Solve by substitution
\(\int4e^{-7x}dx\)
Let:
\(z=-7x\)
Therefore:
\(dx=-\frac{1}{7}dz\)
\(4\int e^z \frac{-1}{7}dz\)
\(=\frac{-4}{7}\int e^zdz\)
\(= -\frac{4}{7}e^z+C=\)
\(= -\frac{4}{7}e^{-7x}+C\)
Biologists are treating a pond contaminated with bacteria. The level of contamination is changing at a rate of \(\frac{dN}{dt}=-\frac{3150}{t^4}-220\) bacteria per cubic centimeter per day, where t is the number of days since treatment began. Find a function \(N(t)\) to estimate the level of contamination if the level after 1 day was 6530 bacteria per cubic centimeter.
\(\int\frac{dN}{dt}=\int\frac{-3150}{t^4}-220dt\)
\(= -\frac{12600}{t^3}-220t+C\)
Since \(N(1)=6530\)
\(N(t)=-\frac{12600}{t^3}-220t+6290\)
Find the total area of the red rectangles in the figure below, where the equation of the line is \(f(x) = 2x - 9\).
The height of the rectangles is 1, 3, 5, and 7
\(\int_{4.5}^{8.5} 2x-9 dx\)
\(= [x^2 - 9x]|_{4.5}^{8.5}\)
area = (((8.5^2)-(9*(8.5)) - ((4.5^2)-(9*(4.5)))))
area
## [1] 16
Find the area of the region bounded by the graphs of the given equations. \(y = x 2 - 2x -2\)
\(y = x + 2\)
curve(x^2 -2*x-2, lwd = 2, xlim=c(-5, 5))
curve(x+2, lwd = 2, xlim=c(-5, 5), add = TRUE)
Intersection point: \(x^2 -2x-2 = x+2 x^2 -3x-4 = 0\)
f <- function(a){ a^2 - 3*a - 4 }
root <- polyroot(c(-4, -3, 1))
ifelse(Im(root) == 0, Re(root), root)
## [1] -1+0i 4-0i
Area =
\(\int_{-1}^{4}x+2 dx -\int_{-1}^{4}x^2 -2x-2 dx\)
\(=-[\frac{1}{3}x^3 - \frac{3}{2}x^2 -4x]|_{-1}^{4}\)
\(~21\)
A beauty supply store expects to sell 110 flat irons during the next year. It costs \(3.75\) dollars to store one flat iron for one year. There is a fixed cost of \(8.25\) dollars for each order.
Find the lot size and the number of orders per year that will minimize inventory costs.
fullfilment <-function(x){
fix<-x*8.25
space<-0
i=0
while(ceiling((110/x)-i*110/365)>0){
space<-space+(3.75/365)*ceiling((110/x-i*110/365))
i<-i+1
if(i==10000){
break
}
}
space<-space*x
fix<-fix+space
return(fix)
}
fullfilment (1)
## [1] 216.9144
fullfilment (2)
## [1] 122.0342
fullfilment (3)
## [1] 95.97945
fullfilment (4)
## [1] 87
fullfilment (5)
## [1] 84.91438
fullfilment (6)
## [1] 86.36301
There should be 5 orders of 22 flat irons each.
Use integration by parts to solve the integral below:
\(\int \ln(9x)x^6dx\)
Let: \(u=\ln(9x)=\ln(9)+\ln(x)\)
\(dv=x^6dx\)
\(v=\frac{x^7}{7}\)
\(du = \frac{1}{x} + ln(9)xdx\)
\(\int \ln(9x)x^6dx\) \(=(\frac{x^7}{7}\ln(9x))-\int\frac{x^7}{7}(\frac{1}{x}+\ln(9)x)dx\) \(=\frac{x^7}{7}\ln(9x))-\int\frac{x^6}{7}+\ln(9)\frac{x^8}{7}dx\) \(= (\frac{x^7}{7}\ln(9x))-\frac{x^7}{56}-\ln(9)\frac{x^9}{63}+C\)
Determine whether \(f(x)\) is a probability density function on the interval \([1,e^6]\).
If not, determine the value of the definite integral.
\(f(x)=\frac{1}{6x}\)
\(=\frac{1}{6}\int_1^{e^6}\frac{1}{x}dx\) \(= \frac{1}{6}(\ln({e}^{6})-\ln(1))\) \(=\frac{1}{6}(6\ln(e)-\ln(1))\) \(=\frac{1}{6}(6\times1-0)\)
\(=1\)