Change the YAML of this document to achieve the following (hint check ?rmarkdown::html_document):

  1. Made change
  2. Add numbers to the sections.
  3. A button to download the code.
  4. Enable code_folding = "hide".
  5. Change the printing of the data frame to “kable”.
  6. Change the output to a pdf (you will need to comment out YAML keys that does not work with pdf).
  7. Get the tex file for previous pdf (hint ?rmarkdown::pdf_document).
  8. Change it so that the figures are pdf instead of png.
library(tidyverse)
library(knitr)
opts_chunk$set(fig.path = "figure/c07-")

1 Header 1

Let’s have a look at the iris data set. The dataset contains 150 observations.

1.1 Sub1-header 1

iris %>% 
  group_by(Species) %>% 
  count(name = "Count") 

1.2 Sub1-header 2

iris %>% 
  ggplot(aes(Sepal.Length, Sepal.Width, color = Species)) + 
  geom_point() + 
  labs(title = "The iris data-set") +
  theme_bw(base_size = 18) + 
  theme(legend.position = "bottom")

1.3 Sub1-header 3

iris %>% 
  ggplot(aes(Species, Sepal.Length)) + 
  geom_violin(aes(fill = Species)) +
  geom_boxplot(width = 0.1) + 
  theme_bw(base_size = 18) +
  guides(fill = FALSE)

2 Header 2

Let’s now have a look at ChickWeight data. The dataset contains 578 observations and 50 chicks.

2.1 Sub2-Header 1

ChickWeight %>% 
  ggplot(aes(Time, weight, color = Diet)) + 
  geom_point() +
  facet_wrap(~Chick) + 
  theme_minimal(base_size = 18)

2.2 Sub2-Header 2

sumdat <- ChickWeight %>% 
  filter(Time == max(Time)) %>% 
  group_by(Diet) %>% 
  summarise(Median = median(weight))

ChickWeight %>% 
  filter(Time == max(Time)) %>% 
  ggplot(aes(Diet, weight)) + 
  geom_point(size = 3, alpha = 1/3) +
  theme_minimal(base_size = 18) +
  geom_point(data = sumdat, aes(Diet, Median), color = "red", size = 5)

LS0tCnRpdGxlOiAiUiBNYXJrZG93biBXb3Jrc2hvcCIKc3VidGl0bGU6ICJDaGFsbGVuZ2U6IFlBTUwiCm91dHB1dDogCiAgaHRtbF9kb2N1bWVudDoKICAgIHRoZW1lOiBzcGFjZWxhYgogICAgdG9jOiB0cnVlCiAgICB0b2NfZmxvYXQ6IHRydWUKICAgIGRmX3ByaW50OiAicGFnZWQiCiAgICBjb2RlX2ZvbGRpbmc6ICJoaWRlIgogICAgY29kZV9kb3dubG9hZDogdHJ1ZQogICAgbnVtYmVyX3NlY3Rpb25zOiB0cnVlCiAgICAKLS0tCgpDaGFuZ2UgdGhlIFlBTUwgb2YgdGhpcyBkb2N1bWVudCB0byBhY2hpZXZlIHRoZSBmb2xsb3dpbmcgKGhpbnQgY2hlY2sgYD9ybWFya2Rvd246Omh0bWxfZG9jdW1lbnRgKToKCjEuIE1hZGUgY2hhbmdlCjEuIEFkZCBudW1iZXJzIHRvIHRoZSBzZWN0aW9ucy4KMS4gQSBidXR0b24gdG8gZG93bmxvYWQgdGhlIGNvZGUuCjEuIEVuYWJsZSBgY29kZV9mb2xkaW5nID0gImhpZGUiYC4KMS4gQ2hhbmdlIHRoZSBwcmludGluZyBvZiB0aGUgZGF0YSBmcmFtZSB0byAia2FibGUiLgoxLiBDaGFuZ2UgdGhlIG91dHB1dCB0byBhIHBkZiAoeW91IHdpbGwgbmVlZCB0byBjb21tZW50IG91dCBZQU1MIGtleXMgdGhhdCBkb2VzIG5vdCB3b3JrIHdpdGggcGRmKS4gCjEuIEdldCB0aGUgdGV4IGZpbGUgZm9yIHByZXZpb3VzIHBkZiAoaGludCBgP3JtYXJrZG93bjo6cGRmX2RvY3VtZW50YCkuCjEuIENoYW5nZSBpdCBzbyB0aGF0IHRoZSBmaWd1cmVzIGFyZSBwZGYgaW5zdGVhZCBvZiBwbmcuCgoKCgpgYGB7ciBzZXR1cCwgbWVzc2FnZSA9IEZBTFNFfQpsaWJyYXJ5KHRpZHl2ZXJzZSkKbGlicmFyeShrbml0cikKb3B0c19jaHVuayRzZXQoZmlnLnBhdGggPSAiZmlndXJlL2MwNy0iKQpgYGAKCiMgSGVhZGVyIDEKCkxldCdzIGhhdmUgYSBsb29rIGF0IHRoZSBgaXJpc2AgZGF0YSBzZXQuIFRoZSBkYXRhc2V0IGNvbnRhaW5zIGByIG5yb3coaXJpcylgIG9ic2VydmF0aW9ucy4KCiMjIFN1YjEtaGVhZGVyIDEKCmBgYHtyIGlyaXMtdGFibGV9CmlyaXMgJT4lIAogIGdyb3VwX2J5KFNwZWNpZXMpICU+JSAKICBjb3VudChuYW1lID0gIkNvdW50IikgCmBgYAoKCgojIyBTdWIxLWhlYWRlciAyCgpgYGB7ciBpcmlzLXBsb3QxfQppcmlzICU+JSAKICBnZ3Bsb3QoYWVzKFNlcGFsLkxlbmd0aCwgU2VwYWwuV2lkdGgsIGNvbG9yID0gU3BlY2llcykpICsgCiAgZ2VvbV9wb2ludCgpICsgCiAgbGFicyh0aXRsZSA9ICJUaGUgaXJpcyBkYXRhLXNldCIpICsKICB0aGVtZV9idyhiYXNlX3NpemUgPSAxOCkgKyAKICB0aGVtZShsZWdlbmQucG9zaXRpb24gPSAiYm90dG9tIikKYGBgCgojIyBTdWIxLWhlYWRlciAzCgpgYGB7ciBpcmlzLWRpc3R9CmlyaXMgJT4lIAogIGdncGxvdChhZXMoU3BlY2llcywgU2VwYWwuTGVuZ3RoKSkgKyAKICBnZW9tX3Zpb2xpbihhZXMoZmlsbCA9IFNwZWNpZXMpKSArCiAgZ2VvbV9ib3hwbG90KHdpZHRoID0gMC4xKSArIAogIHRoZW1lX2J3KGJhc2Vfc2l6ZSA9IDE4KSArCiAgZ3VpZGVzKGZpbGwgPSBGQUxTRSkKYGBgCgoKCiMgSGVhZGVyIDIKCkxldCdzIG5vdyBoYXZlIGEgbG9vayBhdCBgQ2hpY2tXZWlnaHRgIGRhdGEuIFRoZSBkYXRhc2V0IGNvbnRhaW5zIGByIG5yb3coQ2hpY2tXZWlnaHQpYCBvYnNlcnZhdGlvbnMgYW5kIGByIG5sZXZlbHMoQ2hpY2tXZWlnaHQkQ2hpY2spYCBjaGlja3MuCgojIyBTdWIyLUhlYWRlciAxCgoKYGBge3IgY2hpY2stcGxvdCwgZmlnLmhlaWdodCA9IDh9CkNoaWNrV2VpZ2h0ICU+JSAKICBnZ3Bsb3QoYWVzKFRpbWUsIHdlaWdodCwgY29sb3IgPSBEaWV0KSkgKyAKICBnZW9tX3BvaW50KCkgKwogIGZhY2V0X3dyYXAofkNoaWNrKSArIAogIHRoZW1lX21pbmltYWwoYmFzZV9zaXplID0gMTgpCmBgYAoKIyMgU3ViMi1IZWFkZXIgMgoKCmBgYHtyIGNoaWNrLWRpc3QsIGZpZy5oZWlnaHQgPSA4fQpzdW1kYXQgPC0gQ2hpY2tXZWlnaHQgJT4lIAogIGZpbHRlcihUaW1lID09IG1heChUaW1lKSkgJT4lIAogIGdyb3VwX2J5KERpZXQpICU+JSAKICBzdW1tYXJpc2UoTWVkaWFuID0gbWVkaWFuKHdlaWdodCkpCgpDaGlja1dlaWdodCAlPiUgCiAgZmlsdGVyKFRpbWUgPT0gbWF4KFRpbWUpKSAlPiUgCiAgZ2dwbG90KGFlcyhEaWV0LCB3ZWlnaHQpKSArIAogIGdlb21fcG9pbnQoc2l6ZSA9IDMsIGFscGhhID0gMS8zKSArCiAgdGhlbWVfbWluaW1hbChiYXNlX3NpemUgPSAxOCkgKwogIGdlb21fcG9pbnQoZGF0YSA9IHN1bWRhdCwgYWVzKERpZXQsIE1lZGlhbiksIGNvbG9yID0gInJlZCIsIHNpemUgPSA1KQpgYGAK