¿Por quĂ© en esta investigaciĂ³n se usa una prueba de hipĂ³tesis de una cola? Explique brevemente. \[H_0:\mu_1\geq\mu_2\ \ \ H_a:\mu_1<\mu_2\]
Luego de realizar la prueba, ¿cuĂ¡l fue la conclusiĂ³n sobre las hipĂ³tesis planteadas?
fertT <- c(48.2,54.6,58.3,47.8,51.4,52.0,55.2,49.1,49.9,52.6)
fertT
## [1] 48.2 54.6 58.3 47.8 51.4 52.0 55.2 49.1 49.9 52.6
fertN <- c(52.3,57.4,55.6,53.2,61.3,58.0,59.8,54.8)
fertN
## [1] 52.3 57.4 55.6 53.2 61.3 58.0 59.8 54.8
pruebat <- t.test(fertT, fertN, var.equal = TRUE, alternative = "less")
pruebat
##
## Two Sample t-test
##
## data: fertT and fertN
## t = -2.9884, df = 16, p-value = 0.004343
## alternative hypothesis: true difference in means is less than 0
## 95 percent confidence interval:
## -Inf -1.929255
## sample estimates:
## mean of x mean of y
## 51.91 56.55
C. Se utilizĂ³ una prueba t (paramĂ©trica). Realice las pruebas correspondientes para comprobar que se cumple lo asumido para realizar este tipo de prueba de hipĂ³tesis.
library(EnvStats)
##
## Attaching package: 'EnvStats'
## The following objects are masked from 'package:stats':
##
## predict, predict.lm
## The following object is masked from 'package:base':
##
## print.default
qqPlot(fertT, add.line = TRUE, points.col = "blue", line.col = "red")
qqPlot(fertN, add.line = TRUE, points.col = "blue", line.col = "red")
shapiro.test(fertT)
##
## Shapiro-Wilk normality test
##
## data: fertT
## W = 0.95125, p-value = 0.6833
shapiro.test(fertN)
##
## Shapiro-Wilk normality test
##
## data: fertN
## W = 0.97053, p-value = 0.9021
var.test(fertN, fertT, alternative = "two.sided")
##
## F test to compare two variances
##
## data: fertN and fertT
## F = 0.87031, num df = 7, denom df = 9, p-value = 0.8744
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
## 0.2073637 4.1977180
## sample estimates:
## ratio of variances
## 0.870315
Para esta parte usted debe escribir su descripciĂ³n.
A. para probar si la concentraciĂ³n de calcio en el plasma de aves (sin importar el sexo), es afectado por tratamiento hormonal. Verificar los supuestos que se deben cumplir para usar una prueba paramĂ©trica.
library(readxl)
calcio <- read_excel("Biometria calcio ANOVA.xlsx")
head(calcio)
## # A tibble: 6 x 3
## caplasma hormona sexo
## <dbl> <chr> <chr>
## 1 16.3 no hembra
## 2 20.4 no hembra
## 3 12.4 no hembra
## 4 15.8 no hembra
## 5 9.5 no hembra
## 6 15.3 no macho
# qqplot
qqPlot(calcio$caplasma, add.line = TRUE, points.col = "blue", line.col = "red")
# Shapiro-Wilk
shapiro.test(calcio$caplasma)
##
## Shapiro-Wilk normality test
##
## data: calcio$caplasma
## W = 0.95332, p-value = 0.4204
var.test(calcio$caplasma ~ calcio$hormona, alternative = "two.sided")
##
## F test to compare two variances
##
## data: calcio$caplasma by calcio$hormona
## F = 0.73579, num df = 9, denom df = 9, p-value = 0.655
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
## 0.1827591 2.9622737
## sample estimates:
## ratio of variances
## 0.7357869
var.test(calcio$caplasma ~ calcio$sexo, alternative = "two.sided")
##
## F test to compare two variances
##
## data: calcio$caplasma by calcio$sexo
## F = 1.2304, num df = 9, denom df = 9, p-value = 0.7625
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
## 0.3056175 4.9536412
## sample estimates:
## ratio of variances
## 1.230414
\[H_0:\mu_1=\mu_2\] \[H_a:el\ calcio\ plasmĂ¡tico\ no\ es\ igual\ en\ todos\ los\ tratamientos\]
# ANOVA un factor: hormona
analisis.aov <- aov(caplasma ~ hormona, calcio)
summary(analisis.aov)
## Df Sum Sq Mean Sq F value Pr(>F)
## hormona 1 1386.1 1386.1 66.25 1.91e-07 ***
## Residuals 18 376.6 20.9
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
confint(analisis.aov)
## 2.5 % 97.5 %
## (Intercept) 10.46110 16.53890
## hormonasi 12.35234 20.94766
Una prueba de ANOVA entre dos niveles de un factor equivale a una prueba t
# crear dos muestras de factor hormona
hormona.no <- subset(calcio, hormona == "no", select = caplasma)
hormona.no
## # A tibble: 10 x 1
## caplasma
## <dbl>
## 1 16.3
## 2 20.4
## 3 12.4
## 4 15.8
## 5 9.5
## 6 15.3
## 7 17.4
## 8 10.9
## 9 10.3
## 10 6.7
hormona.si <- subset(calcio, hormona == "si", select = caplasma)
hormona.si
## # A tibble: 10 x 1
## caplasma
## <dbl>
## 1 38.1
## 2 26.2
## 3 32.3
## 4 35.8
## 5 30.2
## 6 34
## 7 22.8
## 8 27.8
## 9 25
## 10 29.3
t.test(hormona.no$caplasma, hormona.si$caplasma, alternative = "two.sided")
##
## Welch Two Sample t-test
##
## data: hormona.no$caplasma and hormona.si$caplasma
## t = -8.1394, df = 17.592, p-value = 2.257e-07
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -20.95481 -12.34519
## sample estimates:
## mean of x mean of y
## 13.50 30.15
B. probar si las diferencias en concentraciĂ³n de calcio se debe a diferencias entre los sexos, o a una interacciĂ³n entre ambos factores (tratamiento hormonal x sexo). (alfa = 0.05 para determinar significancia en la prueba).
anova2 <- aov(caplasma ~ hormona*sexo, calcio)
summary(anova2)
## Df Sum Sq Mean Sq F value Pr(>F)
## hormona 1 1386.1 1386.1 73.585 2.22e-07 ***
## sexo 1 70.3 70.3 3.733 0.0713 .
## hormona:sexo 1 4.9 4.9 0.260 0.6170
## Residuals 16 301.4 18.8
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
library(ggplot2)
# crear interaccion
calcio$inter <- interaction(calcio$hormona, calcio$sexo)
ggplot(calcio, aes(x=inter, y=caplasma)) + geom_boxplot(fill="cornflowerblue") +
labs(x = "InteracciĂ³n de factores", y = "Calcio plasmĂ¡tico, mg/100 ml")