str(mymap)
Classes ‘sf’ and 'data.frame': 77 obs. of 15 variables:
$ COUNTY_FIP: num 35 45 49 51 59 61 27 29 31 9 ...
$ COUNTY_NO : num 18 23 25 26 30 31 14 15 16 5 ...
$ MAINTENANC: num 8 6 3 7 6 1 3 3 7 5 ...
$ COUNTY_NAM: chr "CRAIG" "ELLIS" "GARVIN" "GRADY" ...
$ ADT_FACTOR: num 1.02 1.01 1.01 1.02 1.01 1.01 1.03 1.02 1.02 1.01 ...
$ MAIN_DISTR: num 2520 2190 1875 485 310 ...
$ PHONE_NO_B: chr NA NA "(405) 238-2739" NA ...
$ DESC_LOCAT: chr NA NA NA NA ...
$ MSLINK : num 18 23 25 26 30 31 14 15 16 103 ...
$ MAPID : num 101431 101436 101438 101439 101443 ...
$ LOGIN : chr "upln038" "upln038" "upln038" "upln038" ...
$ CREATION_D: Date, format: ...
$ CNTY_SEAT_: num 2520 110 1875 485 310 ...
$ MUNICIPAL_: num 77550 2800 57550 13950 9850 ...
$ geometry :sfc_POLYGON of length 77; first list element: List of 1
..$ : num [1:232, 1:2] -95.4 -95.4 -95.4 -95.4 -95.4 ...
..- attr(*, "class")= chr "XY" "POLYGON" "sfg"
- attr(*, "sf_column")= chr "geometry"
- attr(*, "agr")= Factor w/ 3 levels "constant","aggregate",..: NA NA NA NA NA NA NA NA NA NA ...
..- attr(*, "names")= chr "COUNTY_FIP" "COUNTY_NO" "MAINTENANC" "COUNTY_NAM" ...
map_and_data <- full_join(mymap, countyDatabase)
Joining, by = "COUNTY_NAM"
plot(mymap)
plotting the first 9 out of 14 attributes; use max.plot = 14 to plot all


LS0tDQp0aXRsZTogIlIgTm90ZWJvb2siDQpvdXRwdXQ6IGh0bWxfbm90ZWJvb2sNCi0tLQ0KDQpgYGB7cn0NCmxpYnJhcnkoc2YpDQpteW1hcCA8LSBzdF9yZWFkKCJDOi9Vc2Vycy9Pd25lci9Eb3dubG9hZHMvY291bnR5L0NPVU5UWV9CT1VOREFSWS5zaHAiLCBzdHJpbmdzQXNGYWN0b3JzID0gRkFMU0UpDQpzdHIobXltYXApDQpgYGANCg0KYGBge3J9DQpWaWV3KG15bWFwJENPVU5UWV9OQU0pDQpteW1hcCRDT1VOVFlfTkFNIDwtIGVkaXQobXltYXAkQ09VTlRZX05BTSkNCmNvdW50eURhdGFiYXNlIDwtIE9rbGFob21hRW5lcmd5RGF0YWJhc2UNCg0KY291bnR5RGF0YWJhc2UkQ291bnR5IDwtIHRvdXBwZXIoY291bnR5RGF0YWJhc2UkQ291bnR5KQ0KDQpjb3VudHlEYXRhYmFzZSA8LSBlZGl0KGNvdW50eURhdGFiYXNlKQ0KDQptYXBfYW5kX2RhdGEgPC0gZnVsbF9qb2luKG15bWFwLCBjb3VudHlEYXRhYmFzZSkNCg0KYGBgDQoNCg0KYGBge3J9DQpwbG90KG15bWFwKQ0KYGBgDQoNCmBgYHtyfQ0KbGlicmFyeShzZikNCmxpYnJhcnkoZ2dwbG90MikNCmxpYnJhcnkodG1hcCkNCmxpYnJhcnkodG1hcHRvb2xzKQ0KbGlicmFyeShsZWFmbGV0KQ0KbGlicmFyeShkcGx5cikNCmxpYnJhcnkoR0dhbGx5KQ0KbGlicmFyeShnZ21hcCkNCmxpYnJhcnkoZ2d0aGVtZXMpDQpsaWJyYXJ5KGdndmlzKQ0KZ2dwbG90KG1hcF9hbmRfZGF0YSkgKw0KICBnZW9tX3NmKGFlcyhmaWxsID0gTmFtZXBsYXRlX0NhcGFjaXR5X0luX01XKSkrDQogIHNjYWxlX2ZpbGxfY29udGludW91cyh0eXBlID0gInZpcmlkaXMiKSsNCiAgIGxhYnModGl0bGUgPSAiT2tsYWhvbWEgRWxlY3RyaWMgR2VuZXJhdGlvbiBDYXBhY2l0eSIgLHN1YnRpdGxlID0gImJ5IGNvdW50eSwgMjAxOC4iLCBjYXB0aW9uID0gIkRhdGEgRnJvbSBFSUEuIikrDQogIHRoZW1lX21hcCgpDQogDQo/c2NhbGVfZmlsbF9jb250aW51b3VzDQo/dGhlbWVfbWFwDQoNCmBgYA0KDQoNCg0K