Please see below the ‘updated’ analyses for BabyNet Epals project. I would like you to review the code, if possible, check the dataset, and give me feedback. This analysis was checked several times during the last two years, but now I could not give the appropriate focus to interpret all results. I also inform that the dataset being used here produces virtually equal results than the ones published by Ed’s. Small differences come because I’ve got the SPSS file and what SPSS call as “pooled” is almost the same thing than getting the average of the multiple imputation datasets, but not entirely the same.

1 MI20 (April) dataset

1.1 Participants’ race

## # A tibble: 2 x 2
##   M_5R104A     n
##      <dbl> <int>
## 1        1     1
## 2      NaN    60
## # A tibble: 1 x 2
##   M_5R104B     n
##      <dbl> <int>
## 1      NaN    61
## # A tibble: 1 x 2
##   M_5R104C     n
##      <dbl> <int>
## 1      NaN    61
## # A tibble: 2 x 2
##   M_5R104D     n
##      <dbl> <int>
## 1        1    30
## 2      NaN    31
## # A tibble: 1 x 2
##   M_5R104E     n
##      <dbl> <int>
## 1      NaN    61
## # A tibble: 2 x 2
##   M_5R104F     n
##      <dbl> <int>
## 1        1     5
## 2      NaN    56
## # A tibble: 2 x 2
##   M_5R104A     n
##      <dbl> <int>
## 1        1     5
## 2      NaN    92
## # A tibble: 2 x 2
##   M_5R104B     n
##      <dbl> <int>
## 1        1     4
## 2      NaN    93
## # A tibble: 2 x 2
##   M_5R104C     n
##      <dbl> <int>
## 1        1    26
## 2      NaN    71
## # A tibble: 2 x 2
##   M_5R104D     n
##      <dbl> <int>
## 1        1    72
## 2      NaN    25
## # A tibble: 2 x 2
##   M_5R104E     n
##      <dbl> <int>
## 1        1     1
## 2      NaN    96
## # A tibble: 1 x 2
##   M_5R104F     n
##      <dbl> <int>
## 1      NaN    97
## # A tibble: 5 x 138
##      ID Imputation_ CONDITION.x OM4G1315 OM4G1316 OM4G1317 OM4G1318
##   <dbl>       <dbl>       <dbl>    <dbl>    <dbl>    <dbl>    <dbl>
## 1 10043        10.5           1        2        3        5        1
## 2 10065        10.5           0        4        4        4        3
## 3 10081        10.5           0        3        2        5        2
## 4 20236        10.5           1        2        1        1        1
## 5 20285        10.5           0        4        2        5        3
## # … with 131 more variables: OK4G1319 <dbl>, OK4G1320 <dbl>,
## #   OK4G1321 <dbl>, OK4G1322 <dbl>, OK4G1323 <dbl>, OM4G2315 <dbl>,
## #   OM4G2316 <dbl>, OM4G2317 <dbl>, OM4G2318 <dbl>, OK4G2319 <dbl>,
## #   OK4G2320 <dbl>, OK4G2321 <dbl>, OK4G2322 <dbl>, OK4G2323 <dbl>,
## #   M_5O1ABS <dbl>, M_5O2ABS <dbl>, M_4D1TO <dbl>, M_4D2TO <dbl>,
## #   M_4I1TOT <dbl>, M_4I2TOT <dbl>, LAST_LEVEL <dbl>, LAST_SECTION <dbl>,
## #   LAST_PAGE <dbl>, SECT_PERCENT <dbl>, HLS <dbl>, HL <dbl>, hlsr <dbl>,
## #   zmenth1 <dbl>, zmflex1 <dbl>, zmbr1 <dbl>, zmenth2 <dbl>,
## #   zmflex2 <dbl>, zmbr2 <dbl>, mlang1 <dbl>, mlang2 <dbl>,
## #   zbbkeng1 <dbl>, zbrecl1 <dbl>, zbexpl1 <dbl>, zbbkeng2 <dbl>,
## #   zbrecl2 <dbl>, zbexpl2 <dbl>, blang1 <dbl>, blang2 <dbl>, zhls <dbl>,
## #   zcond <dbl>, doscond <dbl>, zmlang1 <dbl>, zmlang2 <dbl>,
## #   zblang1 <dbl>, zblang2 <dbl>, zmknow1 <dbl>, zmknow2 <dbl>,
## #   zdoscond <dbl>, mlangc <dbl>, blangc <dbl>, mombeh <dbl>,
## #   kidbeh <dbl>, momknow <dbl>, momchg <dbl>, babychg <dbl>, dcond <dbl>,
## #   dcond_d <dbl>, CONDITION.y <dbl>, ATTRITION <dbl>, M_5R1002 <dbl>,
## #   M_5R1003 <dbl>, M_5R104A <dbl>, M_5R104B <dbl>, M_5R104C <dbl>,
## #   M_5R104D <dbl>, M_5R104E <dbl>, M_5R104F <dbl>, M_5R1005 <dbl>,
## #   M_5R1006 <dbl>, M_5R1007 <dbl>, M_5R1008 <dbl>, M_5R1009 <dbl>,
## #   M_5R1010 <dbl>, M_5R1011 <dbl>, M_5R1012 <dbl>, M_5R1013 <dbl>,
## #   M_5R1014 <dbl>, M_5R1015 <dbl>, M_5R1016 <dbl>, M_5R1017 <dbl>,
## #   M_5R1018 <dbl>, M_5R1019 <dbl>, M_5R120A <dbl>, M_5R120B <dbl>,
## #   M_5R120C <dbl>, M_5R120D <dbl>, M_5R120E <dbl>, M_5R120F <dbl>,
## #   M_5R120G <dbl>, M_5R1022 <dbl>, M_5R1023 <dbl>, M_5R124A <dbl>,
## #   M_5R124B <dbl>, M_5R124C <dbl>, M_5R124D <dbl>, …

1.3 Maternal behavioral

Data name = MI20
CONDITION.x mean(mlang1) sd(mlang1) mean(mlang2) sd(mlang2) n()
Attention 0.47 2.6 -0.44 2.5 76
Experimental -0.43 2.4 0.40 2.4 83
Total 0.04 5.0 -0.04 4.9 159

From these results, I am assuming this dataset is virtually equal as Ed’s dataset (I think now it was published).

Almost ok. SD slightly different.

2 Demographic information

## # A tibble: 3 x 2
##   M_5R1003     n
##      <dbl> <int>
## 1        0    97
## 2        1    61
## 3      NaN     1

2.1 Mother and her children age

Table 1 here

## 
##  Welch Two Sample t-test
## 
## data:  M1AGE by race
## t = 2, df = 35, p-value = 0.1
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##  -1.4 14.9
## sample estimates:
## mean in group Latinx  mean in group White 
##                   35                   29 
## 
## 
##  Welch Two Sample t-test
## 
## data:  M1AGE by race
## t = 0.8, df = 47, p-value = 0.4
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##  -3.7  8.9
## sample estimates:
## mean in group Latinx  mean in group White 
##                   31                   29 
## 
## 
##  Welch Two Sample t-test
## 
## data:  M1AGE by group
## t = 0.9, df = 54, p-value = 0.4
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##  -5.3 13.7
## sample estimates:
## mean in group Attention-control      mean in group Experimental 
##                              35                              31 
## 
## 
##  Welch Two Sample t-test
## 
## data:  M1AGE by group
## t = -0.003, df = 87, p-value = 1
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##  -3.7  3.7
## sample estimates:
## mean in group Attention-control      mean in group Experimental 
##                              29                              29
race group mean sd n
Latinx Attention-control 35 22.0 32
Latinx Experimental 31 14.6 29
White Attention-control 29 6.5 43
White Experimental 29 11.4 54
## 
##  Welch Two Sample t-test
## 
## data:  C1AGE by race
## t = -2, df = 73, p-value = 0.1
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##  -1.64  0.22
## sample estimates:
## mean in group Latinx  mean in group White 
##                  3.7                  4.4 
## 
## 
##  Welch Two Sample t-test
## 
## data:  C1AGE by race
## t = -1, df = 54, p-value = 0.2
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##  -1.63  0.26
## sample estimates:
## mean in group Latinx  mean in group White 
##                  4.2                  4.9 
## 
## 
##  Welch Two Sample t-test
## 
## data:  M1AGE by group
## t = 0.9, df = 54, p-value = 0.4
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##  -5.3 13.7
## sample estimates:
## mean in group Attention-control      mean in group Experimental 
##                              35                              31 
## 
## 
##  Welch Two Sample t-test
## 
## data:  M1AGE by group
## t = -0.003, df = 87, p-value = 1
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##  -3.7  3.7
## sample estimates:
## mean in group Attention-control      mean in group Experimental 
##                              29                              29
race group mean sd n
Latinx Attention-control 3.7 1.7 32
Latinx Experimental 4.2 2.1 29
White Attention-control 4.4 2.4 43
White Experimental 4.9 1.9 54

2.2 Biological sex

The percentage of boys and girls in each group was also computed.

sex Latinx White Total
Female 53% (17) 56% (24) 55% (41)
Male 47% (15) 44% (19) 45% (34)
Total 100% (32) 100% (43) 100% (75)
sex Latinx White Total
Female 62% (18) 53% (28) 56% (46)
Male 38% (11) 47% (25) 44% (36)
Total 100% (29) 100% (53) 100% (82)

The association between race and sex was computed for Attention-control group.

##    Cell Contents 
## |-------------------------|
## |                   Count | 
## |-------------------------|
## 
## ================================
##           .$race
## .$sex     Latinx   White   Total
## --------------------------------
## Female        17      24      41
## --------------------------------
## Male          15      19      34
## --------------------------------
## Total         32      43      75
## ================================
## 
## Statistics for All Table Factors
## 
## Pearson's Chi-squared test 
## ------------------------------------------------------------
## Chi^2 = 0.054      d.f. = 1      p = 0.817 
## 
## Pearson's Chi-squared test with Yates' continuity correction 
## ------------------------------------------------------------
## Chi^2 = 2.2e-31      d.f. = 1      p = 1 
##         Minimum expected frequency: 15

The association between race and sex was computed for Experimental group.

##    Cell Contents 
## |-------------------------|
## |                   Count | 
## |-------------------------|
## 
## ================================
##           .$race
## .$sex     Latinx   White   Total
## --------------------------------
## Female        18      28      46
## --------------------------------
## Male          11      25      36
## --------------------------------
## Total         29      53      82
## ================================
## 
## Statistics for All Table Factors
## 
## Pearson's Chi-squared test 
## ------------------------------------------------------------
## Chi^2 = 0.65      d.f. = 1      p = 0.42 
## 
## Pearson's Chi-squared test with Yates' continuity correction 
## ------------------------------------------------------------
## Chi^2 = 0.33      d.f. = 1      p = 0.566 
##         Minimum expected frequency: 13

2.3 Primary language

The primary language spoken at home was compared between whites and latinxs in both conditions.

M_5R1005 Latinx White Total
1 33% (10) 100% (43) 73% (53)
2 67% (20) 0% (0) 27% (20)
3 0% (0) 0% (0) 0% (0)
Total 100% (30) 100% (43) 100% (73)
M_5R1005 Latinx White Total
1 32% (9) 98% (51) 75% (60)
2 64% (18) 0% (0) 23% (18)
3 4% (1) 2% (1) 3% (2)
Total 100% (28) 100% (52) 100% (80)

In Attention-controle condition, these percentages were compared.

##    Cell Contents 
## |-------------------------|
## |                   Count | 
## |          Column Percent | 
## |-------------------------|
## 
## ====================================
##               .$race
## .$M_5R1005    Latinx   White   Total
## ------------------------------------
## 1                10      43      53 
##                  33%    100%        
## ------------------------------------
## 2                20       0      20 
##                  67%      0%        
## ------------------------------------
## Total            30      43      73 
##                  41%     59%        
## ====================================
## 
## Statistics for All Table Factors
## 
## Pearson's Chi-squared test 
## ------------------------------------------------------------
## Chi^2 = 39      d.f. = 1      p = 3.31e-10 
## 
## Pearson's Chi-squared test with Yates' continuity correction 
## ------------------------------------------------------------
## Chi^2 = 36      d.f. = 1      p = 1.78e-09 
##         Minimum expected frequency: 8.2

##    Cell Contents 
## |-------------------------|
## |                   Count | 
## |          Column Percent | 
## |-------------------------|
## 
## ====================================
##               .$race
## .$M_5R1005    Latinx   White   Total
## ------------------------------------
## 1                 9      51      60 
##                32.1%   98.1%        
## ------------------------------------
## 2                18       0      18 
##                64.3%    0.0%        
## ------------------------------------
## 3                 1       1       2 
##                 3.6%    1.9%        
## ------------------------------------
## Total            28      52      80 
##                  35%     65%        
## ====================================
## 
## Statistics for All Table Factors
## 
## Pearson's Chi-squared test 
## ------------------------------------------------------------
## Chi^2 = 44      d.f. = 2      p = 2.55e-10 
## 
##         Minimum expected frequency: 0.7 
## Cells with Expected Frequency < 5: 2 of 6 (33%)

2.4 Maternal depression

## 
##  Welch Two Sample t-test
## 
## data:  M_4D1TO by race
## t = -0.6, df = 72, p-value = 0.6
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##  -12.9   7.2
## sample estimates:
## mean in group Latinx  mean in group White 
##                   59                   62 
## 
## 
##  Welch Two Sample t-test
## 
## data:  M_4D1TO by race
## t = -0.2, df = 40, p-value = 0.8
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##  -16  13
## sample estimates:
## mean in group Latinx  mean in group White 
##                   60                   61 
## 
## 
##  Welch Two Sample t-test
## 
## data:  M1AGE by group
## t = 0.9, df = 54, p-value = 0.4
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##  -5.3 13.7
## sample estimates:
## mean in group Attention-control      mean in group Experimental 
##                              35                              31 
## 
## 
##  Welch Two Sample t-test
## 
## data:  M1AGE by group
## t = -0.003, df = 87, p-value = 1
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##  -3.7  3.7
## sample estimates:
## mean in group Attention-control      mean in group Experimental 
##                              29                              29
race group mean sd n
Latinx Attention-control 59 20 32
Latinx Experimental 60 34 29
White Attention-control 62 23 43
White Experimental 61 21 54

2.5 Computer comfort

## 
##  Welch Two Sample t-test
## 
## data:  M_5R1027 by race
## t = -2, df = 64, p-value = 0.04
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##  -0.745 -0.028
## sample estimates:
## mean in group Latinx  mean in group White 
##                  3.1                  3.5 
## 
## 
##  Welch Two Sample t-test
## 
## data:  M_5R1027 by race
## t = -4, df = 41, p-value = 0.0003
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##  -1.05 -0.34
## sample estimates:
## mean in group Latinx  mean in group White 
##                  2.9                  3.6 
## 
## 
##  Welch Two Sample t-test
## 
## data:  M1AGE by group
## t = 0.9, df = 54, p-value = 0.4
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##  -5.3 13.7
## sample estimates:
## mean in group Attention-control      mean in group Experimental 
##                              35                              31 
## 
## 
##  Welch Two Sample t-test
## 
## data:  M1AGE by group
## t = -0.003, df = 87, p-value = 1
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##  -3.7  3.7
## sample estimates:
## mean in group Attention-control      mean in group Experimental 
##                              29                              29
race group mean sd n
Latinx Attention-control 3.1 0.79 32
Latinx Experimental 2.9 0.86 29
White Attention-control 3.5 0.74 43
White Experimental 3.6 0.57 54

2.6 Computer ownership

M_5R1029 Latinx White Total
0 68% (21) 30% (13) 46% (34)
1 32% (10) 70% (30) 54% (40)
Total 100% (31) 100% (43) 100% (74)
M_5R1029 Latinx White Total
0 59% (17) 46% (25) 51% (42)
1 41% (12) 54% (29) 49% (41)
Total 100% (29) 100% (54) 100% (83)

##    Cell Contents 
## |-------------------------|
## |                   Count | 
## |          Column Percent | 
## |-------------------------|
## 
## ====================================
##               .$race
## .$M_5R1029    Latinx   White   Total
## ------------------------------------
## 0                21      13      34 
##                  68%     30%        
## ------------------------------------
## 1                10      30      40 
##                  32%     70%        
## ------------------------------------
## Total            31      43      74 
##                  42%     58%        
## ====================================
## 
## Statistics for All Table Factors
## 
## Pearson's Chi-squared test 
## ------------------------------------------------------------
## Chi^2 = 10      d.f. = 1      p = 0.0014 
## 
## Pearson's Chi-squared test with Yates' continuity correction 
## ------------------------------------------------------------
## Chi^2 = 8.8      d.f. = 1      p = 0.0031 
##         Minimum expected frequency: 14

##    Cell Contents 
## |-------------------------|
## |                   Count | 
## |          Column Percent | 
## |-------------------------|
## 
## ====================================
##               .$race
## .$M_5R1029    Latinx   White   Total
## ------------------------------------
## 0                17      25      42 
##                  59%     46%        
## ------------------------------------
## 1                12      29      41 
##                  41%     54%        
## ------------------------------------
## Total            29      54      83 
##                  35%     65%        
## ====================================
## 
## Statistics for All Table Factors
## 
## Pearson's Chi-squared test 
## ------------------------------------------------------------
## Chi^2 = 1.1      d.f. = 1      p = 0.284 
## 
## Pearson's Chi-squared test with Yates' continuity correction 
## ------------------------------------------------------------
## Chi^2 = 0.71      d.f. = 1      p = 0.401 
##         Minimum expected frequency: 14

2.7 Living together

married Latinx White Total
0 22% (7) 28% (12) 25% (19)
1 78% (25) 72% (31) 75% (56)
Total 100% (32) 100% (43) 100% (75)
married Latinx White Total
0 31% (9) 39% (21) 36% (30)
1 69% (20) 61% (33) 64% (53)
Total 100% (29) 100% (54) 100% (83)

##    Cell Contents 
## |-------------------------|
## |                   Count | 
## |          Column Percent | 
## |-------------------------|
## 
## ===================================
##              .$race
## .$married    Latinx   White   Total
## -----------------------------------
## 0                7      12      19 
##                 22%     28%        
## -----------------------------------
## 1               25      31      56 
##                 78%     72%        
## -----------------------------------
## Total           32      43      75 
##                 43%     57%        
## ===================================
## 
## Statistics for All Table Factors
## 
## Pearson's Chi-squared test 
## ------------------------------------------------------------
## Chi^2 = 0.35      d.f. = 1      p = 0.552 
## 
## Pearson's Chi-squared test with Yates' continuity correction 
## ------------------------------------------------------------
## Chi^2 = 0.11      d.f. = 1      p = 0.745 
##         Minimum expected frequency: 8.1

##    Cell Contents 
## |-------------------------|
## |                   Count | 
## |          Column Percent | 
## |-------------------------|
## 
## ===================================
##              .$race
## .$married    Latinx   White   Total
## -----------------------------------
## 0                9      21      30 
##                 31%     39%        
## -----------------------------------
## 1               20      33      53 
##                 69%     61%        
## -----------------------------------
## Total           29      54      83 
##                 35%     65%        
## ===================================
## 
## Statistics for All Table Factors
## 
## Pearson's Chi-squared test 
## ------------------------------------------------------------
## Chi^2 = 0.5      d.f. = 1      p = 0.478 
## 
## Pearson's Chi-squared test with Yates' continuity correction 
## ------------------------------------------------------------
## Chi^2 = 0.22      d.f. = 1      p = 0.638 
##         Minimum expected frequency: 10

2.8 Financial stress

## 
##  Welch Two Sample t-test
## 
## data:  M_5R1FST by race
## t = -0.6, df = 65, p-value = 0.6
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##  -3.4  1.9
## sample estimates:
## mean in group Latinx  mean in group White 
##                   16                   17 
## 
## 
##  Welch Two Sample t-test
## 
## data:  M_5R1FST by race
## t = 2, df = 60, p-value = 0.1
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##  -0.5  4.1
## sample estimates:
## mean in group Latinx  mean in group White 
##                   17                   15 
## 
## 
##  Welch Two Sample t-test
## 
## data:  M1AGE by group
## t = 0.9, df = 54, p-value = 0.4
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##  -5.3 13.7
## sample estimates:
## mean in group Attention-control      mean in group Experimental 
##                              35                              31 
## 
## 
##  Welch Two Sample t-test
## 
## data:  M1AGE by group
## t = -0.003, df = 87, p-value = 1
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##  -3.7  3.7
## sample estimates:
## mean in group Attention-control      mean in group Experimental 
##                              29                              29
race group mean sd n
Latinx Attention-control 16 5.8 32
Latinx Experimental 17 4.9 29
White Attention-control 17 5.5 43
White Experimental 15 5.2 54

2.9 Surgency

we’ll need to ask Craig

2.10 Education

M_5R1012 Latinx White Total
1 22% (7) 14% (6) 17% (13)
2 44% (14) 14% (6) 27% (20)
3 13% (4) 7% (3) 9% (7)
4 13% (4) 44% (19) 31% (23)
5 9% (3) 21% (9) 16% (12)
Total 100% (32) 100% (43) 100% (75)
M_5R1012 Latinx White Total
1 24% (7) 11% (6) 16% (13)
2 38% (11) 30% (16) 33% (27)
3 21% (6) 4% (2) 10% (8)
4 10% (3) 44% (24) 33% (27)
5 7% (2) 11% (6) 10% (8)
Total 100% (29) 100% (54) 100% (83)

##    Cell Contents 
## |-------------------------|
## |                   Count | 
## |          Column Percent | 
## |-------------------------|
## 
## ====================================
##               .$race
## .$M_5R1012    Latinx   White   Total
## ------------------------------------
## 1                 7       6      13 
##                21.9%   14.0%        
## ------------------------------------
## 2                14       6      20 
##                43.8%   14.0%        
## ------------------------------------
## 3                 4       3       7 
##                12.5%    7.0%        
## ------------------------------------
## 4                 4      19      23 
##                12.5%   44.2%        
## ------------------------------------
## 5                 3       9      12 
##                 9.4%   20.9%        
## ------------------------------------
## Total            32      43      75 
##                  43%     57%        
## ====================================
## 
## Statistics for All Table Factors
## 
## Pearson's Chi-squared test 
## ------------------------------------------------------------
## Chi^2 = 15      d.f. = 4      p = 0.00489 
## 
##         Minimum expected frequency: 3 
## Cells with Expected Frequency < 5: 2 of 10 (20%)

##    Cell Contents 
## |-------------------------|
## |                   Count | 
## |          Column Percent | 
## |-------------------------|
## 
## ====================================
##               .$race
## .$M_5R1012    Latinx   White   Total
## ------------------------------------
## 1                 7       6      13 
##                24.1%   11.1%        
## ------------------------------------
## 2                11      16      27 
##                37.9%   29.6%        
## ------------------------------------
## 3                 6       2       8 
##                20.7%    3.7%        
## ------------------------------------
## 4                 3      24      27 
##                10.3%   44.4%        
## ------------------------------------
## 5                 2       6       8 
##                 6.9%   11.1%        
## ------------------------------------
## Total            29      54      83 
##                  35%     65%        
## ====================================
## 
## Statistics for All Table Factors
## 
## Pearson's Chi-squared test 
## ------------------------------------------------------------
## Chi^2 = 15      d.f. = 4      p = 0.00434 
## 
##         Minimum expected frequency: 2.8 
## Cells with Expected Frequency < 5: 3 of 10 (30%)

3 Main checks

Using all dataset (n = 159), we can check (and compare) mean differences between latinos and non-latinos. Let’s just remember that we have 61 latinos, and 97 non latinos.

To everything becomes transparent, one participant was not used in this comparison. In the original dataset, the information about his “race” was empty.

3.1 Infant Behavior1 (blang variable)

Due the graphic, I checked the interaction between ethinicity (Hispanic or White) and Condition (Attention or Intervention group) at the baseline. Despite the marginal main effect, no interaction was found (F(1, 154) = 0.03, p = 0.867). Full results are below.

## 
## 
## ANOVA results using blang1 as the dependent variable
##  
## 
##               Predictor     SS  df    MS    F    p partial_eta2
##             (Intercept)  11.88   1 11.88 2.41 .122             
##             CONDITION.x  19.04   1 19.04 3.87 .051          .02
##                M_5R1003   0.87   1  0.87 0.18 .674          .00
##  CONDITION.x x M_5R1003   0.14   1  0.14 0.03 .867          .00
##                   Error 757.82 154  4.92                       
##  CI_90_partial_eta2
##                    
##          [.00, .08]
##          [.00, .02]
##          [.00, .01]
##                    
## 
## Note: Values in square brackets indicate the bounds of the 90% confidence interval for partial eta-squared

3.3 Maternal knowledge Epals (M_4I1TOT variable)

## 
## 
## ANOVA results using M_4I1TOT as the dependent variable
##  
## 
##               Predictor      SS  df      MS      F    p partial_eta2
##             (Intercept) 2010.14   1 2010.14 275.33 .000             
##             CONDITION.x    0.01   1    0.01   0.00 .979          .00
##                M_5R1003   75.21   1   75.21  10.30 .002          .06
##  CONDITION.x x M_5R1003    1.34   1    1.34   0.18 .669          .00
##                   Error 1124.31 154    7.30                         
##  CI_90_partial_eta2
##                    
##         [.00, 1.00]
##          [.01, .13]
##          [.00, .02]
##                    
## 
## Note: Values in square brackets indicate the bounds of the 90% confidence interval for partial eta-squared
## 
## ================================================
##                          Dependent variable:    
##                      ---------------------------
##                               M_4I1TOT          
## ------------------------------------------------
## CONDITION.x                     0.015           
##                                (0.550)          
##                                                 
## M_5R1003                      -2.000***         
##                                (0.630)          
##                                                 
## CONDITION.x:M_5R1003            0.380           
##                                (0.890)          
##                                                 
## Constant                      6.800***          
##                                (0.410)          
##                                                 
## ------------------------------------------------
## Observations                     158            
## R2                              0.100           
## Adjusted R2                     0.086           
## Residual Std. Error       2.700 (df = 154)      
## F Statistic            5.900*** (df = 3; 154)   
## ================================================
## Note:                *p<0.1; **p<0.05; ***p<0.01

Despite the difference at the baseline (seemed by the graph), both groups increase its knowledge.

3.4 Dosage difference

## 
##  Welch Two Sample t-test
## 
## data:  doscond by M_5R1003
## t = -0.7, df = 147, p-value = 0.5
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##  -0.41  0.19
## sample estimates:
## mean in group 0 mean in group 1 
##          -0.199          -0.091

4 all comparions (table 2)

mod_repmeasure <- function(x,y) {
  
  x <- enquo(x)
  y <- enquo(y)
  
  ## SUMMARY TABLE
  data_april %>% 
  mutate(race = if_else(M_5R1003 == "1","Hispanic","Not Hispanic")) %>% 
  mutate(Condition = ifelse(CONDITION.x == "1", "Experimental", "Attention")) %>% 
  select(ID,race, Condition, !!x, !!y) %>% 
  gather(key = "Time",value="results", !!x,!!y) %>% 
  mutate(Time = ifelse(Time == !!x, "Time 1", "Time 2")) %>% 
  arrange(ID) %>%  
  group_by(race,Condition, Time) %>% 
  summarise(mean=mean(results), sd=sd(results), n=n()) %>% 
    kable(digits = 2) %>%
    kable_styling(bootstrap_options = c("striped", "hover"),position='center',
                  font_size = 12,full_width=F) %>% 
    print()

  
  ## PLOT
  plot <-  data_april %>% 
    mutate(race = if_else(M_5R1003 == "1","Hispanic","Not Hispanic")) %>% 
    mutate(Condition = ifelse(CONDITION.x == "1", "Experimental", "Attention")) %>% 
    select(ID,race, Condition, !!x, !!y) %>% 
    gather(key = "Time",value="results", !!x, !!y) %>% 
    mutate(Time = ifelse(Time == !!x, "Time 1", "Time 2")) %>% 
    ggplot(aes(x = Time, y = results, group = interaction(race,Condition))) +
    stat_summary(fun.y = mean, geom = "line",
                 aes(color = Condition, linetype = race),size=1.0) +
    stat_summary(fun.data = mean_se, geom = "errorbar", width=.1, 
                 aes(color = Condition,linetype = race)) +
  labs(title = as_label(x))
    
  ## INFERENTIAL TEST
  data_april %>% 
  mutate(race = if_else(M_5R1003 == "1","Hispanic","Not Hispanic")) %>% 
  mutate(Condition = ifelse(CONDITION.x == "1", "Experimental", "Attention")) %>% 
  select(ID,race, Condition, !!x, !!y) %>% 
  gather(key = "Time",value="results", !!x, !!y) %>% 
  mutate(Time = ifelse(Time == !!x, "Time 1", "Time 2")) %>% 
  lm(results ~ Time * Condition * race, data = .) ->> linear_result
  apaTables::apa.aov.table(linear_result) %>% print()

  
    plot

}
## <table class="table table-striped table-hover" style="font-size: 12px; width: auto !important; margin-left: auto; margin-right: auto;">
##  <thead>
##   <tr>
##    <th style="text-align:left;"> race </th>
##    <th style="text-align:left;"> Condition </th>
##    <th style="text-align:left;"> Time </th>
##    <th style="text-align:right;"> mean </th>
##    <th style="text-align:right;"> sd </th>
##    <th style="text-align:right;"> n </th>
##   </tr>
##  </thead>
## <tbody>
##   <tr>
##    <td style="text-align:left;"> Hispanic </td>
##    <td style="text-align:left;"> Attention </td>
##    <td style="text-align:left;"> Time 1 </td>
##    <td style="text-align:right;"> 4.8 </td>
##    <td style="text-align:right;"> 2.3 </td>
##    <td style="text-align:right;"> 32 </td>
##   </tr>
##   <tr>
##    <td style="text-align:left;"> Hispanic </td>
##    <td style="text-align:left;"> Attention </td>
##    <td style="text-align:left;"> Time 2 </td>
##    <td style="text-align:right;"> 5.7 </td>
##    <td style="text-align:right;"> 2.9 </td>
##    <td style="text-align:right;"> 32 </td>
##   </tr>
##   <tr>
##    <td style="text-align:left;"> Hispanic </td>
##    <td style="text-align:left;"> Experimental </td>
##    <td style="text-align:left;"> Time 1 </td>
##    <td style="text-align:right;"> 5.2 </td>
##    <td style="text-align:right;"> 2.5 </td>
##    <td style="text-align:right;"> 29 </td>
##   </tr>
##   <tr>
##    <td style="text-align:left;"> Hispanic </td>
##    <td style="text-align:left;"> Experimental </td>
##    <td style="text-align:left;"> Time 2 </td>
##    <td style="text-align:right;"> 9.0 </td>
##    <td style="text-align:right;"> 3.0 </td>
##    <td style="text-align:right;"> 29 </td>
##   </tr>
##   <tr>
##    <td style="text-align:left;"> Not Hispanic </td>
##    <td style="text-align:left;"> Attention </td>
##    <td style="text-align:left;"> Time 1 </td>
##    <td style="text-align:right;"> 6.8 </td>
##    <td style="text-align:right;"> 3.1 </td>
##    <td style="text-align:right;"> 44 </td>
##   </tr>
##   <tr>
##    <td style="text-align:left;"> Not Hispanic </td>
##    <td style="text-align:left;"> Attention </td>
##    <td style="text-align:left;"> Time 2 </td>
##    <td style="text-align:right;"> 6.9 </td>
##    <td style="text-align:right;"> 2.6 </td>
##    <td style="text-align:right;"> 44 </td>
##   </tr>
##   <tr>
##    <td style="text-align:left;"> Not Hispanic </td>
##    <td style="text-align:left;"> Experimental </td>
##    <td style="text-align:left;"> Time 1 </td>
##    <td style="text-align:right;"> 6.8 </td>
##    <td style="text-align:right;"> 2.6 </td>
##    <td style="text-align:right;"> 54 </td>
##   </tr>
##   <tr>
##    <td style="text-align:left;"> Not Hispanic </td>
##    <td style="text-align:left;"> Experimental </td>
##    <td style="text-align:left;"> Time 2 </td>
##    <td style="text-align:right;"> 9.9 </td>
##    <td style="text-align:right;"> 3.0 </td>
##    <td style="text-align:right;"> 54 </td>
##   </tr>
## </tbody>
## </table>
## 
## 
## ANOVA results using results as the dependent variable
##  
## 
##                Predictor      SS  df     MS     F    p partial_eta2
##              (Intercept)  741.12   1 741.12 95.85 .000             
##                     Time   12.25   1  12.25  1.58 .209          .01
##                Condition    2.37   1   2.37  0.31 .581          .00
##                     race   74.53   1  74.53  9.64 .002          .03
##         Time x Condition   66.76   1  66.76  8.63 .004          .03
##              Time x race    5.21   1   5.21  0.67 .412          .00
##         Condition x race    1.22   1   1.22  0.16 .692          .00
##  Time x Condition x race    0.03   1   0.03  0.00 .949          .00
##                    Error 2396.88 310   7.73                        
##  CI_90_partial_eta2
##                    
##          [.00, .03]
##          [.00, .01]
##          [.01, .07]
##          [.01, .06]
##          [.00, .02]
##          [.00, .01]
##         [.00, 1.00]
##                    
## 
## Note: Values in square brackets indicate the bounds of the 90% confidence interval for partial eta-squared

## <table class="table table-striped table-hover" style="font-size: 12px; width: auto !important; margin-left: auto; margin-right: auto;">
##  <thead>
##   <tr>
##    <th style="text-align:left;"> race </th>
##    <th style="text-align:left;"> Condition </th>
##    <th style="text-align:left;"> Time </th>
##    <th style="text-align:right;"> mean </th>
##    <th style="text-align:right;"> sd </th>
##    <th style="text-align:right;"> n </th>
##   </tr>
##  </thead>
## <tbody>
##   <tr>
##    <td style="text-align:left;"> Hispanic </td>
##    <td style="text-align:left;"> Attention </td>
##    <td style="text-align:left;"> Time 1 </td>
##    <td style="text-align:right;"> 0.47 </td>
##    <td style="text-align:right;"> 2.9 </td>
##    <td style="text-align:right;"> 32 </td>
##   </tr>
##   <tr>
##    <td style="text-align:left;"> Hispanic </td>
##    <td style="text-align:left;"> Attention </td>
##    <td style="text-align:left;"> Time 2 </td>
##    <td style="text-align:right;"> -1.23 </td>
##    <td style="text-align:right;"> 2.6 </td>
##    <td style="text-align:right;"> 32 </td>
##   </tr>
##   <tr>
##    <td style="text-align:left;"> Hispanic </td>
##    <td style="text-align:left;"> Experimental </td>
##    <td style="text-align:left;"> Time 1 </td>
##    <td style="text-align:right;"> -0.24 </td>
##    <td style="text-align:right;"> 2.7 </td>
##    <td style="text-align:right;"> 29 </td>
##   </tr>
##   <tr>
##    <td style="text-align:left;"> Hispanic </td>
##    <td style="text-align:left;"> Experimental </td>
##    <td style="text-align:left;"> Time 2 </td>
##    <td style="text-align:right;"> -0.35 </td>
##    <td style="text-align:right;"> 2.3 </td>
##    <td style="text-align:right;"> 29 </td>
##   </tr>
##   <tr>
##    <td style="text-align:left;"> Not Hispanic </td>
##    <td style="text-align:left;"> Attention </td>
##    <td style="text-align:left;"> Time 1 </td>
##    <td style="text-align:right;"> 0.48 </td>
##    <td style="text-align:right;"> 2.4 </td>
##    <td style="text-align:right;"> 44 </td>
##   </tr>
##   <tr>
##    <td style="text-align:left;"> Not Hispanic </td>
##    <td style="text-align:left;"> Attention </td>
##    <td style="text-align:left;"> Time 2 </td>
##    <td style="text-align:right;"> 0.13 </td>
##    <td style="text-align:right;"> 2.3 </td>
##    <td style="text-align:right;"> 44 </td>
##   </tr>
##   <tr>
##    <td style="text-align:left;"> Not Hispanic </td>
##    <td style="text-align:left;"> Experimental </td>
##    <td style="text-align:left;"> Time 1 </td>
##    <td style="text-align:right;"> -0.54 </td>
##    <td style="text-align:right;"> 2.2 </td>
##    <td style="text-align:right;"> 54 </td>
##   </tr>
##   <tr>
##    <td style="text-align:left;"> Not Hispanic </td>
##    <td style="text-align:left;"> Experimental </td>
##    <td style="text-align:left;"> Time 2 </td>
##    <td style="text-align:right;"> 0.80 </td>
##    <td style="text-align:right;"> 2.4 </td>
##    <td style="text-align:right;"> 54 </td>
##   </tr>
## </tbody>
## </table>
## 
## 
## ANOVA results using results as the dependent variable
##  
## 
##                Predictor      SS  df    MS    F    p partial_eta2
##              (Intercept)    6.96   1  6.96 1.16 .282             
##                     Time   45.83   1 45.83 7.65 .006          .02
##                Condition    7.60   1  7.60 1.27 .261          .00
##                     race    0.00   1  0.00 0.00 .985          .00
##         Time x Condition   19.17   1 19.17 3.20 .075          .01
##              Time x race   16.86   1 16.86 2.81 .094          .01
##         Condition x race    0.88   1  0.88 0.15 .703          .00
##  Time x Condition x race    0.04   1  0.04 0.01 .933          .00
##                    Error 1857.78 310  5.99                       
##  CI_90_partial_eta2
##                    
##          [.00, .06]
##          [.00, .02]
##         [.00, 1.00]
##          [.00, .04]
##          [.00, .03]
##          [.00, .01]
##          [.00, .00]
##                    
## 
## Note: Values in square brackets indicate the bounds of the 90% confidence interval for partial eta-squared

## <table class="table table-striped table-hover" style="font-size: 12px; width: auto !important; margin-left: auto; margin-right: auto;">
##  <thead>
##   <tr>
##    <th style="text-align:left;"> race </th>
##    <th style="text-align:left;"> Condition </th>
##    <th style="text-align:left;"> Time </th>
##    <th style="text-align:right;"> mean </th>
##    <th style="text-align:right;"> sd </th>
##    <th style="text-align:right;"> n </th>
##   </tr>
##  </thead>
## <tbody>
##   <tr>
##    <td style="text-align:left;"> Hispanic </td>
##    <td style="text-align:left;"> Attention </td>
##    <td style="text-align:left;"> Time 1 </td>
##    <td style="text-align:right;"> 0.31 </td>
##    <td style="text-align:right;"> 2.0 </td>
##    <td style="text-align:right;"> 32 </td>
##   </tr>
##   <tr>
##    <td style="text-align:left;"> Hispanic </td>
##    <td style="text-align:left;"> Attention </td>
##    <td style="text-align:left;"> Time 2 </td>
##    <td style="text-align:right;"> -1.03 </td>
##    <td style="text-align:right;"> 2.3 </td>
##    <td style="text-align:right;"> 32 </td>
##   </tr>
##   <tr>
##    <td style="text-align:left;"> Hispanic </td>
##    <td style="text-align:left;"> Experimental </td>
##    <td style="text-align:left;"> Time 1 </td>
##    <td style="text-align:right;"> -0.46 </td>
##    <td style="text-align:right;"> 2.1 </td>
##    <td style="text-align:right;"> 29 </td>
##   </tr>
##   <tr>
##    <td style="text-align:left;"> Hispanic </td>
##    <td style="text-align:left;"> Experimental </td>
##    <td style="text-align:left;"> Time 2 </td>
##    <td style="text-align:right;"> -0.68 </td>
##    <td style="text-align:right;"> 2.0 </td>
##    <td style="text-align:right;"> 29 </td>
##   </tr>
##   <tr>
##    <td style="text-align:left;"> Not Hispanic </td>
##    <td style="text-align:left;"> Attention </td>
##    <td style="text-align:left;"> Time 1 </td>
##    <td style="text-align:right;"> 0.53 </td>
##    <td style="text-align:right;"> 2.5 </td>
##    <td style="text-align:right;"> 44 </td>
##   </tr>
##   <tr>
##    <td style="text-align:left;"> Not Hispanic </td>
##    <td style="text-align:left;"> Attention </td>
##    <td style="text-align:left;"> Time 2 </td>
##    <td style="text-align:right;"> 0.47 </td>
##    <td style="text-align:right;"> 2.8 </td>
##    <td style="text-align:right;"> 44 </td>
##   </tr>
##   <tr>
##    <td style="text-align:left;"> Not Hispanic </td>
##    <td style="text-align:left;"> Experimental </td>
##    <td style="text-align:left;"> Time 1 </td>
##    <td style="text-align:right;"> -0.37 </td>
##    <td style="text-align:right;"> 2.1 </td>
##    <td style="text-align:right;"> 54 </td>
##   </tr>
##   <tr>
##    <td style="text-align:left;"> Not Hispanic </td>
##    <td style="text-align:left;"> Experimental </td>
##    <td style="text-align:left;"> Time 2 </td>
##    <td style="text-align:right;"> 0.59 </td>
##    <td style="text-align:right;"> 1.9 </td>
##    <td style="text-align:right;"> 54 </td>
##   </tr>
## </tbody>
## </table>
## 
## 
## ANOVA results using results as the dependent variable
##  
## 
##                Predictor      SS  df    MS    F    p partial_eta2
##              (Intercept)    3.02   1  3.02 0.60 .439             
##                     Time   28.45   1 28.45 5.65 .018          .02
##                Condition    9.02   1  9.02 1.79 .182          .01
##                     race    0.93   1  0.93 0.18 .668          .00
##         Time x Condition    9.51   1  9.51 1.89 .170          .01
##              Time x race   15.01   1 15.01 2.98 .085          .01
##         Condition x race    0.15   1  0.15 0.03 .862          .00
##  Time x Condition x race    0.05   1  0.05 0.01 .921          .00
##                    Error 1560.66 310  5.03                       
##  CI_90_partial_eta2
##                    
##          [.00, .05]
##          [.00, .03]
##          [.00, .01]
##          [.00, .03]
##          [.00, .04]
##          [.00, .01]
##          [.00, .00]
##                    
## 
## Note: Values in square brackets indicate the bounds of the 90% confidence interval for partial eta-squared

5 New analyses

First, I’ll assign the groups in the proper way. Therefore, the first group is formed of latinxs (M_5R1002 = 1) of color (all but M_5R104D).

In contrast, the second group is composed of white-only (M_5R104D = 1) non-latixs participants (M_5R1002 = 0).

After this division, this dataset results 31 latinxs dyads (mother/child) and 72 white dyads. Once this study gathered on two groups (intervention vs control), the following table describes the sample within each condition. I’ve added to dataset a variable (dummy coding) to make easier to find these participants just in case we need that later.

condition latino white Total
attention-control 55% (17) 44% (32) 48% (49)
experimental 45% (14) 56% (40) 52% (54)
Total 100% (31) 100% (72) 100% (103)

Three main variables are targets in this study: Infant Behavior (blang), Maternal Behavior (mlang), and Maternal knowledge Epals (M_4I1TOT).

Each variable will be tested in the following analyses.

mod_repmeasure_new_analyses <- function(x,y) {
  
  x <- enquo(x)
  y <- enquo(y)
  
  #diplay statistics summary table
  
  stats_table <- data_april %>% 
    filter(!is.na(latino_group)) %>% 
    select(ID,latino_group, condition, !!x, !!y) %>% 
    pivot_longer(cols = !!x:!!y, #variables that have results
                 names_to = "time",
                 values_to = "results") %>% 
    mutate(time = recode_factor(time, `!!x` = "baseline", `!!y` = "post")) %>% #change value coding
    group_by(latino_group,condition, time) %>% 
    summarise(mean=mean(results), sd=sd(results), n=n()) %>% 
    kable(digits = 2) %>%
    kable_styling(bootstrap_options = c("striped", "hover"),position='center',
                  font_size = 12,full_width=F) 
  
    # plot
  
  plot <- data_april %>% 
    filter(!is.na(latino_group)) %>% 
    select(ID,latino_group, condition, !!x, !!y) %>% 
    pivot_longer(cols = !!x:!!y, #variables that have results
                 names_to = "time",
                 values_to = "results") %>% 
    mutate(time = recode_factor(time, `!!x` = "baseline", `!!y` = "post")) %>% 
    ggplot(aes(x = time, y = results, group = interaction(latino_group,condition))) +
    stat_summary(fun.y = mean, geom = "line", aes(color = condition, linetype = latino_group),size=1.5) +
    stat_summary(fun.data = mean_se, geom = "errorbar", width=.2, size=1, aes(color = condition,linetype = latino_group)) +
    scale_linetype_manual(values=c("solid", "dotted")) +
    scale_color_manual(values=c('black','#E69F00')) +
    labs(title = as_label(x), y = "Results", x = "Time")

    ## INFERENTIAL TEST
  inferential_test <- data_april %>% 
    filter(!is.na(latino_group)) %>% 
    select(ID,latino_group, condition, !!x, !!y) %>% 
    pivot_longer(cols = !!x:!!y, #variables that have results
                 names_to = "time",
                 values_to = "results") %>% 
    mutate(time = recode_factor(time, `!!x` = "baseline", `!!y` = "post")) %>% 
    lm(results ~ time * condition * latino_group, data = .) %>% 
    apaTables::apa.aov.table(.)
  
  return(list(stats_table, plot, inferential_test))
  
}

5.1 Mother knowledge (M_4I1TOT)

[[1]]
latino_group condition time mean sd n
latino attention-control M_4I1TOT 4.1 2.0 17
latino attention-control M_4I2TOT 4.9 2.7 17
latino experimental M_4I1TOT 5.6 2.9 14
latino experimental M_4I2TOT 9.0 2.6 14
white attention-control M_4I1TOT 7.4 3.0 32
white attention-control M_4I2TOT 7.5 2.6 32
white experimental M_4I1TOT 7.4 2.6 40
white experimental M_4I2TOT 10.0 3.0 40

[[2]] [[3]]

ANOVA results using results as the dependent variable

                Predictor      SS  df     MS     F    p
                 (Intercept)  280.06   1 280.06 37.40 .000
                        time    5.76   1   5.76  0.77 .381
                   condition   17.57   1  17.57  2.35 .127
                latino_group  126.73   1 126.73 16.92 .000
            time x condition   26.05   1  26.05  3.48 .064
         time x latino_group    2.85   1   2.85  0.38 .538
    condition x latino_group   12.88   1  12.88  1.72 .191

time x condition x latino_group 0.05 1 0.05 0.01 .935 Error 1482.76 198 7.49
partial_eta2 CI_90_partial_eta2

   .00         [.00, .03]
      .01         [.00, .05]
      .08         [.03, .14]
      .02         [.00, .06]
      .00         [.00, .02]
      .01         [.00, .04]
      .00         [.00, .00]
                            

Note: Values in square brackets indicate the bounds of the 90% confidence interval for partial eta-squared

5.2 Infant Behavior (blang)

[[1]]
latino_group condition time mean sd n
latino attention-control blang1 0.32 1.7 17
latino attention-control blang2 -1.60 2.1 17
latino experimental blang1 -0.47 1.4 14
latino experimental blang2 -0.54 2.3 14
white attention-control blang1 0.52 2.7 32
white attention-control blang2 0.62 2.9 32
white experimental blang1 -0.45 2.3 40
white experimental blang2 0.63 2.1 40

[[2]] [[3]]

ANOVA results using results as the dependent variable

                Predictor      SS  df    MS    F    p partial_eta2
                 (Intercept)    1.76   1  1.76 0.32 .570             
                        time   31.41   1 31.41 5.78 .017          .03
                   condition    4.77   1  4.77 0.88 .350          .00
                latino_group    0.46   1  0.46 0.08 .773          .00
            time x condition   13.19   1 13.19 2.43 .121          .01
         time x latino_group   22.68   1 22.68 4.18 .042          .02
    condition x latino_group    0.18   1  0.18 0.03 .855          .00

time x condition x latino_group 2.05 1 2.05 0.38 .540 .00 Error 1075.13 198 5.43
CI_90_partial_eta2

  [.00, .08]
     [.00, .03]
     [.00, .02]
     [.00, .05]
     [.00, .06]
     [.00, .01]
     [.00, .02]
               

Note: Values in square brackets indicate the bounds of the 90% confidence interval for partial eta-squared

5.3 Maternal Behavior (mlang)

[[1]]
latino_group condition time mean sd n
latino attention-control mlang1 0.53 2.8 17
latino attention-control mlang2 -1.71 2.2 17
latino experimental mlang1 0.26 3.0 14
latino experimental mlang2 -0.44 2.4 14
white attention-control mlang1 0.66 2.5 32
white attention-control mlang2 0.27 2.4 32
white experimental mlang1 -0.59 2.4 40
white experimental mlang2 0.68 2.5 40

[[2]] [[3]]

ANOVA results using results as the dependent variable

                Predictor      SS  df    MS    F    p partial_eta2
                 (Intercept)    4.83   1  4.83 0.77 .381             
                        time   42.95   1 42.95 6.86 .009          .03
                   condition    0.56   1  0.56 0.09 .766          .00
                latino_group    0.19   1  0.19 0.03 .861          .00
            time x condition    9.17   1  9.17 1.47 .227          .01
         time x latino_group   19.00   1 19.00 3.04 .083          .02
    condition x latino_group    5.15   1  5.15 0.82 .365          .00

time x condition x latino_group 0.03 1 0.03 0.01 .941 .00 Error 1238.87 198 6.26
CI_90_partial_eta2

  [.00, .08]
     [.00, .02]
     [.00, .01]
     [.00, .04]
     [.00, .05]
     [.00, .03]
     [.00, .00]
               

Note: Values in square brackets indicate the bounds of the 90% confidence interval for partial eta-squared