matchup<-read.csv("matchups.csv")
matchup$atimdifmin<-abs(matchup$timdifmin)
matchup$logchlorI<-log(matchup$chlorI)
matchup$logchlorS<-log(matchup$chlorS)
matchup$dlogchlor<-matchup$logchlorI-matchup$logchlorS
matchup$Error<-matchup$dlogchlor^2
datatable(matchup, options = list(pageLength = 25,
dom = 'tip',
scrollY = 500,
scroller = TRUE,
scrollX = TRUE,
fixedColumns = TRUE), width = "100%", height = "100%") [1] "timeI" "lonI" "latI" "satid" "lonS"
[6] "latS" "chlorI" "chlorS" "distkm" "timdifmin"
[11] "sdlnchlor" "nchlor" "senzr" "solzr" "windspeed"
[16] "tlg869" "taua869" "atimdifmin" "logchlorI" "logchlorS"
[21] "dlogchlor" "Error"
#pal <- colorFactor(wheel("tomato", num = length(matchup$chla_hplcM)), domain = unique(matchup$chla_hplcM))
pal <- colorNumeric(
palette = "Reds",
domain = matchup$chlorI)
pal1 <- colorNumeric(
palette = "Blues",
domain = matchup$chlorS)
m <- leaflet(matchup) %>%
setView(lng = -70, lat = 50, zoom = 2.3)%>%
addProviderTiles(providers$Esri.NatGeoWorldMap) %>% # Add default OpenStreetMap map tiles
addCircleMarkers(lng=~lonI, lat=~latI,
#icon = icons,
popup=~chlorI,
label =~chlorI,
radius=7,
color = ~pal(chlorI),
stroke = FALSE, fillOpacity = 1) %>% # Add default OpenStreetMap map tiles
addCircleMarkers(lng=~lonS, lat=~latS,
#icon = icons,
popup=~chlorS,
label =~chlorS,
radius=7,
color = ~pal1(chlorS),
stroke = FALSE, fillOpacity = 1)
m # Print the maplocationSat<- data.frame(Longitude=matchup[,2], Latitude=matchup[,3], Chlorophyll=matchup[,7])
locationSat$Location<-"In Situ"
locationM<-data.frame(Longitude=matchup[,5], Latitude=matchup[,6], Chlorophyll=matchup[,8])
locationM$Location<-"Satellite"
location<-rbind.data.frame(locationSat,locationM)
location$logChlorophyll<-log(location$Chlorophyll)
pal <- colorFactor(c("navy","red"), domain = c("Satellite", "In Situ"))
m <- leaflet(location) %>%
setView(lng = -70, lat = 50, zoom = 2.3)%>%
addProviderTiles(providers$Esri.NatGeoWorldMap) %>% # Add default OpenStreetMap map tiles
addCircleMarkers(lng=~Longitude, lat=~Latitude,
#icon = icons,
popup=~Location,
label =~Chlorophyll,
radius=6,
color = ~pal(Location),
stroke = FALSE, fillOpacity = 1)
m # Print the mapmatchup$rchi<-rchisq(nrow(matchup), 1, ncp = 0)
p1 <- ggplot(data=location, aes(x=logChlorophyll, fill=Location)) +
geom_density(alpha=.3, col="black") +
labs(title="Histogram of Log Chlorophyll")
p2 <- ggplot(data=matchup, aes(x=Error)) +
geom_histogram(aes(y =..density..), position="identity",
breaks=seq(min(matchup$Error), max(matchup$Error)+1, length.out = 20),
alpha=.5, color="light blue", fill="red") +
geom_density(alpha=.3, fill="brown", col="black") +
labs(title="Histogram of Error")
p3 <- ggplot(data = matchup, aes(x = logchlorS, y = logchlorI)) +
geom_point(color='red')+
xlim(-4,4) +
ylim(-4,4) +
geom_smooth(method = "loess", se = TRUE) +
geom_abline(intercept = 0, slope = 1, color="black",
linetype="dashed", size=1)+
labs(title="Log Chlorophyll Measurements")+
xlab("Satellite")+ylab("In Situ")
p4 <- ggplot(data=matchup, aes(x=rchi)) +
geom_histogram(aes(y =..density..), position="identity",
breaks=seq(min(matchup$rchi), max(matchup$rchi)+1, length.out = 20),
alpha=.5, color="light blue", fill="red") +
geom_density(alpha=.3, fill="brown", col="black") +
labs(title="Histogram of Chi Squared df=1")+
xlab("Simulated")
# grid.arrange(p1, p2,
# p3, p4,# Second row with 2 plots in 2 different columns
# nrow = 2)
#
#
# grid.arrange(# First row with one plot spaning over 2 columns
# arrangeGrob(p1, p2,ncol = 2),
# p3,# Second row with 2 plots in 2 different columns
# nrow = 2)
#
# grid.arrange(p1, p2, p3, nrow = 1)
grid.arrange(p1, p2,
p3, p4,# Second row with 2 plots in 2 different columns
nrow = 2)
Shapiro-Wilk normality test
data: location[location$Location == "In Situ", ]$logChlorophyll
W = 0.96495, p-value = 0.00001699
Shapiro-Wilk normality test
data: location[location$Location == "Satellite", ]$logChlorophyll
W = 0.93484, p-value = 0.00000001187
Failed.
matchup$rgamma<-rGG(nrow(matchup), mu=exp(-0.8), sigma= 1.49, nu= 1)
matchup$rgGamma<-rGG(nrow(matchup), mu=exp(-1.119), sigma= 1.66, nu= 0.68)
p1 <- ggplot(data=matchup, aes(x=Error)) +
geom_histogram(aes(y =..density..), position="identity",
breaks=seq(min(matchup$Error), max(matchup$Error)+1, length.out = 20),
alpha=.5, color="light blue", fill="red") +
geom_density(alpha=.3, fill="brown", col="black") +
labs(title="Histogram of Error")
p2 <- ggplot(data=matchup, aes(x=rgamma)) +
geom_histogram(aes(y =..density..), position="identity",
breaks=seq(min(matchup$rgamma), max(matchup$rgamma)+1, length.out = 20),
alpha=.5, color="light blue", fill="red") +
geom_density(alpha=.3, fill="brown", col="black") +
labs(title="Histogram of Gamma")+
xlab("Simulated")
p3 <- ggplot(data=matchup, aes(x=rgGamma)) +
geom_histogram(aes(y =..density..), position="identity",
breaks=seq(min(matchup$rgGamma), max(matchup$rgGamma)+1, length.out = 20),
alpha=.5, color="light blue", fill="red") +
geom_density(alpha=.3, fill="brown", col="black") +
labs(title="Histogram of GGamma")+
xlab("Simulated")
grid.arrange(p1, p2,
p3, p4,# Second row with 2 plots in 2 different columns
nrow = 2) m1<-glm(Error ~ distkm + atimdifmin + sdlnchlor + nchlor + senzr + solzr + windspeed + taua869,
family=Gamma(link="log"), data = matchup)
summary(m1)
Call:
glm(formula = Error ~ distkm + atimdifmin + sdlnchlor + nchlor +
senzr + solzr + windspeed + taua869, family = Gamma(link = "log"),
data = matchup)
Deviance Residuals:
Min 1Q Median 3Q Max
-4.2000 -1.6247 -0.7419 0.3381 2.6932
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) -1.5331065 0.6742112 -2.274 0.02392 *
distkm -1.1194265 0.4138218 -2.705 0.00735 **
atimdifmin 0.0021509 0.0005061 4.250 0.0000314 ***
sdlnchlor 2.9764107 0.8041374 3.701 0.00027 ***
nchlor -0.0473464 0.0497581 -0.952 0.34236
senzr 0.6653076 0.3262554 2.039 0.04260 *
solzr 0.4933609 0.4448334 1.109 0.26858
windspeed 0.0149680 0.0426444 0.351 0.72592
taua869 -0.6293843 1.6230513 -0.388 0.69855
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
(Dispersion parameter for Gamma family taken to be 1.742496)
Null deviance: 673.33 on 232 degrees of freedom
Residual deviance: 585.39 on 224 degrees of freedom
AIC: -63.835
Number of Fisher Scoring iterations: 12
Shapiro-Wilk normality test
data: m1$residuals
W = 0.75227, p-value < 2.2e-16
Residuals are not centred around zero. The Shapiro–Wilk test tests the null hypothesis that a sample came from a normally distributed population. Here we reject the null.
distkm atimdifmin sdlnchlor nchlor senzr solzr
1.146489 1.111858 1.023226 1.024226 1.224432 1.156866
windspeed taua869
1.105677 1.104678
distkm atimdifmin sdlnchlor nchlor senzr solzr
FALSE FALSE FALSE FALSE FALSE FALSE
windspeed taua869
FALSE FALSE
No problem with Collinearity.
Partial-residual plots, for linear and generalized linear models. Evaluate Nonlinearity.
lag Autocorrelation D-W Statistic p-value
1 0.5024233 0.9938355 0
Alternative hypothesis: rho != 0
Durbin–Watson statistic is a test statistic used to detect the presence of autocorrelation at lag 1 in the residuals (prediction errors) from a regression analysis.
m2 <- gam(Error ~ s(distkm) + s(atimdifmin) + s(sdlnchlor) + nchlor + s(senzr) + s(solzr) + s(windspeed) + s(taua869), family=Gamma(link="log"), data = matchup)
summary(m2)
Call: gam(formula = Error ~ s(distkm) + s(atimdifmin) + s(sdlnchlor) +
nchlor + s(senzr) + s(solzr) + s(windspeed) + s(taua869),
family = Gamma(link = "log"), data = matchup)
Deviance Residuals:
Min 1Q Median 3Q Max
-4.3812 -1.4933 -0.5005 0.4067 2.6204
(Dispersion Parameter for Gamma family taken to be 1.4866)
Null Deviance: 673.3335 on 232 degrees of freedom
Residual Deviance: 509.6107 on 203.0003 degrees of freedom
AIC: -63.9112
Number of Local Scoring Iterations: 30
Anova for Parametric Effects
Df Sum Sq Mean Sq F value Pr(>F)
s(distkm) 1 8.206 8.2056 5.5196 0.0197652 *
s(atimdifmin) 1 17.612 17.6116 11.8466 0.0007013 ***
s(sdlnchlor) 1 13.957 13.9571 9.3884 0.0024801 **
nchlor 1 1.126 1.1256 0.7571 0.3852611
s(senzr) 1 1.849 1.8488 1.2436 0.2660933
s(solzr) 1 0.206 0.2059 0.1385 0.7101867
s(windspeed) 1 0.007 0.0073 0.0049 0.9440965
s(taua869) 1 5.890 5.8897 3.9618 0.0478862 *
Residuals 203 301.787 1.4866
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Anova for Nonparametric Effects
Npar Df Npar F Pr(F)
(Intercept)
s(distkm) 3 2.5677 0.05556 .
s(atimdifmin) 3 0.5929 0.62034
s(sdlnchlor) 3 1.0060 0.39114
nchlor
s(senzr) 3 2.9483 0.03388 *
s(solzr) 3 1.8143 0.14573
s(windspeed) 3 3.4808 0.01688 *
s(taua869) 3 5.2361 0.00168 **
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#suumerym1<-summary(m2)
#gamtabs(m2, caption='Summary of m1')
#xtable(suumerym1$anova, caption="ANOVA table for GAM", digits=4)
Shapiro-Wilk normality test
data: m2$residuals
W = 0.8104, p-value = 3.853e-16
s(distkm) s(atimdifmin) s(sdlnchlor) nchlor s(senzr)
1.146489 1.111858 1.023226 1.024226 1.224432
s(solzr) s(windspeed) s(taua869)
1.156866 1.105677 1.104678
s(distkm) s(atimdifmin) s(sdlnchlor) nchlor s(senzr)
FALSE FALSE FALSE FALSE FALSE
s(solzr) s(windspeed) s(taua869)
FALSE FALSE FALSE
lag Autocorrelation D-W Statistic p-value
1 0.4300903 1.139699 0
Alternative hypothesis: rho != 0
Similarly, residuals are not centred around zero. The Shapiro–Wilk test rejects the null.
m3 <- gamlss(Error ~ cs(distkm) + cs(atimdifmin) + cs(sdlnchlor) + nchlor + cs(senzr) + cs(solzr) + cs(windspeed) + cs(taua869),
family=GA(sigma.link="log"),
control=gamlss.control(c.crit = 0.0001, n.cyc = 50),
data = matchup,
trace=FALSE,
)GAMLSS-RS iteration 1: Global Deviance = -133.8051
GAMLSS-RS iteration 2: Global Deviance = -133.4522
GAMLSS-RS iteration 3: Global Deviance = -133.4274
GAMLSS-RS iteration 4: Global Deviance = -133.4229
GAMLSS-RS iteration 5: Global Deviance = -133.4219
GAMLSS-RS iteration 6: Global Deviance = -133.4215
GAMLSS-RS iteration 7: Global Deviance = -133.4213
GAMLSS-RS iteration 8: Global Deviance = -133.4212
GAMLSS-RS iteration 9: Global Deviance = -133.4207
GAMLSS-RS iteration 10: Global Deviance = -133.4212
GAMLSS-RS iteration 11: Global Deviance = -133.4208
GAMLSS-RS iteration 12: Global Deviance = -133.4212
GAMLSS-RS iteration 13: Global Deviance = -133.4209
GAMLSS-RS iteration 14: Global Deviance = -133.4211
GAMLSS-RS iteration 15: Global Deviance = -133.4209
GAMLSS-RS iteration 16: Global Deviance = -133.4211
GAMLSS-RS iteration 17: Global Deviance = -133.4209
GAMLSS-RS iteration 18: Global Deviance = -133.421
GAMLSS-RS iteration 19: Global Deviance = -133.421
******************************************************************
Family: c("GA", "Gamma")
Call: gamlss(formula = Error ~ cs(distkm) + cs(atimdifmin) +
cs(sdlnchlor) + nchlor + cs(senzr) + cs(solzr) +
cs(windspeed) + cs(taua869), family = GA(sigma.link = "log"),
data = matchup, control = gamlss.control(c.crit = 0.0001,
n.cyc = 50), trace = FALSE)
Fitting method: RS()
------------------------------------------------------------------
Mu link function: log
Mu Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) -0.7781941 0.6862996 -1.134 0.25818
cs(distkm) -0.8906453 0.4249891 -2.096 0.03736 *
cs(atimdifmin) 0.0013807 0.0004908 2.813 0.00539 **
cs(sdlnchlor) 2.4870284 0.8189289 3.037 0.00271 **
nchlor -0.0439038 0.0514856 -0.853 0.39481
cs(senzr) 0.3251230 0.3385427 0.960 0.33802
cs(solzr) -0.2287731 0.4491539 -0.509 0.61107
cs(windspeed) 0.0169463 0.0444586 0.381 0.70348
cs(taua869) -2.5299200 1.6602942 -1.524 0.12913
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
------------------------------------------------------------------
Sigma link function: log
Sigma Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.28168 0.03874 7.271 7.68e-12 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
------------------------------------------------------------------
NOTE: Additive smoothing terms exist in the formulas:
i) Std. Error for smoothers are for the linear effect only.
ii) Std. Error for the linear terms maybe are not accurate.
------------------------------------------------------------------
No. of observations in the fit: 233
Degrees of Freedom for the fit: 31.00109
Residual Deg. of Freedom: 201.9989
at cycle: 19
Global Deviance: -133.421
AIC: -71.41878
SBC: 35.56717
******************************************************************
******************************************************************
Summary of the Quantile Residuals
mean = 0.01608588
variance = 1.024702
coef. of skewness = -0.3359576
coef. of kurtosis = 2.744791
Filliben correlation coefficient = 0.9949545
******************************************************************
Shapiro-Wilk normality test
data: m3$residuals
W = 0.98908, p-value = 0.07487
[1] 0.2975244
[1] -71.41878
cs(distkm) cs(atimdifmin) cs(sdlnchlor) nchlor cs(senzr)
1.200207 1.180365 1.044411 1.131815 1.316032
cs(solzr) cs(windspeed) cs(taua869)
1.159958 1.171829 1.172611
cs(distkm) cs(atimdifmin) cs(sdlnchlor) nchlor cs(senzr)
FALSE FALSE FALSE FALSE FALSE
cs(solzr) cs(windspeed) cs(taua869)
FALSE FALSE FALSE
[1] 1.341672
To check the adequacy of the fitted GAM we use a worm plot, which is a de-trended QQ-plot of the residuals expect the dots (which look like a worm) to be close to the middle horizontal line and 95% of them to lie between the upper and lower dotted curves, which act as 95% pointwise confidence intervals, with no systematic departure.
term.plot(m3, pages=1, ask=FALSE, partial.resid = TRUE, col.term = "black",
col.se = "orange", col.shaded = "gray", col.res = "red",
col.rug = "gray", lwd.term = 2, lty.se = 2, lwd.se = 1)m3g<-gamlss(Error ~ cs(distkm) + cs(atimdifmin) + cs(sdlnchlor) + nchlor + cs(senzr) + cs(solzr) + cs(windspeed) + cs(taua869),
family=GG(mu.link ="log" , sigma.link="log", nu.link="identity"),
control=gamlss.control(c.crit = 0.0001, n.cyc = 50),
data = matchup)GAMLSS-RS iteration 1: Global Deviance = -134.9773
GAMLSS-RS iteration 2: Global Deviance = -136.036
GAMLSS-RS iteration 3: Global Deviance = -137.0451
GAMLSS-RS iteration 4: Global Deviance = -137.8288
GAMLSS-RS iteration 5: Global Deviance = -138.4587
GAMLSS-RS iteration 6: Global Deviance = -138.9699
GAMLSS-RS iteration 7: Global Deviance = -139.392
GAMLSS-RS iteration 8: Global Deviance = -139.7429
GAMLSS-RS iteration 9: Global Deviance = -140.0376
GAMLSS-RS iteration 10: Global Deviance = -140.2761
GAMLSS-RS iteration 11: Global Deviance = -140.4867
GAMLSS-RS iteration 12: Global Deviance = -140.6686
GAMLSS-RS iteration 13: Global Deviance = -140.8256
GAMLSS-RS iteration 14: Global Deviance = -140.9615
GAMLSS-RS iteration 15: Global Deviance = -141.0796
GAMLSS-RS iteration 16: Global Deviance = -141.1824
GAMLSS-RS iteration 17: Global Deviance = -141.2722
GAMLSS-RS iteration 18: Global Deviance = -141.3507
GAMLSS-RS iteration 19: Global Deviance = -141.4196
GAMLSS-RS iteration 20: Global Deviance = -141.48
GAMLSS-RS iteration 21: Global Deviance = -141.533
GAMLSS-RS iteration 22: Global Deviance = -141.5796
GAMLSS-RS iteration 23: Global Deviance = -141.6205
GAMLSS-RS iteration 24: Global Deviance = -141.6563
GAMLSS-RS iteration 25: Global Deviance = -141.6877
GAMLSS-RS iteration 26: Global Deviance = -141.7151
GAMLSS-RS iteration 27: Global Deviance = -141.7389
GAMLSS-RS iteration 28: Global Deviance = -141.7595
GAMLSS-RS iteration 29: Global Deviance = -141.7773
GAMLSS-RS iteration 30: Global Deviance = -141.7925
GAMLSS-RS iteration 31: Global Deviance = -141.8053
GAMLSS-RS iteration 32: Global Deviance = -141.816
GAMLSS-RS iteration 33: Global Deviance = -141.8247
GAMLSS-RS iteration 34: Global Deviance = -141.8316
GAMLSS-RS iteration 35: Global Deviance = -141.8369
GAMLSS-RS iteration 36: Global Deviance = -141.8407
GAMLSS-RS iteration 37: Global Deviance = -141.8431
GAMLSS-RS iteration 38: Global Deviance = -141.8441
GAMLSS-RS iteration 39: Global Deviance = -141.844
GAMLSS-RS iteration 40: Global Deviance = -141.8427
GAMLSS-RS iteration 41: Global Deviance = -141.8403
GAMLSS-RS iteration 42: Global Deviance = -141.8369
GAMLSS-RS iteration 43: Global Deviance = -141.8325
GAMLSS-RS iteration 44: Global Deviance = -141.8271
GAMLSS-RS iteration 45: Global Deviance = -141.8209
GAMLSS-RS iteration 46: Global Deviance = -141.8138
GAMLSS-RS iteration 47: Global Deviance = -141.8059
GAMLSS-RS iteration 48: Global Deviance = -141.7971
GAMLSS-RS iteration 49: Global Deviance = -141.7875
GAMLSS-RS iteration 50: Global Deviance = -141.7771
******************************************************************
Family: c("GG", "generalised Gamma Lopatatsidis-Green")
Call: gamlss(formula = Error ~ cs(distkm) + cs(atimdifmin) +
cs(sdlnchlor) + nchlor + cs(senzr) + cs(solzr) +
cs(windspeed) + cs(taua869), family = GG(mu.link = "log",
sigma.link = "log", nu.link = "identity"), data = matchup,
control = gamlss.control(c.crit = 0.0001, n.cyc = 50))
Fitting method: RS()
------------------------------------------------------------------
Mu link function: log
Mu Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) -0.2457093 0.5642770 -0.435 0.6637
cs(distkm) -0.5865982 0.2634197 -2.227 0.0271 *
cs(atimdifmin) 0.0019294 0.0003154 6.118 0.00000000488 ***
cs(sdlnchlor) 2.5109015 0.5222761 4.808 0.00000298807 ***
nchlor -0.0706765 0.0333637 -2.118 0.0354 *
cs(senzr) 0.2748830 0.2371412 1.159 0.2478
cs(solzr) 0.1397952 0.3020100 0.463 0.6439
cs(windspeed) -0.0285686 0.0331152 -0.863 0.3893
cs(taua869) -1.6342807 1.0142710 -1.611 0.1087
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
------------------------------------------------------------------
Sigma link function: log
Sigma Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) -0.2318 0.3646 -0.636 0.526
------------------------------------------------------------------
Nu link function: identity
Nu Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 3.720 2.959 1.257 0.21
------------------------------------------------------------------
NOTE: Additive smoothing terms exist in the formulas:
i) Std. Error for smoothers are for the linear effect only.
ii) Std. Error for the linear terms maybe are not accurate.
------------------------------------------------------------------
No. of observations in the fit: 233
Degrees of Freedom for the fit: 32.00109
Residual Deg. of Freedom: 200.9989
at cycle: 50
Global Deviance: -141.7771
AIC: -77.77493
SBC: 32.66206
******************************************************************
******************************************************************
Summary of the Quantile Residuals
mean = 0.0092253
variance = 0.9875956
coef. of skewness = 0.0893399
coef. of kurtosis = 2.561804
Filliben correlation coefficient = 0.9965565
******************************************************************
Shapiro-Wilk normality test
data: m3g$residuals
W = 0.99169, p-value = 0.2096
[1] 0.3089104
[1] -77.77493
df AIC
m3g 32.00109 -77.77493
m3 31.00109 -71.41878
cs(distkm) cs(atimdifmin) cs(sdlnchlor) nchlor cs(senzr)
1.318779 1.212528 1.163455 1.337637 1.864737
cs(solzr) cs(windspeed) cs(taua869)
1.503492 1.758193 1.300490
cs(distkm) cs(atimdifmin) cs(sdlnchlor) nchlor cs(senzr)
FALSE FALSE FALSE FALSE FALSE
cs(solzr) cs(windspeed) cs(taua869)
FALSE FALSE FALSE
[1] 1.29997
term.plot(m3g, pages=1, ask=FALSE, partial.resid = TRUE, col.term = "black",
col.se = "orange", col.shaded = "gray", col.res = "red",
col.rug = "gray", lwd.term = 2, lty.se = 2, lwd.se = 1)m3gs<-gamlss(Error ~ cs(distkm) + cs(atimdifmin) + cs(sdlnchlor) + nchlor + cs(senzr) + cs(solzr) + cs(windspeed) + cs(taua869),
sigma.fo=~cs(distkm) + cs(atimdifmin),
nu.fo=~cs(distkm) + cs(atimdifmin) + cs(sdlnchlor) + nchlor + cs(senzr) + cs(solzr) + cs(windspeed) + cs(taua869),
family=GG(mu.link ="log"),
control=gamlss.control(c.crit = 0.001, n.cyc = 40),
data = matchup)GAMLSS-RS iteration 1: Global Deviance = -160.1331
GAMLSS-RS iteration 2: Global Deviance = -164.1527
GAMLSS-RS iteration 3: Global Deviance = -166.4022
GAMLSS-RS iteration 4: Global Deviance = -168.0836
GAMLSS-RS iteration 5: Global Deviance = -169.3969
GAMLSS-RS iteration 6: Global Deviance = -170.4602
GAMLSS-RS iteration 7: Global Deviance = -171.3324
GAMLSS-RS iteration 8: Global Deviance = -172.0727
GAMLSS-RS iteration 9: Global Deviance = -172.7086
GAMLSS-RS iteration 10: Global Deviance = -173.2656
GAMLSS-RS iteration 11: Global Deviance = -173.7622
GAMLSS-RS iteration 12: Global Deviance = -174.2097
GAMLSS-RS iteration 13: Global Deviance = -174.6196
GAMLSS-RS iteration 14: Global Deviance = -175.0028
GAMLSS-RS iteration 15: Global Deviance = -175.3634
GAMLSS-RS iteration 16: Global Deviance = -175.7069
GAMLSS-RS iteration 17: Global Deviance = -176.0393
GAMLSS-RS iteration 18: Global Deviance = -176.3598
GAMLSS-RS iteration 19: Global Deviance = -176.6698
GAMLSS-RS iteration 20: Global Deviance = -176.9655
GAMLSS-RS iteration 21: Global Deviance = -177.2515
GAMLSS-RS iteration 22: Global Deviance = -177.5276
GAMLSS-RS iteration 23: Global Deviance = -177.7883
GAMLSS-RS iteration 24: Global Deviance = -178.0332
GAMLSS-RS iteration 25: Global Deviance = -178.2645
GAMLSS-RS iteration 26: Global Deviance = -178.4807
GAMLSS-RS iteration 27: Global Deviance = -178.6805
GAMLSS-RS iteration 28: Global Deviance = -178.867
GAMLSS-RS iteration 29: Global Deviance = -179.038
GAMLSS-RS iteration 30: Global Deviance = -179.1948
GAMLSS-RS iteration 31: Global Deviance = -179.3396
GAMLSS-RS iteration 32: Global Deviance = -179.4724
GAMLSS-RS iteration 33: Global Deviance = -179.5929
GAMLSS-RS iteration 34: Global Deviance = -179.7048
GAMLSS-RS iteration 35: Global Deviance = -179.8046
GAMLSS-RS iteration 36: Global Deviance = -179.8962
GAMLSS-RS iteration 37: Global Deviance = -179.9627
GAMLSS-RS iteration 38: Global Deviance = -180.0556
GAMLSS-RS iteration 39: Global Deviance = -180.1126
GAMLSS-RS iteration 40: Global Deviance = -180.1939
******************************************************************
Family: c("GG", "generalised Gamma Lopatatsidis-Green")
Call: gamlss(formula = Error ~ cs(distkm) + cs(atimdifmin) +
cs(sdlnchlor) + nchlor + cs(senzr) + cs(solzr) +
cs(windspeed) + cs(taua869), sigma.formula = ~cs(distkm) +
cs(atimdifmin), nu.formula = ~cs(distkm) + cs(atimdifmin) +
cs(sdlnchlor) + nchlor + cs(senzr) + cs(solzr) +
cs(windspeed) + cs(taua869), family = GG(mu.link = "log"),
data = matchup, control = gamlss.control(c.crit = 0.001,
n.cyc = 40))
Fitting method: RS()
------------------------------------------------------------------
Mu link function: log
Mu Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.3882071 0.6029718 0.644 0.52059
cs(distkm) -1.2348256 0.4490625 -2.750 0.00663 **
cs(atimdifmin) 0.0010555 0.0004631 2.279 0.02394 *
cs(sdlnchlor) 2.9871105 0.5631621 5.304 0.000000362 ***
nchlor -0.0958215 0.0371596 -2.579 0.01080 *
cs(senzr) 0.4634794 0.3035628 1.527 0.12874
cs(solzr) -0.2792880 0.4058419 -0.688 0.49232
cs(windspeed) -0.0834379 0.0377890 -2.208 0.02863 *
cs(taua869) -0.9264336 1.5121624 -0.613 0.54095
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
------------------------------------------------------------------
Sigma link function: log
Sigma Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) -0.3831722 0.2031942 -1.886 0.0611 .
cs(distkm) 0.3107327 0.2578122 1.205 0.2298
cs(atimdifmin) 0.0007217 0.0002852 2.530 0.0123 *
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
------------------------------------------------------------------
Nu link function: identity
Nu Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 5.803869 1.805927 3.214 0.00158 **
cs(distkm) -1.359094 1.145804 -1.186 0.23728
cs(atimdifmin) -0.002892 0.001858 -1.557 0.12142
cs(sdlnchlor) -0.659691 1.579212 -0.418 0.67669
nchlor -0.205343 0.124253 -1.653 0.10032
cs(senzr) 0.415159 0.677779 0.613 0.54104
cs(solzr) -0.477691 0.953435 -0.501 0.61703
cs(windspeed) -0.191006 0.089612 -2.131 0.03454 *
cs(taua869) 1.492608 3.125778 0.478 0.63363
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
------------------------------------------------------------------
NOTE: Additive smoothing terms exist in the formulas:
i) Std. Error for smoothers are for the linear effect only.
ii) Std. Error for the linear terms maybe are not accurate.
------------------------------------------------------------------
No. of observations in the fit: 233
Degrees of Freedom for the fit: 68.99744
Residual Deg. of Freedom: 164.0026
at cycle: 40
Global Deviance: -180.1939
AIC: -42.19901
SBC: 195.9138
******************************************************************
******************************************************************
Summary of the Quantile Residuals
mean = -0.02206921
variance = 0.9542674
coef. of skewness = 0.05649195
coef. of kurtosis = 2.390731
Filliben correlation coefficient = 0.9963909
******************************************************************
Shapiro-Wilk normality test
data: m3gs$residuals
W = 0.99152, p-value = 0.1961
[1] 0.4139585
df AIC
m3g 32.00109 -77.77493
m3 31.00109 -71.41878
m3gs 68.99744 -42.19901
cs(distkm) cs(atimdifmin) cs(sdlnchlor) nchlor cs(senzr)
2.160861 2.999938 1.118570 1.394376 2.121984
cs(solzr) cs(windspeed) cs(taua869)
1.985239 1.636725 1.771172
cs(distkm) cs(atimdifmin) cs(sdlnchlor) nchlor cs(senzr)
FALSE FALSE FALSE FALSE FALSE
cs(solzr) cs(windspeed) cs(taua869)
FALSE FALSE FALSE
[1] 1.520991
term.plot(m3gs, pages=1, ask=FALSE, partial.resid = TRUE, col.term = "black",
col.se = "orange", col.shaded = "gray", col.res = "red",
col.rug = "gray", lwd.term = 2, lty.se = 2, lwd.se = 1)term.plot(m3gs, pages=1, what="sigma", ask=FALSE, partial.resid = TRUE, col.term = "black",
col.se = "orange", col.shaded = "gray", col.res = "red",
col.rug = "gray", lwd.term = 2, lty.se = 2, lwd.se = 1)term.plot(m3gs, pages=1, what="nu", partial.resid = TRUE, col.term = "black",
col.se = "orange", col.shaded = "gray", col.res = "red",
col.rug = "gray", lwd.term = 2, lty.se = 2, lwd.se = 1)plotSimpleGamlss(Error, distkm, model=m3gs, data=matchup,
#x.val=seq(6,16,2), val=5, N=1000, ylim=c(0,25),
cols=heat_hcl(100))GAMLSS-RS iteration 1: Global Deviance = -150.2221
GAMLSS-RS iteration 2: Global Deviance = -154.422
GAMLSS-RS iteration 3: Global Deviance = -156.9242
GAMLSS-RS iteration 4: Global Deviance = -159.2718
GAMLSS-RS iteration 5: Global Deviance = -160.6686
GAMLSS-RS iteration 6: Global Deviance = -162.1146
GAMLSS-RS iteration 7: Global Deviance = -163.3887
GAMLSS-RS iteration 8: Global Deviance = -164.4779
GAMLSS-RS iteration 9: Global Deviance = -165.3866
GAMLSS-RS iteration 10: Global Deviance = -166.124
GAMLSS-RS iteration 11: Global Deviance = -166.7414
GAMLSS-RS iteration 12: Global Deviance = -167.2311
GAMLSS-RS iteration 13: Global Deviance = -167.6311
GAMLSS-RS iteration 14: Global Deviance = -167.9637
GAMLSS-RS iteration 15: Global Deviance = -168.2017
GAMLSS-RS iteration 16: Global Deviance = -168.4769
GAMLSS-RS iteration 17: Global Deviance = -168.6862
GAMLSS-RS iteration 18: Global Deviance = -168.8664
GAMLSS-RS iteration 19: Global Deviance = -169.0257
GAMLSS-RS iteration 20: Global Deviance = -169.1696
GAMLSS-RS iteration 21: Global Deviance = -169.2898
GAMLSS-RS iteration 22: Global Deviance = -169.4021
GAMLSS-RS iteration 23: Global Deviance = -169.5053
GAMLSS-RS iteration 24: Global Deviance = -169.601
GAMLSS-RS iteration 25: Global Deviance = -169.6889
GAMLSS-RS iteration 26: Global Deviance = -169.7718
GAMLSS-RS iteration 27: Global Deviance = -169.8485
GAMLSS-RS iteration 28: Global Deviance = -169.9216
GAMLSS-RS iteration 29: Global Deviance = -169.9903
GAMLSS-RS iteration 30: Global Deviance = -170.0541
GAMLSS-RS iteration 31: Global Deviance = -170.1142
GAMLSS-RS iteration 32: Global Deviance = -170.172
GAMLSS-RS iteration 33: Global Deviance = -170.2259
GAMLSS-RS iteration 34: Global Deviance = -170.2945
GAMLSS-RS iteration 35: Global Deviance = -170.3299
GAMLSS-RS iteration 36: Global Deviance = -170.3743
GAMLSS-RS iteration 37: Global Deviance = -170.4178
GAMLSS-RS iteration 38: Global Deviance = -170.4592
GAMLSS-RS iteration 39: Global Deviance = -170.4985
GAMLSS-RS iteration 40: Global Deviance = -170.5364
GAMLSS-RS iteration 1: Global Deviance = -153.9124
GAMLSS-RS iteration 2: Global Deviance = -157.9864
GAMLSS-RS iteration 3: Global Deviance = -160.523
GAMLSS-RS iteration 4: Global Deviance = -162.7597
GAMLSS-RS iteration 5: Global Deviance = -163.9974
GAMLSS-RS iteration 6: Global Deviance = -165.2687
GAMLSS-RS iteration 7: Global Deviance = -166.3586
GAMLSS-RS iteration 8: Global Deviance = -167.2372
GAMLSS-RS iteration 9: Global Deviance = -168.0203
GAMLSS-RS iteration 10: Global Deviance = -168.7076
GAMLSS-RS iteration 11: Global Deviance = -169.32
GAMLSS-RS iteration 12: Global Deviance = -169.8649
GAMLSS-RS iteration 13: Global Deviance = -170.3537
GAMLSS-RS iteration 14: Global Deviance = -170.7882
GAMLSS-RS iteration 15: Global Deviance = -171.1753
GAMLSS-RS iteration 16: Global Deviance = -171.5182
GAMLSS-RS iteration 17: Global Deviance = -171.8257
GAMLSS-RS iteration 18: Global Deviance = -172.1019
GAMLSS-RS iteration 19: Global Deviance = -172.3472
GAMLSS-RS iteration 20: Global Deviance = -172.5694
GAMLSS-RS iteration 21: Global Deviance = -172.7665
GAMLSS-RS iteration 22: Global Deviance = -172.9428
GAMLSS-RS iteration 23: Global Deviance = -173.1012
GAMLSS-RS iteration 24: Global Deviance = -173.2205
GAMLSS-RS iteration 25: Global Deviance = -173.3697
GAMLSS-RS iteration 26: Global Deviance = -173.4681
GAMLSS-RS iteration 27: Global Deviance = -173.5949
GAMLSS-RS iteration 28: Global Deviance = -173.689
GAMLSS-RS iteration 29: Global Deviance = -173.7762
GAMLSS-RS iteration 30: Global Deviance = -173.8526
GAMLSS-RS iteration 31: Global Deviance = -173.9099
GAMLSS-RS iteration 32: Global Deviance = -173.9708
GAMLSS-RS iteration 33: Global Deviance = -174.0249
GAMLSS-RS iteration 34: Global Deviance = -174.076
GAMLSS-RS iteration 35: Global Deviance = -174.1232
GAMLSS-RS iteration 36: Global Deviance = -174.1685
GAMLSS-RS iteration 37: Global Deviance = -174.2101
GAMLSS-RS iteration 38: Global Deviance = -174.2484
GAMLSS-RS iteration 39: Global Deviance = -174.3068
GAMLSS-RS iteration 40: Global Deviance = -174.319
GAMLSS-RS iteration 1: Global Deviance = -153.6997
GAMLSS-RS iteration 2: Global Deviance = -158.2326
GAMLSS-RS iteration 3: Global Deviance = -160.0709
GAMLSS-RS iteration 4: Global Deviance = -161.3278
GAMLSS-RS iteration 5: Global Deviance = -162.1725
GAMLSS-RS iteration 6: Global Deviance = -162.908
GAMLSS-RS iteration 7: Global Deviance = -163.5326
GAMLSS-RS iteration 8: Global Deviance = -164.0613
GAMLSS-RS iteration 9: Global Deviance = -164.5193
GAMLSS-RS iteration 10: Global Deviance = -164.9242
GAMLSS-RS iteration 11: Global Deviance = -165.2867
GAMLSS-RS iteration 12: Global Deviance = -165.6164
GAMLSS-RS iteration 13: Global Deviance = -165.9191
GAMLSS-RS iteration 14: Global Deviance = -166.198
GAMLSS-RS iteration 15: Global Deviance = -166.4614
GAMLSS-RS iteration 16: Global Deviance = -166.7129
GAMLSS-RS iteration 17: Global Deviance = -166.9455
GAMLSS-RS iteration 18: Global Deviance = -167.1632
GAMLSS-RS iteration 19: Global Deviance = -167.3716
GAMLSS-RS iteration 20: Global Deviance = -167.5659
GAMLSS-RS iteration 21: Global Deviance = -167.7528
GAMLSS-RS iteration 22: Global Deviance = -167.932
GAMLSS-RS iteration 23: Global Deviance = -168.106
GAMLSS-RS iteration 24: Global Deviance = -168.2757
GAMLSS-RS iteration 25: Global Deviance = -168.4405
GAMLSS-RS iteration 26: Global Deviance = -168.6008
GAMLSS-RS iteration 27: Global Deviance = -168.7536
GAMLSS-RS iteration 28: Global Deviance = -168.9083
GAMLSS-RS iteration 29: Global Deviance = -169.0564
GAMLSS-RS iteration 30: Global Deviance = -169.2003
GAMLSS-RS iteration 31: Global Deviance = -169.3394
GAMLSS-RS iteration 32: Global Deviance = -169.4728
GAMLSS-RS iteration 33: Global Deviance = -169.602
GAMLSS-RS iteration 34: Global Deviance = -169.7242
GAMLSS-RS iteration 35: Global Deviance = -169.8409
GAMLSS-RS iteration 36: Global Deviance = -169.951
GAMLSS-RS iteration 37: Global Deviance = -170.0518
GAMLSS-RS iteration 38: Global Deviance = -170.1447
GAMLSS-RS iteration 39: Global Deviance = -170.236
GAMLSS-RS iteration 40: Global Deviance = -170.3203
GAMLSS-RS iteration 1: Global Deviance = -159.3744
GAMLSS-RS iteration 2: Global Deviance = -162.6632
GAMLSS-RS iteration 3: Global Deviance = -164.489
GAMLSS-RS iteration 4: Global Deviance = -165.803
GAMLSS-RS iteration 5: Global Deviance = -166.8782
GAMLSS-RS iteration 6: Global Deviance = -167.7962
GAMLSS-RS iteration 7: Global Deviance = -168.5918
GAMLSS-RS iteration 8: Global Deviance = -169.2915
GAMLSS-RS iteration 9: Global Deviance = -169.9182
GAMLSS-RS iteration 10: Global Deviance = -170.4845
GAMLSS-RS iteration 11: Global Deviance = -170.9961
GAMLSS-RS iteration 12: Global Deviance = -171.4704
GAMLSS-RS iteration 13: Global Deviance = -171.9063
GAMLSS-RS iteration 14: Global Deviance = -172.3152
GAMLSS-RS iteration 15: Global Deviance = -172.7047
GAMLSS-RS iteration 16: Global Deviance = -173.0761
GAMLSS-RS iteration 17: Global Deviance = -173.4316
GAMLSS-RS iteration 18: Global Deviance = -173.7734
GAMLSS-RS iteration 19: Global Deviance = -174.1
GAMLSS-RS iteration 20: Global Deviance = -174.4176
GAMLSS-RS iteration 21: Global Deviance = -174.7143
GAMLSS-RS iteration 22: Global Deviance = -174.987
GAMLSS-RS iteration 23: Global Deviance = -175.245
GAMLSS-RS iteration 24: Global Deviance = -175.4825
GAMLSS-RS iteration 25: Global Deviance = -175.7016
GAMLSS-RS iteration 26: Global Deviance = -175.898
GAMLSS-RS iteration 27: Global Deviance = -176.0759
GAMLSS-RS iteration 28: Global Deviance = -176.2371
GAMLSS-RS iteration 29: Global Deviance = -176.3824
GAMLSS-RS iteration 30: Global Deviance = -176.5133
GAMLSS-RS iteration 31: Global Deviance = -176.6304
GAMLSS-RS iteration 32: Global Deviance = -176.7343
GAMLSS-RS iteration 33: Global Deviance = -176.833
GAMLSS-RS iteration 34: Global Deviance = -176.9184
GAMLSS-RS iteration 35: Global Deviance = -176.9955
GAMLSS-RS iteration 36: Global Deviance = -177.0684
GAMLSS-RS iteration 37: Global Deviance = -177.1349
GAMLSS-RS iteration 38: Global Deviance = -177.1967
GAMLSS-RS iteration 39: Global Deviance = -177.2555
GAMLSS-RS iteration 40: Global Deviance = -177.3098
GAMLSS-RS iteration 1: Global Deviance = -156.14
GAMLSS-RS iteration 2: Global Deviance = -159.8965
GAMLSS-RS iteration 3: Global Deviance = -161.6843
GAMLSS-RS iteration 4: Global Deviance = -162.8207
GAMLSS-RS iteration 5: Global Deviance = -163.6423
GAMLSS-RS iteration 6: Global Deviance = -164.2758
GAMLSS-RS iteration 7: Global Deviance = -164.7856
GAMLSS-RS iteration 8: Global Deviance = -165.212
GAMLSS-RS iteration 9: Global Deviance = -165.5761
GAMLSS-RS iteration 10: Global Deviance = -165.8959
GAMLSS-RS iteration 11: Global Deviance = -166.1763
GAMLSS-RS iteration 12: Global Deviance = -166.4442
GAMLSS-RS iteration 13: Global Deviance = -166.6811
GAMLSS-RS iteration 14: Global Deviance = -166.8964
GAMLSS-RS iteration 15: Global Deviance = -167.0957
GAMLSS-RS iteration 16: Global Deviance = -167.2806
GAMLSS-RS iteration 17: Global Deviance = -167.4525
GAMLSS-RS iteration 18: Global Deviance = -167.6212
GAMLSS-RS iteration 19: Global Deviance = -167.7594
GAMLSS-RS iteration 20: Global Deviance = -167.9042
GAMLSS-RS iteration 21: Global Deviance = -168.0346
GAMLSS-RS iteration 22: Global Deviance = -168.1568
GAMLSS-RS iteration 23: Global Deviance = -168.2726
GAMLSS-RS iteration 24: Global Deviance = -168.3784
GAMLSS-RS iteration 25: Global Deviance = -168.4754
GAMLSS-RS iteration 26: Global Deviance = -168.5665
GAMLSS-RS iteration 27: Global Deviance = -168.6524
GAMLSS-RS iteration 28: Global Deviance = -168.7333
GAMLSS-RS iteration 29: Global Deviance = -168.8111
GAMLSS-RS iteration 30: Global Deviance = -168.883
GAMLSS-RS iteration 31: Global Deviance = -168.9506
GAMLSS-RS iteration 32: Global Deviance = -169.014
GAMLSS-RS iteration 33: Global Deviance = -169.0754
GAMLSS-RS iteration 34: Global Deviance = -169.1326
GAMLSS-RS iteration 35: Global Deviance = -169.1878
GAMLSS-RS iteration 36: Global Deviance = -169.2407
GAMLSS-RS iteration 37: Global Deviance = -169.2873
GAMLSS-RS iteration 38: Global Deviance = -169.3322
GAMLSS-RS iteration 39: Global Deviance = -169.3755
GAMLSS-RS iteration 40: Global Deviance = -169.4147
GAMLSS-RS iteration 1: Global Deviance = -155.1702
GAMLSS-RS iteration 2: Global Deviance = -157.9764
GAMLSS-RS iteration 3: Global Deviance = -159.4814
GAMLSS-RS iteration 4: Global Deviance = -160.727
GAMLSS-RS iteration 5: Global Deviance = -161.852
GAMLSS-RS iteration 6: Global Deviance = -162.8924
GAMLSS-RS iteration 7: Global Deviance = -163.8693
GAMLSS-RS iteration 8: Global Deviance = -164.7932
GAMLSS-RS iteration 9: Global Deviance = -165.6772
GAMLSS-RS iteration 10: Global Deviance = -166.4884
GAMLSS-RS iteration 11: Global Deviance = -167.2422
GAMLSS-RS iteration 12: Global Deviance = -167.9494
GAMLSS-RS iteration 13: Global Deviance = -168.6069
GAMLSS-RS iteration 14: Global Deviance = -169.2169
GAMLSS-RS iteration 15: Global Deviance = -169.7838
GAMLSS-RS iteration 16: Global Deviance = -170.3097
GAMLSS-RS iteration 17: Global Deviance = -170.8008
GAMLSS-RS iteration 18: Global Deviance = -171.2603
GAMLSS-RS iteration 19: Global Deviance = -171.689
GAMLSS-RS iteration 20: Global Deviance = -172.0896
GAMLSS-RS iteration 21: Global Deviance = -172.4633
GAMLSS-RS iteration 22: Global Deviance = -172.8147
GAMLSS-RS iteration 23: Global Deviance = -173.1427
GAMLSS-RS iteration 24: Global Deviance = -173.4514
GAMLSS-RS iteration 25: Global Deviance = -173.7445
GAMLSS-RS iteration 26: Global Deviance = -174.015
GAMLSS-RS iteration 27: Global Deviance = -174.272
GAMLSS-RS iteration 28: Global Deviance = -174.5137
GAMLSS-RS iteration 29: Global Deviance = -174.7424
GAMLSS-RS iteration 30: Global Deviance = -174.9561
GAMLSS-RS iteration 31: Global Deviance = -175.1585
GAMLSS-RS iteration 32: Global Deviance = -175.3523
GAMLSS-RS iteration 33: Global Deviance = -175.5311
GAMLSS-RS iteration 34: Global Deviance = -175.7024
GAMLSS-RS iteration 35: Global Deviance = -175.8643
GAMLSS-RS iteration 36: Global Deviance = -176.0168
GAMLSS-RS iteration 37: Global Deviance = -176.1615
GAMLSS-RS iteration 38: Global Deviance = -176.2991
GAMLSS-RS iteration 39: Global Deviance = -176.4076
GAMLSS-RS iteration 40: Global Deviance = -176.5568
GAMLSS-RS iteration 1: Global Deviance = -155.1453
GAMLSS-RS iteration 2: Global Deviance = -158.0946
GAMLSS-RS iteration 3: Global Deviance = -159.9088
GAMLSS-RS iteration 4: Global Deviance = -161.2037
GAMLSS-RS iteration 5: Global Deviance = -162.104
GAMLSS-RS iteration 6: Global Deviance = -162.7422
GAMLSS-RS iteration 7: Global Deviance = -163.2251
GAMLSS-RS iteration 8: Global Deviance = -163.5072
GAMLSS-RS iteration 9: Global Deviance = -163.8026
GAMLSS-RS iteration 10: Global Deviance = -164.0046
GAMLSS-RS iteration 11: Global Deviance = -164.1596
GAMLSS-RS iteration 12: Global Deviance = -164.2874
GAMLSS-RS iteration 13: Global Deviance = -164.3955
GAMLSS-RS iteration 14: Global Deviance = -164.4801
GAMLSS-RS iteration 15: Global Deviance = -164.5519
GAMLSS-RS iteration 16: Global Deviance = -164.6141
GAMLSS-RS iteration 17: Global Deviance = -164.6615
GAMLSS-RS iteration 18: Global Deviance = -164.7026
GAMLSS-RS iteration 19: Global Deviance = -164.7375
GAMLSS-RS iteration 20: Global Deviance = -164.769
GAMLSS-RS iteration 21: Global Deviance = -164.7959
GAMLSS-RS iteration 22: Global Deviance = -164.8223
GAMLSS-RS iteration 23: Global Deviance = -164.8455
GAMLSS-RS iteration 24: Global Deviance = -164.8686
GAMLSS-RS iteration 25: Global Deviance = -164.8899
GAMLSS-RS iteration 26: Global Deviance = -164.9155
GAMLSS-RS iteration 27: Global Deviance = -164.9441
GAMLSS-RS iteration 28: Global Deviance = -164.9832
GAMLSS-RS iteration 29: Global Deviance = -165.0264
GAMLSS-RS iteration 30: Global Deviance = -165.0786
GAMLSS-RS iteration 31: Global Deviance = -165.14
GAMLSS-RS iteration 32: Global Deviance = -165.2086
GAMLSS-RS iteration 33: Global Deviance = -165.2888
GAMLSS-RS iteration 34: Global Deviance = -165.3818
GAMLSS-RS iteration 35: Global Deviance = -165.485
GAMLSS-RS iteration 36: Global Deviance = -165.6046
GAMLSS-RS iteration 37: Global Deviance = -165.7404
GAMLSS-RS iteration 38: Global Deviance = -165.8844
GAMLSS-RS iteration 39: Global Deviance = -166.0313
GAMLSS-RS iteration 40: Global Deviance = -166.1777
GAMLSS-RS iteration 1: Global Deviance = -149.3315
GAMLSS-RS iteration 2: Global Deviance = -155.0145
GAMLSS-RS iteration 3: Global Deviance = -158.0749
GAMLSS-RS iteration 4: Global Deviance = -160.424
GAMLSS-RS iteration 5: Global Deviance = -162.4715
GAMLSS-RS iteration 6: Global Deviance = -163.7648
GAMLSS-RS iteration 7: Global Deviance = -164.9552
GAMLSS-RS iteration 8: Global Deviance = -165.9587
GAMLSS-RS iteration 9: Global Deviance = -166.8115
GAMLSS-RS iteration 10: Global Deviance = -167.5782
GAMLSS-RS iteration 11: Global Deviance = -168.174
GAMLSS-RS iteration 12: Global Deviance = -168.71
GAMLSS-RS iteration 13: Global Deviance = -169.186
GAMLSS-RS iteration 14: Global Deviance = -169.5975
GAMLSS-RS iteration 15: Global Deviance = -169.961
GAMLSS-RS iteration 16: Global Deviance = -170.3048
GAMLSS-RS iteration 17: Global Deviance = -170.605
GAMLSS-RS iteration 18: Global Deviance = -170.807
GAMLSS-RS iteration 19: Global Deviance = -171.0254
GAMLSS-RS iteration 20: Global Deviance = -171.2238
GAMLSS-RS iteration 21: Global Deviance = -171.4015
GAMLSS-RS iteration 22: Global Deviance = -171.5627
GAMLSS-RS iteration 23: Global Deviance = -171.7053
GAMLSS-RS iteration 24: Global Deviance = -171.8372
GAMLSS-RS iteration 25: Global Deviance = -171.9573
GAMLSS-RS iteration 26: Global Deviance = -172.0628
GAMLSS-RS iteration 27: Global Deviance = -172.1503
GAMLSS-RS iteration 28: Global Deviance = -172.2361
GAMLSS-RS iteration 29: Global Deviance = -172.3175
GAMLSS-RS iteration 30: Global Deviance = -172.3917
GAMLSS-RS iteration 31: Global Deviance = -172.4624
GAMLSS-RS iteration 32: Global Deviance = -172.5284
GAMLSS-RS iteration 33: Global Deviance = -172.5999
GAMLSS-RS iteration 34: Global Deviance = -172.6466
GAMLSS-RS iteration 35: Global Deviance = -172.7039
GAMLSS-RS iteration 36: Global Deviance = -172.7547
GAMLSS-RS iteration 37: Global Deviance = -172.8014
GAMLSS-RS iteration 38: Global Deviance = -172.8461
GAMLSS-RS iteration 39: Global Deviance = -172.8883
GAMLSS-RS iteration 40: Global Deviance = -172.9253
Single term deletions for
mu
Model:
Error ~ cs(distkm) + cs(atimdifmin) + cs(sdlnchlor) + nchlor +
cs(senzr) + cs(solzr) + cs(windspeed) + cs(taua869)
Df AIC LRT Pr(Chi)
<none> -42.199
cs(distkm) 3.9963 -40.534 9.6575 0.046492 *
cs(atimdifmin) 3.9969 -44.318 5.8749 0.208376
cs(sdlnchlor) 3.9946 -40.315 9.8735 0.042455 *
nchlor 0.9991 -41.313 2.8841 0.089348 .
cs(senzr) 3.9952 -39.410 10.7791 0.029062 *
cs(solzr) 3.9997 -46.561 3.6371 0.457285
cs(windspeed) 3.9968 -36.176 14.0162 0.007224 **
cs(taua869) 4.0009 -42.932 7.2686 0.122422
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1