Indice de volumen de la actividad economica (IVAE)
Actividad economica: CONSTRUCCION
1. importar los datos
library(ggplot2)
library(forecast)
library(readxl)
ivae_ts <- read_excel("C:/Users/74/Desktop/IVAE Original.xlsx",
col_types = c("skip", "skip", "numeric"))
data=ivae_ts %>% ts(start = c(2005,1),frequency = 12)->ivae
print(ivae)
Jan Feb Mar Apr May Jun Jul Aug Sep Oct
2005 53.64 66.26 74.71 95.27 76.28 82.05 77.38 68.53 70.42 71.00
2006 58.02 78.13 85.91 71.83 76.95 86.10 81.23 71.78 80.45 84.78
2007 69.44 72.62 89.93 75.06 87.83 78.06 87.98 73.90 77.90 89.63
2008 70.91 91.48 86.79 111.87 92.50 86.57 91.02 74.44 80.25 77.81
2009 66.58 76.94 82.57 82.62 68.96 80.85 82.53 67.30 74.47 71.25
2010 50.25 82.29 94.10 80.80 80.59 80.94 82.17 70.28 101.33 79.48
2011 81.43 92.48 106.20 90.68 97.49 94.65 115.03 88.75 93.80 79.15
2012 90.17 99.48 113.51 98.29 102.30 100.09 96.59 88.06 86.30 94.04
2013 78.75 90.95 106.29 107.91 107.35 107.74 96.13 94.65 97.50 100.94
2014 87.69 100.81 122.10 107.84 108.73 113.51 96.09 90.17 87.93 90.88
2015 66.34 121.00 97.81 97.78 103.66 100.67 117.20 90.08 102.67 99.73
2016 86.05 92.25 101.06 120.36 103.98 102.38 109.23 98.71 98.27 98.07
2017 83.79 102.74 118.21 108.37 105.76 99.71 108.77 92.83 102.04 103.00
2018 97.91 114.22 113.47 118.91 108.05 117.92 113.89 99.47 108.72 104.17
2019 108.12 119.68 127.94 126.94 121.95 124.17 122.67 117.47
Nov Dec
2005 80.96 96.61
2006 90.15 108.46
2007 84.78 106.15
2008 81.55 84.51
2009 64.42 118.97
2010 83.07 111.93
2011 83.82 107.40
2012 99.95 111.92
2013 100.60 129.86
2014 92.06 102.18
2015 95.42 101.63
2016 95.18 131.51
2017 112.04 135.28
2018 119.14 140.79
2019
autoplot(ivae,xlab = "años",ylab = "Indice",main = "IVAE , periodo 2005-2019 (agosto)")+theme_bw()

2. proyeccion a Seis meses
library(forecast)
modelo<-auto.arima(y = ivae)
summary(modelo)
Series: ivae
ARIMA(4,1,1)(0,0,2)[12]
Coefficients:
ar1 ar2 ar3 ar4 ma1 sma1 sma2
-0.0311 0.1259 0.1556 0.0054 -0.8982 0.4361 0.1869
s.e. 0.1139 0.1139 0.1018 0.0914 0.0824 0.0801 0.0678
sigma^2 estimated as 113.7: log likelihood=-660.79
AIC=1337.57 AICc=1338.44 BIC=1362.89
Training set error measures:
ME RMSE MAE MPE MAPE MASE
Training set 1.52846 10.41918 7.541779 0.516149 8.104341 0.7969559
ACF1
Training set -0.005887418
pronosticos<-forecast(modelo,h = 6)
autoplot(pronosticos)+xlab("Años")+ylab("indice")+theme_bw()

library(forecast)
autoplot(pronosticos$x,series = "IVAE")+autolayer(pronosticos$fitted,series = "Pronóstico")+ggtitle("Ajuste SARIMA")

3. Serie ampliada
ivae_h<-ts(as.numeric(rbind(as.matrix(pronosticos$x),as.matrix(pronosticos$mean))),start = c(2005,1),frequency = 12)
print(ivae_h)
Jan Feb Mar Apr May Jun Jul Aug
2005 53.6400 66.2600 74.7100 95.2700 76.2800 82.0500 77.3800 68.5300
2006 58.0200 78.1300 85.9100 71.8300 76.9500 86.1000 81.2300 71.7800
2007 69.4400 72.6200 89.9300 75.0600 87.8300 78.0600 87.9800 73.9000
2008 70.9100 91.4800 86.7900 111.8700 92.5000 86.5700 91.0200 74.4400
2009 66.5800 76.9400 82.5700 82.6200 68.9600 80.8500 82.5300 67.3000
2010 50.2500 82.2900 94.1000 80.8000 80.5900 80.9400 82.1700 70.2800
2011 81.4300 92.4800 106.2000 90.6800 97.4900 94.6500 115.0300 88.7500
2012 90.1700 99.4800 113.5100 98.2900 102.3000 100.0900 96.5900 88.0600
2013 78.7500 90.9500 106.2900 107.9100 107.3500 107.7400 96.1300 94.6500
2014 87.6900 100.8100 122.1000 107.8400 108.7300 113.5100 96.0900 90.1700
2015 66.3400 121.0000 97.8100 97.7800 103.6600 100.6700 117.2000 90.0800
2016 86.0500 92.2500 101.0600 120.3600 103.9800 102.3800 109.2300 98.7100
2017 83.7900 102.7400 118.2100 108.3700 105.7600 99.7100 108.7700 92.8300
2018 97.9100 114.2200 113.4700 118.9100 108.0500 117.9200 113.8900 99.4700
2019 108.1200 119.6800 127.9400 126.9400 121.9500 124.1700 122.6700 117.4700
2020 118.9252 122.4540
Sep Oct Nov Dec
2005 70.4200 71.0000 80.9600 96.6100
2006 80.4500 84.7800 90.1500 108.4600
2007 77.9000 89.6300 84.7800 106.1500
2008 80.2500 77.8100 81.5500 84.5100
2009 74.4700 71.2500 64.4200 118.9700
2010 101.3300 79.4800 83.0700 111.9300
2011 93.8000 79.1500 83.8200 107.4000
2012 86.3000 94.0400 99.9500 111.9200
2013 97.5000 100.9400 100.6000 129.8600
2014 87.9300 90.8800 92.0600 102.1800
2015 102.6700 99.7300 95.4200 101.6300
2016 98.2700 98.0700 95.1800 131.5100
2017 102.0400 103.0000 112.0400 135.2800
2018 108.7200 104.1700 119.1400 140.7900
2019 118.9081 117.0985 123.4852 129.5766
2020
4. Descomposicion de la serie temporal
library(stats)
fit<-stl(ivae_h,"periodic")
autoplot(fit)+theme_bw()

TC<-fit$time.series[,2]
print(TC)
Jan Feb Mar Apr May Jun Jul
2005 72.47003 73.10561 73.74119 74.31263 74.88407 75.43508 75.98608
2006 76.97893 77.35823 77.73754 78.52131 79.30508 80.24030 81.17552
2007 83.06746 82.88152 82.69559 82.58703 82.47848 82.78074 83.08299
2008 88.56172 88.68477 88.80781 88.34231 87.87681 86.96777 86.05873
2009 78.48010 77.81744 77.15478 76.85858 76.56239 76.70585 76.84931
2010 79.19480 79.79812 80.40144 81.34350 82.28555 83.37335 84.46115
2011 92.36214 93.39022 94.41831 94.66457 94.91083 94.96997 95.02911
2012 96.60975 96.60767 96.60559 96.98297 97.36035 97.39883 97.43731
2013 97.84006 98.39537 98.95068 99.60413 100.25757 101.08808 101.91859
2014 105.08020 104.81773 104.55525 103.60753 102.65980 101.34685 100.03390
2015 96.35327 97.11108 97.86889 98.73557 99.60225 99.94783 100.29342
2016 100.29457 100.41902 100.54348 101.00941 101.47534 102.23274 102.99014
2017 104.14167 104.10435 104.06704 104.43945 104.81186 105.54088 106.26990
2018 110.75684 111.20820 111.65955 111.90049 112.14142 112.62059 113.09976
2019 118.79529 119.72680 120.65831 121.22435 121.79038 122.03814 122.28590
2020 124.12318 124.44135
Aug Sep Oct Nov Dec
2005 76.49266 76.99925 77.00995 77.02065 76.99979
2006 81.85656 82.53760 82.82227 83.10695 83.08720
2007 83.95291 84.82283 85.94765 87.07246 87.81709
2008 84.83794 83.61716 82.17969 80.74222 79.61116
2009 77.25228 77.65525 78.09868 78.54210 78.86845
2010 85.72842 86.99569 88.29973 89.60376 90.98295
2011 95.36520 95.70128 96.11462 96.52796 96.56886
2012 97.07925 96.72120 96.81148 96.90176 97.37091
2013 102.71985 103.52110 104.04529 104.56948 104.82484
2014 98.96836 97.90283 97.14839 96.39396 96.37362
2015 100.18707 100.08073 100.13303 100.18533 100.23995
2016 103.54080 104.09147 104.22085 104.35022 104.24595
2017 107.04814 107.82639 108.55067 109.27496 110.01590
2018 113.97131 114.84287 115.84835 116.85382 117.82456
2019 122.58681 122.88772 123.19646 123.50520 123.81419
2020
5. Calculo de las tasas
library(dplyr)
library(zoo)
TC %>% as.numeric() %>% as.data.frame()->TC_df
names(TC_df)<-c("TC")
TC_df %>% mutate(T_1_1=(TC/dplyr::lag(TC,n=1)-1)*100,
T_1_12=(TC/dplyr::lag(TC,n=12)-1)*100,
T_12_12=(rollapply(TC,12,mean,align='right',fill=NA)
/rollapply(dplyr::lag(TC,n=12),12,mean,align='right',fill=NA)-1)*100) %>%
#Aqui se realiza el centrado
mutate(T_1_12C=dplyr::lead(T_1_12,n = 6),
T_12_12C=dplyr::lead(T_12_12,n = 12)) %>% ts(start = c(2005,1),frequency = 12)->tabla_coyuntura
print(tail(tabla_coyuntura,n=12))
TC T_1_1 T_1_12 T_12_12 T_1_12C T_12_12C
Mar 2019 120.6583 0.7780317 8.059104 7.004828 7.005093 NA
Apr 2019 121.2243 0.4691233 8.332279 7.107535 6.342870 NA
May 2019 121.7904 0.4669328 8.604280 7.244591 5.692044 NA
Jun 2019 122.0381 0.2034287 8.362193 7.382921 5.083515 NA
Jul 2019 122.2859 0.2030157 8.122157 7.522581 4.484932 NA
Aug 2019 122.5868 0.2460709 7.559354 7.610465 3.937758 NA
Sep 2019 122.8877 0.2454669 7.005093 7.647359 NA NA
Oct 2019 123.1965 0.2512367 6.342870 7.609682 NA NA
Nov 2019 123.5052 0.2506071 5.692044 7.498662 NA NA
Dec 2019 123.8142 0.2501837 5.083515 7.322209 NA NA
Jan 2020 124.1232 0.2495593 4.484932 7.081530 NA NA
Feb 2020 124.4414 0.2563390 3.937758 6.761995 NA NA
6. Grafico de las tasas (centradas)
library(dplyr)
library(forecast)
library(ggplot2)
tabla_coyuntura %>% as.data.frame() %>% select(T_1_12C,T_12_12C) %>% ts(start = c(2005,1),frequency = 12)->tabla_coyuntura_graficos
autoplot(tabla_coyuntura_graficos)+theme_bw()

tabla_coyuntura %>% as.data.frame() %>% select(T_1_1) %>% ts(start = c(2005,1),frequency = 12) %>% autoplot()

LS0tDQp0aXRsZTogIkludHJvZHVjY2lvbiBhbCBBbmFsaXNpcyBkZSBDb3l1bnR1cmEgRWNvbm9taWNhIg0KYXV0aG9yOiAiRGVuaXMgRmVybmFuZG8gRmxhbWVuY28gTm9sYXNjbyINCm91dHB1dDogDQogIGh0bWxfbm90ZWJvb2s6IA0KICAgIHRvYzogeWVzDQogIGh0bWxfZG9jdW1lbnQ6IA0KICAgIGRmX3ByaW50OiBrYWJsZQ0KICAgIHRvYzogeWVzDQotLS0NCg0KYGBge3Igc2V0dXAsIGluY2x1ZGU9RkFMU0V9DQprbml0cjo6b3B0c19jaHVuayRzZXQoZWNobyA9IFRSVUUpDQpgYGANCg0KIyMgSW5kaWNlIGRlIHZvbHVtZW4gZGUgbGEgYWN0aXZpZGFkIGVjb25vbWljYSAoSVZBRSkNCiMjIEFjdGl2aWRhZCBlY29ub21pY2E6IENPTlNUUlVDQ0lPTg0KDQojIDEuIGltcG9ydGFyIGxvcyBkYXRvcw0KYGBge3Isd2FybmluZz1GQUxTRSxtZXNzYWdlPUZBTFNFLGV2YWw9VFJVRSxlY2hvPVRSVUV9DQpsaWJyYXJ5KGdncGxvdDIpDQpsaWJyYXJ5KGZvcmVjYXN0KQ0KbGlicmFyeShyZWFkeGwpDQppdmFlX3RzIDwtIHJlYWRfZXhjZWwoIkM6L1VzZXJzLzc0L0Rlc2t0b3AvSVZBRSBPcmlnaW5hbC54bHN4IiwgDQogICAgY29sX3R5cGVzID0gYygic2tpcCIsICJza2lwIiwgIm51bWVyaWMiKSkNCmRhdGE9aXZhZV90cyAlPiUgdHMoc3RhcnQgPSBjKDIwMDUsMSksZnJlcXVlbmN5ID0gMTIpLT5pdmFlDQpwcmludChpdmFlKQ0KYXV0b3Bsb3QoaXZhZSx4bGFiID0gImHxb3MiLHlsYWIgPSAiSW5kaWNlIixtYWluID0gIklWQUUgLCBwZXJpb2RvIDIwMDUtMjAxOSAoYWdvc3RvKSIpK3RoZW1lX2J3KCkNCmBgYA0KIyAyLiBwcm95ZWNjaW9uIGEgU2VpcyBtZXNlcw0KYGBge3Isd2FybmluZz1GQUxTRSxtZXNzYWdlPUZBTFNFLGV2YWw9VFJVRSxlY2hvPVRSVUV9DQpsaWJyYXJ5KGZvcmVjYXN0KQ0KbW9kZWxvPC1hdXRvLmFyaW1hKHkgPSBpdmFlKQ0Kc3VtbWFyeShtb2RlbG8pDQpwcm9ub3N0aWNvczwtZm9yZWNhc3QobW9kZWxvLGggPSA2KQ0KYXV0b3Bsb3QocHJvbm9zdGljb3MpK3hsYWIoIkHxb3MiKSt5bGFiKCJpbmRpY2UiKSt0aGVtZV9idygpDQpgYGANCmBgYHtyLHdhcm5pbmc9RkFMU0UsbWVzc2FnZT1GQUxTRSxldmFsPVRSVUUsZWNobz1UUlVFfQ0KbGlicmFyeShmb3JlY2FzdCkNCmF1dG9wbG90KHByb25vc3RpY29zJHgsc2VyaWVzID0gIklWQUUiKSthdXRvbGF5ZXIocHJvbm9zdGljb3MkZml0dGVkLHNlcmllcyA9ICJQcm9uw7NzdGljbyIpK2dndGl0bGUoIkFqdXN0ZSBTQVJJTUEiKQ0KYGBgDQojIDMuIFNlcmllIGFtcGxpYWRhDQoNCmBgYHtyLHdhcm5pbmc9RkFMU0UsbWVzc2FnZT1GQUxTRSxldmFsPVRSVUUsZWNobz1UUlVFfQ0KaXZhZV9oPC10cyhhcy5udW1lcmljKHJiaW5kKGFzLm1hdHJpeChwcm9ub3N0aWNvcyR4KSxhcy5tYXRyaXgocHJvbm9zdGljb3MkbWVhbikpKSxzdGFydCA9IGMoMjAwNSwxKSxmcmVxdWVuY3kgPSAxMikNCnByaW50KGl2YWVfaCkNCg0KYGBgDQoNCiMgNC4gRGVzY29tcG9zaWNpb24gZGUgbGEgc2VyaWUgdGVtcG9yYWwNCmBgYHtyLHdhcm5pbmc9RkFMU0UsbWVzc2FnZT1GQUxTRSxldmFsPVRSVUUsZWNobz1UUlVFfQ0KbGlicmFyeShzdGF0cykNCmZpdDwtc3RsKGl2YWVfaCwicGVyaW9kaWMiKQ0KYXV0b3Bsb3QoZml0KSt0aGVtZV9idygpDQpUQzwtZml0JHRpbWUuc2VyaWVzWywyXQ0KcHJpbnQoVEMpDQpgYGANCiMgNS4gQ2FsY3VsbyBkZSBsYXMgdGFzYXMNCmBgYHtyLHdhcm5pbmc9RkFMU0UsbWVzc2FnZT1GQUxTRSxldmFsPVRSVUUsZWNobz1UUlVFfQ0KbGlicmFyeShkcGx5cikNCmxpYnJhcnkoem9vKQ0KVEMgJT4lIGFzLm51bWVyaWMoKSAlPiUgYXMuZGF0YS5mcmFtZSgpLT5UQ19kZg0KbmFtZXMoVENfZGYpPC1jKCJUQyIpDQpUQ19kZiAlPiUgbXV0YXRlKFRfMV8xPShUQy9kcGx5cjo6bGFnKFRDLG49MSktMSkqMTAwLA0KICAgICAgICAgICAgICAgICBUXzFfMTI9KFRDL2RwbHlyOjpsYWcoVEMsbj0xMiktMSkqMTAwLA0KICAgICAgICAgICAgICAgICBUXzEyXzEyPShyb2xsYXBwbHkoVEMsMTIsbWVhbixhbGlnbj0ncmlnaHQnLGZpbGw9TkEpDQogICAgICAgICAgICAgICAgICAgICAgICAgIC9yb2xsYXBwbHkoZHBseXI6OmxhZyhUQyxuPTEyKSwxMixtZWFuLGFsaWduPSdyaWdodCcsZmlsbD1OQSktMSkqMTAwKSAlPiUNCiAgICAgICAgICAjQXF1aSBzZSByZWFsaXphIGVsIGNlbnRyYWRvDQogICAgICAgICAgbXV0YXRlKFRfMV8xMkM9ZHBseXI6OmxlYWQoVF8xXzEyLG4gPSA2KSwNCiAgICAgICAgICAgICAgICAgVF8xMl8xMkM9ZHBseXI6OmxlYWQoVF8xMl8xMixuID0gMTIpKSAlPiUgdHMoc3RhcnQgPSBjKDIwMDUsMSksZnJlcXVlbmN5ID0gMTIpLT50YWJsYV9jb3l1bnR1cmENCnByaW50KHRhaWwodGFibGFfY295dW50dXJhLG49MTIpKQ0KYGBgDQojIDYuIEdyYWZpY28gZGUgbGFzIHRhc2FzIChjZW50cmFkYXMpDQoNCmBgYHtyLHdhcm5pbmc9RkFMU0UsbWVzc2FnZT1GQUxTRSxldmFsPVRSVUUsZWNobz1UUlVFfQ0KbGlicmFyeShkcGx5cikNCmxpYnJhcnkoZm9yZWNhc3QpDQpsaWJyYXJ5KGdncGxvdDIpDQp0YWJsYV9jb3l1bnR1cmEgJT4lIGFzLmRhdGEuZnJhbWUoKSAlPiUgc2VsZWN0KFRfMV8xMkMsVF8xMl8xMkMpICU+JSB0cyhzdGFydCA9IGMoMjAwNSwxKSxmcmVxdWVuY3kgPSAxMiktPnRhYmxhX2NveXVudHVyYV9ncmFmaWNvcw0KYXV0b3Bsb3QodGFibGFfY295dW50dXJhX2dyYWZpY29zKSt0aGVtZV9idygpDQp0YWJsYV9jb3l1bnR1cmEgJT4lIGFzLmRhdGEuZnJhbWUoKSAlPiUgc2VsZWN0KFRfMV8xKSAlPiUgdHMoc3RhcnQgPSBjKDIwMDUsMSksZnJlcXVlbmN5ID0gMTIpICU+JSBhdXRvcGxvdCgpDQpgYGANCg0KDQo=