The movie Moneyball focuses on the “quest for the secret of success in baseball”. It follows a low-budget team, the Oakland Athletics, who believed that underused statistics, such as a player’s ability to get on base, betterpredict the ability to score runs than typical statistics like home runs, RBIs (runs batted in), and batting average. Obtaining players who excelled in these underused statistics turned out to be much more affordable for the team.
In this lab we’ll be looking at data from all 30 Major League Baseball teams and examining the linear relationship between runs scored in a season and a number of other player statistics. Our aim will be to summarize these relationships both graphically and numerically in order to find which variable, if any, helps us best predict a team’s runs scored in a season.
#The data Let’s load up the data for the 2011 season.
download.file("http://www.openintro.org/stat/data/mlb11.RData", destfile = "mlb11.RData")
load("mlb11.RData")
In addition to runs scored, there are seven traditionally used variables in the data set: at-bats, hits, home runs, batting average, strikeouts, stolen bases, and wins. There are also three newer variables: on-base percentage, slugging percentage, and on-base plus slugging. For the first portion of the analysis we’ll consider the seven traditional variables. At the end of the lab, you’ll work with the newer variables on your own.
A scatterplot.
str(mlb11)
## 'data.frame': 30 obs. of 12 variables:
## $ team : Factor w/ 30 levels "Arizona Diamondbacks",..: 28 4 10 13 26 18 19 16 9 12 ...
## $ runs : int 855 875 787 730 762 718 867 721 735 615 ...
## $ at_bats : int 5659 5710 5563 5672 5532 5600 5518 5447 5544 5598 ...
## $ hits : int 1599 1600 1540 1560 1513 1477 1452 1422 1429 1442 ...
## $ homeruns : int 210 203 169 129 162 108 222 185 163 95 ...
## $ bat_avg : num 0.283 0.28 0.277 0.275 0.273 0.264 0.263 0.261 0.258 0.258 ...
## $ strikeouts : int 930 1108 1143 1006 978 1085 1138 1083 1201 1164 ...
## $ stolen_bases: int 143 102 49 153 57 130 147 94 118 118 ...
## $ wins : int 96 90 95 71 90 77 97 96 73 56 ...
## $ new_onbase : num 0.34 0.349 0.34 0.329 0.341 0.335 0.343 0.325 0.329 0.311 ...
## $ new_slug : num 0.46 0.461 0.434 0.415 0.425 0.391 0.444 0.425 0.41 0.374 ...
## $ new_obs : num 0.8 0.81 0.773 0.744 0.766 0.725 0.788 0.75 0.739 0.684 ...
# Plot a scatterplot with at_bats as predictor and runs as response variable
plot(mlb11$at_bats, mlb11$runs)
This relationship looks somewhat linear. I would be comfortable using a linear model to predict the number of runs.
If the relationship looks linear, we can quantify the strength of the relationship with the correlation coefficient.
cor(mlb11$runs, mlb11$at_bats)
## [1] 0.610627
Think back to the way that we described the distribution of a single variable. Recall that we discussed characteristics such as center, spread, and shape. It’s also useful to be able to describe the relationship of two numerical variables, such as runs and at_bats above.
The plot shows a cloud of points with a moderately strong, upward trend.
Just as we used the mean and standard deviation to summarize a single variable, we can summarize the relationship between these two variables by finding the line that best follows their association. Use the following interactive function to select the line that you think does the best job of going through the cloud of points.
plot_ss(x = mlb11$at_bats, y = mlb11$runs)
## Click two points to make a line.
## Call:
## lm(formula = y ~ x, data = pts)
##
## Coefficients:
## (Intercept) x
## -2789.2429 0.6305
##
## Sum of Squares: 123721.9
After running this command, you’ll be prompted to click two points on the plot to define a line. Once you’ve done that, the line you specified will be shown in black and the residuals in blue. Note that there are 30 residuals, one for each of the 30 observations. Recall that the residuals are the difference between the observed values and the values predicted by the line:
ei=yi−ŷ i
The most common way to do linear regression is to select the line that minimizes the sum of squared residuals. To visualize the squared residuals, you can rerun the plot command and add the argument showSquares = TRUE).`
Note that the output from the plot_ss function provides you with the slope and intercept of your line as well as the sum of squares.
plot_ss(x = mlb11$at_bats, y = mlb11$runs, showSquares = TRUE)
## Click two points to make a line.
## Call:
## lm(formula = y ~ x, data = pts)
##
## Coefficients:
## (Intercept) x
## -2789.2429 0.6305
##
## Sum of Squares: 123721.9
When I run plot_ss, I do not ge the prompt to select 2 points to define a line. The line is created automatically.
It is rather cumbersome to try to get the correct least squares line, i.e. the line that minimizes the sum of squared residuals, through trial and error. Instead we can use the lm function in R to fit the linear model (a.k.a. regression line).
m1 <- lm(runs ~ at_bats, data = mlb11)
The first argument in the function lm is a formula that takes the form y ~ x. Here it can be read that we want to make a linear model of runs as a function of at_bats. The second argument specifies that R should look in the mlb11 data frame to find the runs and at_bats variables.
The output of lm is an object that contains all of the information we need about the linear model that was just fit. We can access this information using the summary function.
summary(m1)
##
## Call:
## lm(formula = runs ~ at_bats, data = mlb11)
##
## Residuals:
## Min 1Q Median 3Q Max
## -125.58 -47.05 -16.59 54.40 176.87
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -2789.2429 853.6957 -3.267 0.002871 **
## at_bats 0.6305 0.1545 4.080 0.000339 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 66.47 on 28 degrees of freedom
## Multiple R-squared: 0.3729, Adjusted R-squared: 0.3505
## F-statistic: 16.65 on 1 and 28 DF, p-value: 0.0003388
Let’s consider this output piece by piece. First, the formula used to describe the model is shown at the top. After the formula you find the five-number summary of the residuals. The “Coefficients” table shown next is key; its first column displays the linear model’s y-intercept and the coefficient of at_bats. With this table, we can write down the least squares regression line for the linear model:
ŷ =−2789.2429+0.6305∗atbats
One last piece of information we will discuss from the summary output is the Multiple R-squared, or more simply, R2. The R2 value represents the proportion of variability in the response variable that is explained by the explanatory variable. For this model, 37.3% of the variability in runs is explained by at-bats.
m2 <- lm(runs ~ homeruns, data = mlb11)
summary(m2)
##
## Call:
## lm(formula = runs ~ homeruns, data = mlb11)
##
## Residuals:
## Min 1Q Median 3Q Max
## -91.615 -33.410 3.231 24.292 104.631
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 415.2389 41.6779 9.963 1.04e-10 ***
## homeruns 1.8345 0.2677 6.854 1.90e-07 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 51.29 on 28 degrees of freedom
## Multiple R-squared: 0.6266, Adjusted R-squared: 0.6132
## F-statistic: 46.98 on 1 and 28 DF, p-value: 1.9e-07
y = 415.239 + 1.835 * homeruns
Slope is positive. It means homeruns predicts a team’s success.
Let’s create a scatterplot with the least squares line laid on top.
plot(mlb11$runs ~ mlb11$at_bats)
abline(m1)
The function abline plots a line based on its slope and intercept. Here, we used a shortcut by providing the model m1, which contains both parameter estimates. This line can be used to predict y at any value of x. When predictions are made for values of x that are beyond the range of the observed data, it is referred to as extrapolation and is not usually recommended. However, predictions made within the range of the data are more reliable. They’re also used to compute the residuals.
ŷ =−2789.2429+0.6305∗atbats
y = -2789.2429 + 0.6305 * 5578 y = 727.7
He’d predict about 728 runs.
Philadelphia Phillies had 5579 at bats and 713 runs. So the prediction is an overestimate. The residual is the difference between 728 - 713 = 15.
To assess whether the linear model is reliable, we need to check for (1) linearity, (2) nearly normal residuals, and (3) constant variability.
Linearity: You already checked if the relationship between runs and at-bats is linear using a scatterplot. We should also verify this condition with a plot of the residuals vs. at-bats. Recall that any code following a # is intended to be a comment that helps understand the code but is ignored by R.
plot(m1$residuals ~ mlb11$at_bats)
abline(h = 0, lty = 3) # adds a horizontal dashed line at y = 0
There is no apparent patter in the residuals plot. They are scattered randomly above and below the dotted line. This indicates the relationshp between runs and at-bats is linear.
Nearly normal residuals: To check this condition, we can look at a histogram
hist(m1$residuals)
or a normal probability plot of the residuals.
qqnorm(m1$residuals)
qqline(m1$residuals) # adds diagonal line to the normal prob plot
Yes, the histogram and normal probability plot show moderate normality and there are only a few outliers that are not strong.
Constant variability:
(this info is missing from the lab tutorial)
Yes, the variablity of points around the least squares line in (1) is roughly constant.
Choosing batting average (bat_avg).
Yes, there seems to be linear relationship.
# Batting Average
plot(mlb11$bat_avg, mlb11$runs)
fit <- lm(runs ~ bat_avg, data = mlb11)
abline(fit)
summary(fit)
##
## Call:
## lm(formula = runs ~ bat_avg, data = mlb11)
##
## Residuals:
## Min 1Q Median 3Q Max
## -94.676 -26.303 -5.496 28.482 131.113
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -642.8 183.1 -3.511 0.00153 **
## bat_avg 5242.2 717.3 7.308 5.88e-08 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 49.23 on 28 degrees of freedom
## Multiple R-squared: 0.6561, Adjusted R-squared: 0.6438
## F-statistic: 53.41 on 1 and 28 DF, p-value: 5.877e-08
R2 for bat_avg is 0.6561. R2 for at_bats is 0.3729.
Yes, bat_avg predicts runs better than at_bats. R2 for bat_avg is higher. 65.6% of the variability in runs can be explained by bat_avg, whereas only 37.3% of runs can be explained by at_bats.
Hits best predicts runs. It has the highest R2 = 0.6419. But only slightly better than home runs (R2 = 0.6266).
# Hits
plot(mlb11$hits, mlb11$runs)
fit2 <- lm(runs ~ hits, data = mlb11)
abline(fit2)
summary(fit2)
##
## Call:
## lm(formula = runs ~ hits, data = mlb11)
##
## Residuals:
## Min 1Q Median 3Q Max
## -103.718 -27.179 -5.233 19.322 140.693
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -375.5600 151.1806 -2.484 0.0192 *
## hits 0.7589 0.1071 7.085 1.04e-07 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 50.23 on 28 degrees of freedom
## Multiple R-squared: 0.6419, Adjusted R-squared: 0.6292
## F-statistic: 50.2 on 1 and 28 DF, p-value: 1.043e-07
# Strikeouts
plot(mlb11$strikeouts, mlb11$runs)
fit3 <- lm(runs ~ strikeouts, data = mlb11)
abline(fit3)
summary(fit3)
##
## Call:
## lm(formula = runs ~ strikeouts, data = mlb11)
##
## Residuals:
## Min 1Q Median 3Q Max
## -132.27 -46.95 -11.92 55.14 169.76
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1054.7342 151.7890 6.949 1.49e-07 ***
## strikeouts -0.3141 0.1315 -2.389 0.0239 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 76.5 on 28 degrees of freedom
## Multiple R-squared: 0.1694, Adjusted R-squared: 0.1397
## F-statistic: 5.709 on 1 and 28 DF, p-value: 0.02386
# Stolen Bases
plot(mlb11$stolen_bases, mlb11$runs)
fit4 <- lm(runs ~ stolen_bases, data = mlb11)
abline(fit4)
summary(fit4)
##
## Call:
## lm(formula = runs ~ stolen_bases, data = mlb11)
##
## Residuals:
## Min 1Q Median 3Q Max
## -139.94 -62.87 10.01 38.54 182.49
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 677.3074 58.9751 11.485 4.17e-12 ***
## stolen_bases 0.1491 0.5211 0.286 0.777
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 83.82 on 28 degrees of freedom
## Multiple R-squared: 0.002914, Adjusted R-squared: -0.0327
## F-statistic: 0.08183 on 1 and 28 DF, p-value: 0.7769
# Wins
plot(mlb11$wins, mlb11$runs)
fit5 <- lm(runs ~ wins, data = mlb11)
abline(fit5)
summary(fit5)
##
## Call:
## lm(formula = runs ~ wins, data = mlb11)
##
## Residuals:
## Min 1Q Median 3Q Max
## -145.450 -47.506 -7.482 47.346 142.186
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 342.121 89.223 3.834 0.000654 ***
## wins 4.341 1.092 3.977 0.000447 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 67.1 on 28 degrees of freedom
## Multiple R-squared: 0.361, Adjusted R-squared: 0.3381
## F-statistic: 15.82 on 1 and 28 DF, p-value: 0.0004469
# Home Runs
plot(mlb11$homeruns, mlb11$runs)
fit6 <- lm(runs ~ homeruns, data = mlb11)
abline(fit6)
summary(fit6)
##
## Call:
## lm(formula = runs ~ homeruns, data = mlb11)
##
## Residuals:
## Min 1Q Median 3Q Max
## -91.615 -33.410 3.231 24.292 104.631
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 415.2389 41.6779 9.963 1.04e-10 ***
## homeruns 1.8345 0.2677 6.854 1.90e-07 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 51.29 on 28 degrees of freedom
## Multiple R-squared: 0.6266, Adjusted R-squared: 0.6132
## F-statistic: 46.98 on 1 and 28 DF, p-value: 1.9e-07
For On-base Plus Slugging, all 3 conditions for regression model met.
Linearity - Scatterplot points closely fit around and along the regression line (fit9). Residuals plot also show points eveny distributed above and below dashed line.
Nearly normal residuals - Histogram and qqplot show high normality.
Constant variablity - Variablity of points around least squares line is equal.
plot(m1$residuals ~ mlb11$new_obs)
abline(h = 0, lty = 3) # adds a horizontal dashed line at y = 0
hist(fit9$residuals)
qqnorm(fit9$residuals)
qqline(fit9$residuals) # adds diagonal line to the normal prob plot