") #Grid loactions for prediction/plotting
zGrd.pnts = subset(All.pnts, Spp == "Zoom") #zoomed locations for prediction/plotting
Add Background Points to Validation Set
Validation.set2 = spRbind(Validation.set, Mesh.mod)
Validation.set2@data %>%
group_by(OBS) %>%
summarise(Cnt =length(OBS))
## # A tibble: 2 x 2
## OBS Cnt
## <dbl> <int>
## 1 0 3061
## 2 1 26857
Validation.set2$dups = duplicated(Validation.set2@data[,c("Long","Lat")])
Validation.set2 = subset(Validation.set2, dups == FALSE)
Index value needs to be below 30. This suggest colineartity will not be an issue.
library(perturb)
##
## Attaching package: 'perturb'
## The following object is masked from 'package:raster':
##
## reclassify
Colin.df = HareMesh.mod@data %>% #select covariates
select(mSnow5yrE, mxTempE, Forest1kmE, paste("s.Type", 1:12, sep="."))
CorCov = cor(Colin.df) #calculate correlation
corrplot(CorCov) #view correlation table
CI = colldiag(CorCov) #Apply metric
CI
## Condition
## Index Variance Decomposition Proportions
## intercept mSnow5yrE mxTempE Forest1kmE s.Type.1 s.Type.2
## 1 1.000 0.000 0.000 0.001 0.000 0.005 0.000
## 2 1.566 0.000 0.001 0.000 0.000 0.003 0.001
## 3 1.746 0.071 0.000 0.000 0.000 0.011 0.059
## 4 2.243 0.019 0.000 0.000 0.000 0.000 0.202
## 5 2.361 0.007 0.000 0.000 0.000 0.019 0.024
## 6 2.506 0.008 0.000 0.000 0.000 0.008 0.001
## 7 2.632 0.001 0.000 0.000 0.000 0.005 0.001
## 8 2.932 0.008 0.000 0.000 0.000 0.058 0.426
## 9 3.242 0.008 0.000 0.000 0.000 0.262 0.097
## 10 4.000 0.513 0.001 0.001 0.000 0.007 0.102
## 11 5.896 0.025 0.001 0.017 0.000 0.370 0.008
## 12 7.922 0.042 0.000 0.013 0.000 0.207 0.003
## 13 8.843 0.067 0.023 0.106 0.003 0.032 0.037
## 14 22.447 0.046 0.058 0.001 0.960 0.004 0.006
## 15 31.244 0.185 0.915 0.861 0.036 0.011 0.033
## s.Type.3 s.Type.4 s.Type.5 s.Type.6 s.Type.7 s.Type.8 s.Type.9
## 1 0.002 0.002 0.000 0.002 0.002 0.000 0.000
## 2 0.001 0.000 0.003 0.004 0.004 0.027 0.005
## 3 0.000 0.000 0.043 0.001 0.000 0.014 0.042
## 4 0.000 0.000 0.021 0.001 0.001 0.058 0.115
## 5 0.001 0.000 0.204 0.001 0.000 0.020 0.006
## 6 0.002 0.000 0.156 0.000 0.000 0.008 0.001
## 7 0.001 0.000 0.096 0.000 0.000 0.588 0.000
## 8 0.002 0.001 0.057 0.000 0.000 0.000 0.305
## 9 0.024 0.006 0.193 0.003 0.001 0.001 0.140
## 10 0.001 0.001 0.091 0.000 0.003 0.171 0.029
## 11 0.106 0.115 0.002 0.118 0.016 0.002 0.012
## 12 0.153 0.086 0.005 0.639 0.070 0.004 0.002
## 13 0.046 0.253 0.064 0.062 0.122 0.002 0.031
## 14 0.421 0.365 0.012 0.168 0.191 0.013 0.266
## 15 0.239 0.171 0.052 0.002 0.591 0.092 0.045
## s.Type.10 s.Type.11 s.Type.12
## 1 0.000 0.000 0.000
## 2 0.000 0.025 0.004
## 3 0.012 0.009 0.001
## 4 0.101 0.076 0.000
## 5 0.430 0.004 0.000
## 6 0.200 0.415 0.000
## 7 0.005 0.186 0.000
## 8 0.005 0.000 0.001
## 9 0.001 0.001 0.000
## 10 0.183 0.248 0.004
## 11 0.014 0.002 0.001
## 12 0.012 0.000 0.005
## 13 0.010 0.003 0.006
## 14 0.009 0.018 0.017
## 15 0.018 0.012 0.961
#Remove Forest1kmE
Colin.df = HareMesh.mod@data %>% #select covariates
select(mSnow5yrE, mxTempE, paste("s.Type", 1:12, sep="."))
CorCov = cor(Colin.df) #calculate correlation
corrplot(CorCov) #view correlation table
CI = colldiag(CorCov) #Apply metric
CI
## Condition
## Index Variance Decomposition Proportions
## intercept mSnow5yrE mxTempE s.Type.1 s.Type.2 s.Type.3 s.Type.4
## 1 1.000 0.000 0.000 0.001 0.008 0.000 0.005 0.006
## 2 1.392 0.000 0.002 0.000 0.000 0.001 0.004 0.001
## 3 1.532 0.074 0.000 0.000 0.013 0.054 0.001 0.000
## 4 1.996 0.017 0.000 0.000 0.001 0.209 0.000 0.000
## 5 2.103 0.009 0.000 0.000 0.021 0.017 0.004 0.000
## 6 2.243 0.008 0.000 0.000 0.008 0.000 0.008 0.000
## 7 2.349 0.001 0.000 0.000 0.006 0.001 0.002 0.000
## 8 2.596 0.009 0.000 0.001 0.077 0.388 0.012 0.004
## 9 2.812 0.005 0.000 0.000 0.198 0.145 0.060 0.011
## 10 3.608 0.563 0.001 0.001 0.007 0.106 0.006 0.001
## 11 4.928 0.035 0.001 0.016 0.428 0.011 0.221 0.187
## 12 6.702 0.056 0.000 0.014 0.194 0.004 0.255 0.122
## 13 7.452 0.052 0.022 0.103 0.032 0.035 0.140 0.502
## 14 26.112 0.171 0.974 0.864 0.008 0.029 0.280 0.166
## s.Type.5 s.Type.6 s.Type.7 s.Type.8 s.Type.9 s.Type.10 s.Type.11
## 1 0.001 0.005 0.003 0.000 0.000 0.000 0.000
## 2 0.001 0.003 0.003 0.024 0.005 0.000 0.024
## 3 0.043 0.001 0.000 0.015 0.051 0.011 0.011
## 4 0.030 0.001 0.001 0.056 0.157 0.087 0.068
## 5 0.183 0.001 0.000 0.018 0.004 0.458 0.005
## 6 0.144 0.000 0.000 0.006 0.001 0.178 0.456
## 7 0.100 0.000 0.000 0.612 0.000 0.005 0.167
## 8 0.084 0.000 0.000 0.001 0.328 0.006 0.000
## 9 0.200 0.004 0.001 0.001 0.215 0.000 0.001
## 10 0.104 0.000 0.004 0.175 0.047 0.197 0.254
## 11 0.001 0.110 0.013 0.003 0.017 0.018 0.004
## 12 0.004 0.816 0.070 0.006 0.005 0.015 0.001
## 13 0.062 0.057 0.119 0.001 0.049 0.008 0.002
## 14 0.044 0.001 0.786 0.082 0.120 0.016 0.009
## s.Type.12
## 1 0.000
## 2 0.005
## 3 0.001
## 4 0.000
## 5 0.000
## 6 0.001
## 7 0.000
## 8 0.001
## 9 0.000
## 10 0.004
## 11 0.001
## 12 0.005
## 13 0.008
## 14 0.974
Relating observations to mesh locations as a matrix and defining flat spatial priors.
#Relate mesh for detection level
locs = cbind(Hare.mod@coords[,1], Hare.mod@coords[,2]) #point locations
A.det = inla.spde.make.A(mesh, #the mesh
alpha = 2, #default setting
loc=locs) #our locations
#Relate mesh for covariate level
HR.df = OneTier.mod@data
HR.df$Trials = ifelse(HR.df$Spp == "Mesh", 0, HR.df$Trials) #Zero trials for background points
locs = cbind(HR.df[,"Long"], HR.df[,"Lat"])
A.obs = inla.spde.make.A(mesh, #F
alpha = 2,
loc=locs)
#These two include covariates
A.tem = inla.spde.make.A(mesh,
alpha = 2,
loc=locs,
weights = HR.df[,"mxTempE"]) #covariate to model as SVC
A.sno = inla.spde.make.A(mesh,
alpha = 2,
loc=locs,
weights = HR.df[,"mSnow5yrE"]) #covariate to model as SVC
spde = inla.spde2.pcmatern(mesh,
prior.range = c(1500, 0.5),
prior.sigma = c(5, 0.01))
#Create index to track locations of mesh nodes
field.env = inla.spde.make.index("field.env", spde$n.spde) #index for observations
field.tem = inla.spde.make.index("field.tem", spde$n.spde) #index for Temperature SVC
field.sno = inla.spde.make.index("field.sno", spde$n.spde) #index for snow SVC
Organize data
HR.lst = list(field.env,
field.tem,
field.sno,
list(intercept1 = rep(1,dim(HR.df)[1]),
mxTempE = HR.df[,"s.mxTempE"],
mSnow5yrE = HR.df[,"s.mSnow5yrE"],
Type.1 = HR.df[,"s.Type.1"],
Type.2 = HR.df[,"s.Type.2"],
Type.3 = HR.df[,"s.Type.3"],
Type.4 = HR.df[,"s.Type.4"],
Type.5 = HR.df[,"s.Type.5"],
Type.6 = HR.df[,"s.Type.6"],
Type.7 = HR.df[,"s.Type.7"],
Type.8 = HR.df[,"s.Type.8"],
Type.9 = HR.df[,"s.Type.9"],
Type.10 = HR.df[,"s.Type.10"],
Type.11 = HR.df[,"s.Type.11"],
Type.12 = HR.df[,"s.Type.12"]))
Env.stk = inla.stack(data = list(Y = HR.df$OBS,
Field.trials = HR.df$Trials),
A = list(A.obs, A.tem, A.sno, 1), #sptial matricies
effects = HR.lst,
tag = "env.0")
#Set for non-SVC moel
HR2.lst = list(field.env,
# field.tem,
#field.sno,
list(intercept1 = rep(1,dim(HR.df)[1]),
mxTempE = HR.df[,"s.mxTempE"],
mSnow5yrE = HR.df[,"s.mSnow5yrE"],
Type.1 = HR.df[,"s.Type.1"],
Type.2 = HR.df[,"s.Type.2"],
Type.3 = HR.df[,"s.Type.3"],
Type.4 = HR.df[,"s.Type.4"],
Type.5 = HR.df[,"s.Type.5"],
Type.6 = HR.df[,"s.Type.6"],
Type.7 = HR.df[,"s.Type.7"],
Type.8 = HR.df[,"s.Type.8"],
Type.9 = HR.df[,"s.Type.9"],
Type.10 = HR.df[,"s.Type.10"],
Type.11 = HR.df[,"s.Type.11"],
Type.12 = HR.df[,"s.Type.12"]))
FE.stk = inla.stack(data = list(Y = HR.df$OBS,
Field.trials = HR.df$Trials),
A = list(A.obs, 1), #sptial matricies
effects = HR2.lst,
tag = "fe.0")
Constraints to prevent spatial field from confounding covariates.
n.data = dim(HR.df)[1]
n.covariates = 6
X = cbind(rep(1,n.data),
HR.df$s.mxTempE,
HR.df$s.mSnow5yrE,
HR.df$s.Type.1,
HR.df$s.Type.3,
HR.df$s.Type.4)
Q = qr.Q(qr(X))
spde = inla.spde2.pcmatern(mesh,
prior.range = c(1500, 0.5),
prior.sigma = c(5, 0.01),
extraconstr = list(A = as.matrix(t(Q)%*%A.obs),
e = rep(0, n.covariates)))
spde2 = inla.spde2.pcmatern(mesh,
prior.range = c(1500, 0.5),
prior.sigma = c(5, 0.01),
extraconstr = list(A = as.matrix(t(Q)%*%A.tem),
e = rep(0, n.covariates)))
spde3 = inla.spde2.pcmatern(mesh,
prior.range = c(1500, 0.5),
prior.sigma = c(5, 0.01),
extraconstr = list(A = as.matrix(t(Q)%*%A.sno),
e = rep(0, n.covariates)))
Site.prior = list(theta=list(prior = "normal", param=c(0, 3))) #Prior for site effect
Reg.prior = list(theta=list(prior = "normal", param=c(0, 3))) #prior for region
JFrm0 = Y ~ -1 + intercept1 +
f(field.env,
model=spde) +
f(field.tem,
model=spde2) +
f(field.sno,
model=spde3) +
mxTempE + mSnow5yrE +
Type.1 + Type.3 + Type.6
#thetJ = Test.mod$internal.summary.hyperpar$mean
thetaJ = c(7.4867414, -0.4521236, 8.4357741, -1.4313818, 8.4668390, -1.4568577)
SVC.mod = inla(JFrm0, #formula
data = inla.stack.data(Env.stk),
family = "binomial",
verbose = TRUE,
Ntrials = inla.stack.data(Env.stk)$Field.trials, #number trials
control.fixed = list(prec = 0.001,
prec.intercept = 0.0001),
control.predictor = list(
A = inla.stack.A(Env.stk),
compute = TRUE,
link = 1),
control.mode = list(restart = TRUE, theta = thetaJ),
control.inla = list(strategy="gaussian",
int.strategy = "eb"),
control.results = list(return.marginals.random = TRUE,
return.marginals.predictor = TRUE),
control.compute=list(dic = TRUE, cpo = TRUE, waic = TRUE))
#save(list=c("SVC.mod", "Env.stk"), file="./Results_112119/SVC_112119.RData")
#Previously run
load("./Results_112119/SVC_112119.RData")
summary(SVC.mod)
##
## Call:
## c("inla(formula = JFrm0, family = \"binomial\", data = inla.stack.data(Env.stk), ", " Ntrials = inla.stack.data(Env.stk)$Field.trials, verbose = TRUE, ", " control.compute = list(dic = TRUE, cpo = TRUE, waic = TRUE), ", " control.predictor = list(A = inla.stack.A(Env.stk), compute = TRUE, ", " link = 1), control.inla = list(strategy = \"gaussian\", ", " int.strategy = \"eb\"), control.results = list(return.marginals.random = TRUE, ", " return.marginals.predictor = TRUE), control.fixed = list(prec = 0.001, ", " prec.intercept = 1e-04), control.mode = list(restart = TRUE, ", " theta = thetaJ))")
##
## Time used:
## Pre-processing Running inla Post-processing Total
## 21.0933 467.1675 1.3006 489.5615
##
## Fixed effects:
## mean sd 0.025quant 0.5quant 0.975quant mode kld
## intercept1 -3.7708 0.2025 -4.1684 -3.7708 -3.3735 -3.7708 0
## mxTempE -0.5678 0.2769 -1.1115 -0.5678 -0.0246 -0.5678 0
## mSnow5yrE 0.7116 0.2946 0.1331 0.7115 1.2895 0.7116 0
## Type.1 0.1468 0.0641 0.0209 0.1468 0.2726 0.1468 0
## Type.3 0.1812 0.1165 -0.0476 0.1812 0.4098 0.1812 0
## Type.6 -0.0098 0.2117 -0.4254 -0.0098 0.4056 -0.0098 0
##
## Random effects:
## Name Model
## field.env SPDE2 model
## field.tem SPDE2 model
## field.sno SPDE2 model
##
## Model hyperparameters:
## mean sd 0.025quant 0.5quant 0.975quant
## Range for field.env 2658.4249 3.177e+03 358.5679 1707.0276 10733.673
## Stdev for field.env 0.8843 7.856e-01 0.1135 0.6663 2.971
## Range for field.tem 9821.0590 1.853e+04 448.4431 4627.9834 51576.858
## Stdev for field.tem 0.5085 8.784e-01 0.0263 0.2553 2.575
## Range for field.sno 9530.1064 1.540e+04 560.6840 5021.1402 47042.417
## Stdev for field.sno 0.4055 6.213e-01 0.0240 0.2210 1.959
## mode
## Range for field.env 851.2918
## Stdev for field.env 0.3172
## Range for field.tem 1132.5221
## Stdev for field.tem 0.0673
## Range for field.sno 1449.3246
## Stdev for field.sno 0.0631
##
## Expected number of effective parameters(std dev): 13.57(0.00)
## Number of equivalent replicates : 248.39
##
## Deviance Information Criterion (DIC) ...............: 453.95
## Deviance Information Criterion (DIC, saturated) ....: 185.49
## Effective number of parameters .....................: 13.86
##
## Watanabe-Akaike information criterion (WAIC) ...: 447.40
## Effective number of parameters .................: 6.907
##
## Marginal log-Likelihood: -258.45
## CPO and PIT are computed
##
## Posterior marginals for linear predictor and fitted values computed
Cov.fe = SVC.mod$summary.fixed[,c(1:3,5)]
names(Cov.fe) = c("Mean", "sd", "Q0.025", "Q0.975")
kable(Cov.fe, caption = "Fixed Effects", digits=2) %>%
kable_styling("striped", full_width = F) %>%
row_spec(0, font_size = 20) %>%
column_spec(1, bold = T)
Mean | sd | Q0.025 | Q0.975 | |
---|---|---|---|---|
intercept1 | -3.77 | 0.20 | -4.17 | -3.37 |
mxTempE | -0.57 | 0.28 | -1.11 | -0.02 |
mSnow5yrE | 0.71 | 0.29 | 0.13 | 1.29 |
Type.1 | 0.15 | 0.06 | 0.02 | 0.27 |
Type.3 | 0.18 | 0.12 | -0.05 | 0.41 |
Type.6 | -0.01 | 0.21 | -0.43 | 0.41 |
ModResult = SVC.mod
Pred.pntsN = Grd.pnts
#Get RF
pLoc = cbind(Pred.pntsN@coords[,1], Pred.pntsN@coords[,2])
Ap = inla.spde.make.A(mesh, loc=pLoc)
Pred.pntsN$RF = drop(Ap %*% ModResult$summary.random$field.env$mean)
#Intercept
Fixed.df = ModResult$summary.fixed
Pred.pntsN$Sno = Pred.pntsN$s.mSnow5yrE*drop(Ap %*% ModResult$summary.random$field.sno$mean) #+ Fixed.df[3,1]
Pred.pntsN$Tem = Pred.pntsN$s.mxTempE*drop(Ap %*% ModResult$summary.random$field.tem$mean) #+ Fixed.df[2,1]
Pred.pntsN$SnoEf = drop(Ap %*% ModResult$summary.random$field.sno$mean) + Fixed.df[3,1]
Pred.pntsN$TemEf = drop(Ap %*% ModResult$summary.random$field.tem$mean) + Fixed.df[2,1]
Pred.pntsN@data = Pred.pntsN@data %>%
mutate(E.LP = RF + Sno + Tem + #Det +
Fixed.df[1,1] +
#Fixed.df[2,1] +
s.mxTempE*Fixed.df[2,1] +
s.mSnow5yrE*Fixed.df[3,1] +
s.Type.1*Fixed.df[4,1] +
#Type.2*Fixed.df[5,1] +
s.Type.3*Fixed.df[5,1],
#s.Type.4*Fixed.df[6,1],
#Type.5*Fixed.df[8,1] +
#Type.6*Fixed.df[7,1] +
#Type.7*Fixed.df[10,1] +
#Type.8*Fixed.df[8,1] +
#Type.9*Fixed.df[7,1] +
#Type.10*Fixed.df[13,1] +
#Type.11*Fixed.df[14,1] +
#Type.12*Fixed.df[8,1],
P.LP = Sno + Tem + #Det +
#Fixed.df[1,1] +
#Fixed.df[2,1] +
s.mxTempE*Fixed.df[2,1] +
s.mSnow5yrE*Fixed.df[3,1] +
s.Type.1*Fixed.df[4,1] +
#Type.2*Fixed.df[5,1] +
s.Type.3*Fixed.df[5,1],
#s.Type.4*Fixed.df[6,1],
#Type.5*Fixed.df[8,1] +
#Type.6*Fixed.df[7,1] +
#Type.7*Fixed.df[10,1] +
#Type.8*Fixed.df[8,1] +
#Type.9*Fixed.df[7,1] +
#Type.10*Fixed.df[13,1] +
#Type.11*Fixed.df[14,1] +
#Type.12*Fixed.df[8,1],
Est = plogis(E.LP),
Pred = plogis(P.LP))
Test.pred = rasterize(spTransform(
Pred.pntsN,
CRS(proj4string(Domain.r))),
Domain.r,
"Pred",
background = NA)
Test.est = rasterize(spTransform(
Pred.pntsN,
CRS(proj4string(Domain.r))),
Domain.r,
"Est",
background = NA)
Test.sno= rasterize(spTransform(
Pred.pntsN,
CRS(proj4string(Domain.r))),
Domain.r,
"SnoEf",
background = NA)
Test.tem= rasterize(spTransform(
Pred.pntsN,
CRS(proj4string(Domain.r))),
Domain.r,
"TemEf",
background = NA)
Test.rf = rasterize(spTransform(
Pred.pntsN,
CRS(proj4string(Domain.r))),
Domain.r,
"RF",
background = NA)
#Test.det = rasterize(spTransform(
# Pred.pntsN,
# CRS(proj4string(Domain.r))),
# Domain.r,
# "Det",
# background = NA)
rng = seq(0, 1, 0.01)
mCols = brewer.pal(9, "YlOrBr")
cr = colorRampPalette(mCols)(n = 500)
cr = colorRampPalette(cr,
bias = 0.75, space = "rgb")
Domain2 = subset(Domain, ID != 21 & ID != 48)
rng = seq(0, 1, 0.01)
mCols = rev(inferno(10))
#mCols[1] = "lightgray"
cr = colorRampPalette(c(mCols),
bias = 0.35)
levelplot(Test.pred, #Trial.comp,
#layout = c(2,1),
margin = FALSE,
xlab = NULL,
ylab = NULL,
#main = "Occurrence Probabilty",
#names.attr= c("A", "B", "C"),
maxpixels = 1e6,
col.regions = cr, at = rng,
colorkey = list(labels=list(at=c(0.02, 0.25, 0.50, 0.75, 0.98),
labels=c("0.00", "0.25", "0.50", "0.75", "1.00"),
fontface='bold', cex=1.5),
labels=list(cex=18),
space = "bottom"),
par.strip.text = list(fontface='bold', cex=1.9),
par.settings = list(axis.line = list(col = "black"),
strip.background = list(col = 'transparent'),
strip.border = list(col = 'transparent')),
scales = list(cex = 1.25)) +
latticeExtra::layer(sp.polygons(Domain2, col = "grey26", fill="lightgray", lwd = 1)) +
latticeExtra::layer(sp.polygons(LakesLL , fill = "lightblue", alpha = 1, lwd=2, col = "grey29")) +
latticeExtra::layer({SpatialPolygonsRescale(layout.north.arrow(),
offset = c(-83.5, 46.3),
scale = c(1.9,1.3))})
#Save grids
#writeRaster(Pred.stk2[[3]], "C:/Users/humph173/Documents/Michigan_State/Sean/Present_092219/Prediction_high.tif")
Cov.stk = stack(Test.sno, Test.tem)
names(Cov.stk) = c("Snow", "Temp")
Domain2 = subset(Domain, ID != 21 & ID != 48)
rng = seq(0.69, 0.73, 0.001)
mCols = rev(viridis(100))
cr = colorRampPalette(c(mCols),
bias = 0.5)
#values(Test.pred) = Scale(values(Test.pred))
levelplot(Cov.stk[[1]], #Trial.comp,
#layout = c(2,1),
margin = FALSE,
xlab = NULL,
ylab = NULL,
main = "Snow Weeks Effect Size \n(mean = 0.71)",
#names.attr= c("Snow Weeks (mean = 0.55)"),
maxpixels = 1e6,
col.regions = cr, at = rng,
colorkey = list(labels=list(at=c(seq(0.69, 0.73, 0.01)),
labels=c(paste(round(seq(0.69, 0.73, 0.01),2))),
fontface='bold', cex=1.5),
labels=list(cex=18),
space = "bottom"),
par.strip.text = list(fontface='bold', cex=1.9),
par.settings = list(axis.line = list(col = "black"),
strip.background = list(col = 'transparent'),
strip.border = list(col = 'transparent')),
scales = list(cex = 1.25)) +
latticeExtra::layer(sp.polygons(Domain2, col = "grey26", fill="lightgray", lwd = 1)) +
latticeExtra::layer(sp.polygons(LakesLL , fill = "lightblue", alpha = 1, lwd=2, col = "grey29")) +
latticeExtra::layer({SpatialPolygonsRescale(layout.north.arrow(),
offset = c(-83.5, 46.3),
scale = c(1.9,1.3))})
Cov.stk = stack(Test.sno, Test.tem)
names(Cov.stk) = c("Snow", "Temp")
Domain2 = subset(Domain, ID != 21 & ID != 48)
rng = seq(-0.53, -0.60, -0.001)
mCols = rev(viridis(100))
cr = colorRampPalette(c(mCols),
bias = 0.5)
#values(Test.pred) = Scale(values(Test.pred))
levelplot(Cov.stk[[2]], #Trial.comp,
#layout = c(2,1),
margin = FALSE,
xlab = NULL,
ylab = NULL,
main = "Temperature Effect Size \n(mean = -0.57)",
#names.attr= c("Snow Weeks (mean = 0.55)"),
maxpixels = 1e6,
col.regions = cr, at = rng,
colorkey = list(labels=list(at=c(seq(-0.53, -0.60, -0.01)),
labels=c(paste(seq(-0.53, -0.60, -0.01))),
fontface='bold', cex=1.5),
labels=list(cex=18),
space = "bottom"),
par.strip.text = list(fontface='bold', cex=1.9),
par.settings = list(axis.line = list(col = "black"),
strip.background = list(col = 'transparent'),
strip.border = list(col = 'transparent')),
scales = list(cex = 1.25)) +
latticeExtra::layer(sp.polygons(Domain2, col = "grey26", fill="lightgray", lwd = 1)) +
latticeExtra::layer(sp.polygons(LakesLL , fill = "lightblue", alpha = 1, lwd=2, col = "grey29")) +
latticeExtra::layer({SpatialPolygonsRescale(layout.north.arrow(),
offset = c(-83.5, 46.3),
scale = c(1.9,1.3))})
Validation
ModResult = SVC.mod
Pred.pntsN = Validation.set2
#Get RF
pLoc = cbind(Pred.pntsN@coords[,1], Pred.pntsN@coords[,2])
Ap = inla.spde.make.A(mesh, loc=pLoc)
Pred.pntsN$RF = drop(Ap %*% ModResult$summary.random$field.env$mean)
#Intercept
Fixed.df = ModResult$summary.fixed
Pred.pntsN$Sno = Pred.pntsN$s.mSnow5yrE*drop(Ap %*% ModResult$summary.random$field.sno$mean) #+ Fixed.df[3,1]
Pred.pntsN$Tem = Pred.pntsN$s.mxTempE*drop(Ap %*% ModResult$summary.random$field.tem$mean) #+ Fixed.df[2,1]
Pred.pntsN@data = Pred.pntsN@data %>%
mutate(E.LP = RF + Sno + Tem + #Det +
Fixed.df[1,1] +
#Fixed.df[2,1] +
s.mxTempE*Fixed.df[2,1] +
s.mSnow5yrE*Fixed.df[3,1] +
s.Type.1*Fixed.df[4,1] +
#Type.2*Fixed.df[5,1] +
s.Type.3*Fixed.df[5,1],
#s.Type.4*Fixed.df[6,1],
#Type.5*Fixed.df[8,1] +
#Type.6*Fixed.df[7,1] +
#Type.7*Fixed.df[10,1] +
#Type.8*Fixed.df[8,1] +
#Type.9*Fixed.df[7,1] +
#Type.10*Fixed.df[13,1] +
#Type.11*Fixed.df[14,1] +
#Type.12*Fixed.df[8,1],
P.LP = Sno + Tem + #Det +
#Fixed.df[1,1] +
#Fixed.df[2,1] +
s.mxTempE*Fixed.df[2,1] +
s.mSnow5yrE*Fixed.df[3,1] +
s.Type.1*Fixed.df[4,1] +
#Type.2*Fixed.df[5,1] +
s.Type.3*Fixed.df[5,1],
#s.Type.4*Fixed.df[6,1],
#Type.5*Fixed.df[8,1] +
#Type.6*Fixed.df[7,1] +
#Type.7*Fixed.df[10,1] +
#Type.8*Fixed.df[8,1] +
#Type.9*Fixed.df[7,1] +
#Type.10*Fixed.df[13,1] +
#Type.11*Fixed.df[14,1] +
#Type.12*Fixed.df[8,1],
Est = plogis(E.LP),
Pred = plogis(P.LP))
Reg2.PA = as.data.frame(cbind(1:dim(Pred.pntsN@data)[1], Pred.pntsN$OBS, Pred.pntsN$Pred))
names(Reg2.PA) = c("ID", "OBS", "Pred")
Thresh = optimal.thresholds(Reg2.PA, opt.methods = c("MaxSens+Spec", "PredPrev=Obs"))
Thresh
## Method Pred
## 1 MaxSens+Spec 0.63
## 2 PredPrev=Obs 0.76
Reg2.PA.out1 = presence.absence.accuracy(Reg2.PA, threshold = Thresh[1,2])
Reg2.PA.out2 = presence.absence.accuracy(Reg2.PA, threshold = 0.5)
Reg2.PA.out = rbind(Reg2.PA.out1, Reg2.PA.out2)
#Calculate TSS
Reg2.PA.out$TSS = Reg2.PA.out$sensitivity + Reg2.PA.out$specificity - 1
Reg2.PA.out
## model threshold PCC sensitivity specificity Kappa AUC
## 1 Pred 0.63 0.8262784 0.9853801 0.772950 0.6214246 0.8521222
## 2 Pred 0.50 0.7678003 0.9980507 0.690624 0.5272494 0.8521222
## PCC.sd sensitivity.sd specificity.sd Kappa.sd AUC.sd
## 1 0.005927081 0.003748970 0.007573136 0.01202777 0.005880771
## 2 0.006605501 0.001377703 0.008356096 0.01186339 0.005880771
## TSS
## 1 0.7583301
## 2 0.6886747
Validation.tab = Reg2.PA.out %>% select(threshold, PCC, sensitivity, specificity, AUC, TSS)
kable(Validation.tab, caption = "Fixed Effects", digits=2) %>%
kable_styling("striped", full_width = F) %>%
row_spec(0, font_size = 20) %>%
column_spec(1, bold = T)
threshold | PCC | sensitivity | specificity | AUC | TSS |
---|---|---|---|---|---|
0.63 | 0.83 | 0.99 | 0.77 | 0.85 | 0.76 |
0.50 | 0.77 | 1.00 | 0.69 | 0.85 | 0.69 |
JFrm3 = Y ~ -1 + intercept1 +
f(field.env,
model=spde) +
mxTempE + mSnow5yrE +
Type.1 + Type.3 + Type.6
#thetJ = Fixed.mod$internal.summary.hyperpar$mean
thetaJ = c(7.4867414, -0.4521236, 8.4357741, -1.4313818, 8.4668390, -1.4568577)
Fixed.mod = inla(JFrm3, #formula
data = inla.stack.data(FE.stk),
family = "binomial",
verbose = TRUE,
Ntrials = inla.stack.data(FE.stk)$Field.trials, #number trials
control.fixed = list(prec = 0.001,
prec.intercept = 0.0001),
control.predictor = list(
A = inla.stack.A(FE.stk),
compute = TRUE,
link = 1),
#control.mode = list(restart = TRUE, theta = thetaJ),
control.inla = list(strategy="gaussian",
int.strategy = "eb"),
control.results = list(return.marginals.random = TRUE,
return.marginals.predictor = TRUE),
control.compute=list(dic = TRUE, cpo = TRUE, waic = TRUE))
#save(list=c("Fixed.mod", "FE.stk"), file="./Results_112119/FE_112119.RData")
load("./Results_112119/FE_112119.RData")
summary(Fixed.mod)
##
## Call:
## c("inla(formula = JFrm3, family = \"binomial\", data = inla.stack.data(FE.stk), ", " Ntrials = inla.stack.data(FE.stk)$Field.trials, verbose = TRUE, ", " control.compute = list(dic = TRUE, cpo = TRUE, waic = TRUE), ", " control.predictor = list(A = inla.stack.A(FE.stk), compute = TRUE, ", " link = 1), control.inla = list(strategy = \"gaussian\", ", " int.strategy = \"eb\"), control.results = list(return.marginals.random = TRUE, ", " return.marginals.predictor = TRUE), control.fixed = list(prec = 0.001, ", " prec.intercept = 1e-04))")
##
## Time used:
## Pre-processing Running inla Post-processing Total
## 7.6416 30.2166 0.4797 38.3379
##
## Fixed effects:
## mean sd 0.025quant 0.5quant 0.975quant mode kld
## intercept1 -3.7314 0.1906 -4.1055 -3.7314 -3.3576 -3.7314 0
## mxTempE -0.5150 0.2674 -1.0400 -0.5150 0.0096 -0.5150 0
## mSnow5yrE 0.7021 0.2882 0.1363 0.7020 1.2674 0.7021 0
## Type.1 0.1472 0.0636 0.0223 0.1472 0.2720 0.1472 0
## Type.3 0.1760 0.1150 -0.0498 0.1760 0.4015 0.1760 0
## Type.6 -0.0067 0.2109 -0.4208 -0.0068 0.4069 -0.0067 0
##
## Random effects:
## Name Model
## field.env SPDE2 model
##
## Model hyperparameters:
## mean sd 0.025quant 0.5quant 0.975quant
## Range for field.env 1666.014 1375.481 354.8601 1275.569 5318.937
## Stdev for field.env 1.463 1.014 0.3741 1.196 4.116
## mode
## Range for field.env 799.9178
## Stdev for field.env 0.8235
##
## Expected number of effective parameters(std dev): 11.04(0.00)
## Number of equivalent replicates : 305.29
##
## Deviance Information Criterion (DIC) ...............: 452.87
## Deviance Information Criterion (DIC, saturated) ....: 209.82
## Effective number of parameters .....................: 11.24
##
## Watanabe-Akaike information criterion (WAIC) ...: 447.61
## Effective number of parameters .................: 5.691
##
## Marginal log-Likelihood: -255.62
## CPO and PIT are computed
##
## Posterior marginals for linear predictor and fitted values computed
Cov.fe = Fixed.mod$summary.fixed[,c(1:3,5)]
names(Cov.fe) = c("Mean", "sd", "Q0.025", "Q0.975")
kable(Cov.fe, caption = "Fixed Effects", digits=2) %>%
kable_styling("striped", full_width = F) %>%
row_spec(0, font_size = 20) %>%
column_spec(1, bold = T)
Mean | sd | Q0.025 | Q0.975 | |
---|---|---|---|---|
intercept1 | -3.73 | 0.19 | -4.11 | -3.36 |
mxTempE | -0.51 | 0.27 | -1.04 | 0.01 |
mSnow5yrE | 0.70 | 0.29 | 0.14 | 1.27 |
Type.1 | 0.15 | 0.06 | 0.02 | 0.27 |
Type.3 | 0.18 | 0.11 | -0.05 | 0.40 |
Type.6 | -0.01 | 0.21 | -0.42 | 0.41 |
Compare
SVC.mod$dic$dic
## [1] 453.946
Fixed.mod$dic$dic
## [1] 452.8703
SVC.mod$waic$waic
## [1] 447.4024
Fixed.mod$waic$waic
## [1] 447.6102
Validation
ModResult = Fixed.mod
Pred.pntsN = Validation.set2
#Get RF
pLoc = cbind(Pred.pntsN@coords[,1], Pred.pntsN@coords[,2])
Ap = inla.spde.make.A(mesh, loc=pLoc)
Pred.pntsN$RF = drop(Ap %*% ModResult$summary.random$field.env$mean)
#Pred.pntsN$Det = drop(Ap %*% ModResult$summary.random$field.det$mean)
#Site.df = ModResult$summary.random$Site
#Pred.pntsN$Site.eff = with(Site.df,
# mean[match(Pred.pntsN$Site2,
# ID)])
#Pred.pntsN$Tsvc = drop(Ap %*% ModResult$summary.random$field.tem$mean)
#Intercept
Fixed.df = ModResult$summary.fixed
#Pred.pntsN$Sno = Pred.pntsN$s.mSnow5yrE*drop(Ap %*% ModResult$summary.random$field.sno$mean) #+ Fixed.df[3,1]
#Pred.pntsN$Tem = Pred.pntsN$s.mxTempE*drop(Ap %*% ModResult$summary.random$field.tem$mean) #+ Fixed.df[2,1]
Pred.pntsN@data = Pred.pntsN@data %>%
mutate(E.LP = RF +
Fixed.df[1,1] +
#Fixed.df[2,1] +
s.mxTempE*Fixed.df[2,1] +
s.mSnow5yrE*Fixed.df[3,1] +
s.Type.1*Fixed.df[4,1] +
#Type.2*Fixed.df[5,1] +
s.Type.3*Fixed.df[5,1],
#s.Type.4*Fixed.df[6,1],
#Type.5*Fixed.df[8,1] +
#Type.6*Fixed.df[7,1] +
#Type.7*Fixed.df[10,1] +
#Type.8*Fixed.df[8,1] +
#Type.9*Fixed.df[7,1] +
#Type.10*Fixed.df[13,1] +
#Type.11*Fixed.df[14,1] +
#Type.12*Fixed.df[8,1],
P.LP = #Fixed.df[1,1] +
#Fixed.df[2,1] +
s.mxTempE*Fixed.df[2,1] +
s.mSnow5yrE*Fixed.df[3,1] +
s.Type.1*Fixed.df[4,1] +
#Type.2*Fixed.df[5,1] +
s.Type.3*Fixed.df[5,1],
#s.Type.4*Fixed.df[6,1],
#Type.5*Fixed.df[8,1] +
#Type.6*Fixed.df[7,1] +
#Type.7*Fixed.df[10,1] +
#Type.8*Fixed.df[8,1] +
#Type.9*Fixed.df[7,1] +
#Type.10*Fixed.df[13,1] +
#Type.11*Fixed.df[14,1] +
#Type.12*Fixed.df[8,1],
Est = plogis(E.LP),
Pred = plogis(P.LP))
Reg2.PA = as.data.frame(cbind(1:dim(Pred.pntsN@data)[1], Pred.pntsN$OBS, Pred.pntsN$Pred))
names(Reg2.PA) = c("ID", "OBS", "Pred")
Thresh = optimal.thresholds(Reg2.PA, opt.methods = c("MaxSens+Spec", "PredPrev=Obs"))
Thresh
## Method Pred
## 1 MaxSens+Spec 0.65
## 2 PredPrev=Obs 0.75
Reg2.PA.out1 = presence.absence.accuracy(Reg2.PA, threshold = Thresh[1,2])
Reg2.PA.out2 = presence.absence.accuracy(Reg2.PA, threshold = 0.5)
Reg2.PA.out = rbind(Reg2.PA.out1, Reg2.PA.out2)
#Calculate TSS
Reg2.PA.out$TSS = Reg2.PA.out$sensitivity + Reg2.PA.out$specificity - 1
Reg2.PA.out
## model threshold PCC sensitivity specificity Kappa AUC
## 1 Pred 0.65 0.8326401 0.9668616 0.7876511 0.6289838 0.8539137
## 2 Pred 0.50 0.7678003 0.9980507 0.6906240 0.5272494 0.8539137
## PCC.sd sensitivity.sd specificity.sd Kappa.sd AUC.sd
## 1 0.005839897 0.005590955 0.007393179 0.01217976 0.005833895
## 2 0.006605501 0.001377703 0.008356096 0.01186339 0.005833895
## TSS
## 1 0.7545127
## 2 0.6886747
Validation.tab = Reg2.PA.out %>% select(threshold, PCC, sensitivity, specificity, AUC, TSS)
kable(Validation.tab, caption = "Non SVC", digits=2) %>%
kable_styling("striped", full_width = F) %>%
row_spec(0, font_size = 20) %>%
column_spec(1, bold = T)
threshold | PCC | sensitivity | specificity | AUC | TSS |
---|---|---|---|---|---|
0.65 | 0.83 | 0.97 | 0.79 | 0.85 | 0.75 |
0.50 | 0.77 | 1.00 | 0.69 | 0.85 | 0.69 |