O programa possui o objetivo de executar metodos de redes neurais para regressao utilizando a base de dados House Prices presente no link: https://www.kaggle.com/c/house-prices-advanced-regression-techniques.
suppressMessages(suppressWarnings(library(tidyverse)))
library(keras)
model <- keras::load_model_hdf5(filepath = "modelo_rnn")
mod_boost <- xgboost::xgb.load(modelfile = "mod_boost1")
Iniciando carregando os pacotes que serao utilizados como artificios para o codigo.
train <- read.csv("/opt/datasets/houseprices/train.csv",sep = ",",
dec = ".")
train <- readr::read_csv("/opt/datasets/houseprices/train.csv",na = "character")
test <- read.csv("/opt/datasets/houseprices/test.csv",sep = ",",dec = ".")
submission <- read.csv("/opt/datasets/houseprices/sample_submission.csv",sep = ",",dec = ".")
train %>%
select_at(.vars = vars(ends_with("Area"))) %>%
select_if(is.numeric) %>%
gather(var,value) %>%
ggplot(aes(x = value)) +
geom_histogram(bins = 25,
fill = "#2b8cbe",
colour = "black") +
theme_light() +
facet_wrap(~var, scales = "free")
Parte do codigo one é executado os graficos relacionados a area, e logo depois a relaçao das variaveis com venda.
train %>%
select_at(.vars = vars(ends_with("Sold"))) %>%
select_if(is.numeric) %>%
gather(var,value) %>%
ggplot(aes(x = value)) +
geom_histogram(bins = 10,
fill = "#2b8cbe",
colour = "black") +
theme_light() +
facet_wrap(~var, scales = "free")