#install.packages("mice") mice - Multivariate Imputation by chained Equation
#install.packages("VIM")
library(mice)
package 㤼㸱mice㤼㸲 was built under R version 3.6.1Loading required package: lattice

Attaching package: 㤼㸱mice㤼㸲

The following objects are masked from 㤼㸱package:base㤼㸲:

    cbind, rbind
library(VIM) 
package 㤼㸱VIM㤼㸲 was built under R version 3.6.1Loading required package: colorspace
package 㤼㸱colorspace㤼㸲 was built under R version 3.6.1Loading required package: grid
Loading required package: data.table
data.table 1.12.2 using 2 threads (see ?getDTthreads).  Latest news: r-datatable.com
Registered S3 methods overwritten by 'car':
  method                          from
  influence.merMod                lme4
  cooks.distance.influence.merMod lme4
  dfbeta.influence.merMod         lme4
  dfbetas.influence.merMod        lme4
VIM is ready to use. 
 Since version 4.0.0 the GUI is in its own package VIMGUI.

          Please use the package to use the new (and old) GUI.

Suggestions and bug-reports can be submitted at: https://github.com/alexkowa/VIM/issues

Attaching package: 㤼㸱VIM㤼㸲

The following object is masked from 㤼㸱package:datasets㤼㸲:

    sleep
data <- read.csv("file:///C:/Users/badal/Desktop/datset_/vehicleMiss.csv" , header = T)
head(data)
any(is.na(data))
[1] TRUE
summary(data)
    vehicle             fm            Mileage            lh               lc               mc             State    
 Min.   :   1.0   Min.   :-1.000   Min.   :    1   Min.   : 0.000   Min.   :   0.0   Min.   :   0.0   TX     :290  
 1st Qu.: 406.8   1st Qu.: 4.000   1st Qu.: 5778   1st Qu.: 1.500   1st Qu.: 106.5   1st Qu.: 119.7   CA     :199  
 Median : 812.5   Median :10.000   Median :17000   Median : 2.600   Median : 195.4   Median : 119.7   FL     :167  
 Mean   : 812.5   Mean   : 9.414   Mean   :20559   Mean   : 3.294   Mean   : 242.8   Mean   : 179.4   GA     : 75  
 3rd Qu.:1218.2   3rd Qu.:14.000   3rd Qu.:30061   3rd Qu.: 4.300   3rd Qu.: 317.8   3rd Qu.: 175.5   AZ     : 61  
 Max.   :1624.0   Max.   :23.000   Max.   :99983   Max.   :35.200   Max.   :3234.4   Max.   :3891.1   (Other):817  
                                   NA's   :13      NA's   :6        NA's   :8                         NA's   : 15  

missing data

#percentage_missing_data
p <- function(x) {sum(is.na(x))/length(x)*100}
apply(data, 2,p)
  vehicle        fm   Mileage        lh        lc        mc     State 
0.0000000 0.0000000 0.8004926 0.3694581 0.4926108 0.0000000 0.9236453 
md.pattern(data)
     vehicle fm mc lh lc Mileage State   
1586       1  1  1  1  1       1     1  0
11         1  1  1  1  1       1     0  1
13         1  1  1  1  1       0     1  1
6          1  1  1  1  0       1     1  1
2          1  1  1  1  0       1     0  2
4          1  1  1  0  1       1     1  1
2          1  1  1  0  1       1     0  2
           0  0  0  6  8      13    15 42

md.pairs(data)
$rr
        vehicle   fm Mileage   lh   lc   mc State
vehicle    1624 1624    1611 1618 1616 1624  1609
fm         1624 1624    1611 1618 1616 1624  1609
Mileage    1611 1611    1611 1605 1603 1611  1596
lh         1618 1618    1605 1618 1610 1618  1605
lc         1616 1616    1603 1610 1616 1616  1603
mc         1624 1624    1611 1618 1616 1624  1609
State      1609 1609    1596 1605 1603 1609  1609

$rm
        vehicle fm Mileage lh lc mc State
vehicle       0  0      13  6  8  0    15
fm            0  0      13  6  8  0    15
Mileage       0  0       0  6  8  0    15
lh            0  0      13  0  8  0    13
lc            0  0      13  6  0  0    13
mc            0  0      13  6  8  0    15
State         0  0      13  4  6  0     0

$mr
        vehicle fm Mileage lh lc mc State
vehicle       0  0       0  0  0  0     0
fm            0  0       0  0  0  0     0
Mileage      13 13       0 13 13 13    13
lh            6  6       6  0  6  6     4
lc            8  8       8  8  0  8     6
mc            0  0       0  0  0  0     0
State        15 15      15 13 13 15     0

$mm
        vehicle fm Mileage lh lc mc State
vehicle       0  0       0  0  0  0     0
fm            0  0       0  0  0  0     0
Mileage       0  0      13  0  0  0     0
lh            0  0       0  6  0  0     2
lc            0  0       0  0  8  0     2
mc            0  0       0  0  0  0     0
State         0  0       0  2  2  0    15
marginplot(data[,c("Mileage", "lc")])

impute……………….polyreg: multinominal logstic regression

impute <- mice(data[,-1], m=4, seed = 123)

 iter imp variable
  1   1  Mileage  lh  lc  State
  1   2  Mileage  lh  lc  State
  1   3  Mileage  lh  lc  State
  1   4  Mileage  lh  lc  State
  2   1  Mileage  lh  lc  State
  2   2  Mileage  lh  lc  State
  2   3  Mileage  lh  lc  State
  2   4  Mileage  lh  lc  State
  3   1  Mileage  lh  lc  State
  3   2  Mileage  lh  lc  State
  3   3  Mileage  lh  lc  State
  3   4  Mileage  lh  lc  State
  4   1  Mileage  lh  lc  State
  4   2  Mileage  lh  lc  State
  4   3  Mileage  lh  lc  State
  4   4  Mileage  lh  lc  State
  5   1  Mileage  lh  lc  State
  5   2  Mileage  lh  lc  State
  5   3  Mileage  lh  lc  State
  5   4  Mileage  lh  lc  State
print(impute)
Class: mids
Number of multiple imputations:  4 
Imputation methods:
       fm   Mileage        lh        lc        mc     State 
       ""     "pmm"     "pmm"     "pmm"        "" "polyreg" 
PredictorMatrix:
        fm Mileage lh lc mc State
fm       0       1  1  1  1     1
Mileage  1       0  1  1  1     1
lh       1       1  0  1  1     1
lc       1       1  1  0  1     1
mc       1       1  1  1  0     1
State    1       1  1  1  1     0
impute$imp$Mileage
data[253,]
summary(data$Mileage)
   Min. 1st Qu.  Median    Mean 3rd Qu.    Max.    NA's 
      1    5778   17000   20559   30061   99983      13 

complete data set

data<- complete(impute,2)
summary(data)
       fm            Mileage            lh               lc               mc             State    
 Min.   :-1.000   Min.   :    1   Min.   : 0.000   Min.   :   0.0   Min.   :   0.0   TX     :292  
 1st Qu.: 4.000   1st Qu.: 5691   1st Qu.: 1.500   1st Qu.: 106.4   1st Qu.: 119.7   CA     :200  
 Median :10.000   Median :16994   Median : 2.600   Median : 195.6   Median : 119.7   FL     :167  
 Mean   : 9.414   Mean   :20531   Mean   : 3.301   Mean   : 242.8   Mean   : 179.4   GA     : 75  
 3rd Qu.:14.000   3rd Qu.:30057   3rd Qu.: 4.300   3rd Qu.: 317.8   3rd Qu.: 175.5   AZ     : 61  
 Max.   :23.000   Max.   :99983   Max.   :35.200   Max.   :3234.4   Max.   :3891.1   LA     : 48  
                                                                                     (Other):781  
data
stripplot(impute,pch = 20 ,cex =1.2)

xyplot(impute, lc ~ lh | .imp, pch =20, cex =1.2)

kdata <- read.csv("file:///C:/Users/badal/Desktop/datset_/vehicleMiss.csv" , header = T)
head(kdata)
LS0tDQp0aXRsZTogIkRhdGEgY2xlYW5pbmciDQpvdXRwdXQ6IGh0bWxfbm90ZWJvb2sNCi0tLQ0KDQoNCmBgYHtyfQ0KI2luc3RhbGwucGFja2FnZXMoIm1pY2UiKSBtaWNlIC0gTXVsdGl2YXJpYXRlIEltcHV0YXRpb24gYnkgY2hhaW5lZCBFcXVhdGlvbg0KI2luc3RhbGwucGFja2FnZXMoIlZJTSIpDQpsaWJyYXJ5KG1pY2UpDQpsaWJyYXJ5KFZJTSkgDQpgYGANCg0KYGBge3J9DQpkYXRhIDwtIHJlYWQuY3N2KCJmaWxlOi8vL0M6L1VzZXJzL2JhZGFsL0Rlc2t0b3AvZGF0c2V0Xy92ZWhpY2xlTWlzcy5jc3YiICwgaGVhZGVyID0gVCkNCmhlYWQoZGF0YSkNCmBgYA0KDQpgYGB7cn0NCmFueShpcy5uYShkYXRhKSkNCmBgYA0KDQoNCmBgYHtyfQ0Kc3VtbWFyeShkYXRhKQ0KYGBgDQoNCm1pc3NpbmcgZGF0YQ0KYGBge3J9DQojcGVyY2VudGFnZV9taXNzaW5nX2RhdGENCnAgPC0gZnVuY3Rpb24oeCkge3N1bShpcy5uYSh4KSkvbGVuZ3RoKHgpKjEwMH0NCmFwcGx5KGRhdGEsIDIscCkNCmBgYA0KDQoNCmBgYHtyfQ0KbWQucGF0dGVybihkYXRhKQ0KYGBgDQoNCg0KYGBge3J9DQptZC5wYWlycyhkYXRhKQ0KYGBgDQoNCg0KYGBge3J9DQptYXJnaW5wbG90KGRhdGFbLGMoIk1pbGVhZ2UiLCAibGMiKV0pDQpgYGANCmltcHV0ZS4uLi4uLi4uLi4uLi4uLi4uLi5wb2x5cmVnOiBtdWx0aW5vbWluYWwgbG9nc3RpYyByZWdyZXNzaW9uDQpgYGB7cn0NCmltcHV0ZSA8LSBtaWNlKGRhdGFbLC0xXSwgbT00LCBzZWVkID0gMTIzKQ0KYGBgDQoNCmBgYHtyfQ0KcHJpbnQoaW1wdXRlKQ0KYGBgDQoNCmBgYHtyfQ0KaW1wdXRlJGltcCRNaWxlYWdlDQpgYGANCg0KYGBge3J9DQpkYXRhWzI1MyxdDQpgYGANCg0KYGBge3J9DQpzdW1tYXJ5KGRhdGEkTWlsZWFnZSkNCmBgYA0KY29tcGxldGUgZGF0YSBzZXQNCmBgYHtyfQ0KZGF0YTwtIGNvbXBsZXRlKGltcHV0ZSwyKQ0KYGBgDQoNCmBgYHtyfQ0Kc3VtbWFyeShkYXRhKQ0KYGBgDQoNCg0KYGBge3J9DQpkYXRhDQpgYGANCg0KDQpgYGB7cn0NCnN0cmlwcGxvdChpbXB1dGUscGNoID0gMjAgLGNleCA9MS4yKQ0KYGBgDQoNCg0KYGBge3J9DQp4eXBsb3QoaW1wdXRlLCBsYyB+IGxoIHwgLmltcCwgcGNoID0yMCwgY2V4ID0xLjIpDQpgYGANCg0KDQoNCg0KYGBge3J9DQpkYXRhIDwtIHJlYWQuY3N2KCJmaWxlOi8vL0M6L1VzZXJzL2JhZGFsL0Rlc2t0b3AvZGF0c2V0Xy92ZWhpY2xlTWlzcy5jc3YiICwgaGVhZGVyID0gVCkNCmhlYWQoa2RhdGEpDQpgYGANCg0KDQoNCg==